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Abstract

Background: Australia relies heavily on rabbit haemorrhagic disease virus (RHDV)

for the biological control of introduced European wild rabbits Oryctolagus cuniculus,

which are significant economic and environmental pests. An endemic non-

pathogenic rabbit calicivirus termed RCV–A1 also occurs in wild rabbits in

Australian and provides partial protection against lethal RHDV infection, thus

interfering with effective rabbit control. Despite its obvious importance for rabbit

population management, little is known about the epidemiology of this benign rabbit

calicivirus.

Methods: We determined the continent-wide distribution and prevalence of RCV-

A1 by analysing 1,805 serum samples from wild rabbit populations at 78 sites

across Australia for the presence of antibodies to RCV-A1 using a serological test

that specifically detects RCV-A1 antibodies and does not cross-react with co-

occurring RHDV antibodies. We also investigated possible correlation between

climate variables and prevalence of RCV-A1 by using generalised linear mixed

effect models.

Results: Antibodies to RCV-A1 were predominantly detected in rabbit populations

in cool, high rainfall areas of the south-east and south-west of the continent. There

was strong support for modelling RCV-A1 prevalence as a function of average

annual rainfall and minimum temperature. The best ranked model explained 26% of
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the model structural deviance. According to this model, distribution and prevalence

of RCV-A1 is positively correlated with periods of above average rainfall and

negatively correlated with periods of drought.

Implications: Our statistical model of RCV-A1 prevalence will greatly increase our

understanding of RCV-A1 epidemiology and its interaction with RHDV in Australia.

By defining the environmental conditions associated with the prevalence of RCV-

A1, it also contributes towards understanding the distribution of similar viruses in

New Zealand and Europe.

Introduction

As one of the most successful invasive animals world-wide, European wild rabbits

(Oryctolagus cuniculus) have long impaired the economy and environment in

Australia and some areas of New Zealand [1]. They reduce native pasture

biodiversity, promote invasive weed species, restrict the regeneration of trees and

shrubs, and have severe impacts on native herbivores and omnivores through food

competition and habitat degradation, costing over AU$200 million in lost

agricultural production each year in Australia [2].

Effective biological control of rabbits in Australia was initiated with the

introduction of myxoma virus in the early 1950s and was followed with the release

of rabbit haemorrhagic disease virus (RHDV) in 1995 [3–5]. Both viruses showed

very different characteristics. Transmission of myxoma virus relies on biting

insects such as fleas and mosquitoes, and therefore the virus spreads more

effectively along waterways and in more humid climates that support mosquito

abundance [6]. In contrast, the effect of RHDV on reducing rabbit abundance was

found to be more severe in hot, dry areas compared to cool, wet areas [7, 8].

A large proportion of rabbits sampled in cool and wet areas in Australia had

antibodies which cross reacted with RHDV in serological tests even though they

were not exposed to RHDV previously. When rabbits from these areas were

experimentally infected with RHDV, the case fatality rate was reduced by up to

52%. Thus it was hypothesised that the reduced impact of RHDV in cool and wet

areas of Australia was due to a related, non-pathogenic rabbit calicivirus already

present in wild rabbit populations that was providing some degree of cross

protective immunity to lethal RHDV infection [7, 9–12]. Cross reacting antibodies

in rabbits before the arrival of RHDV were also reported in New Zealand [13].

The benign rabbit calicivirus RCV-A1 was isolated and formally described in

2009 [14]. Subsequent studies showed that pre-infection with RCV-A1 can

provide rabbits with up to 50% protection against lethal RHDV infection [15].

Notably, the cross protection is transient and wanes approximately 8 weeks

following RCV-A1 infection [16]. Phylogenetic studies of different strains of

RCV-A1 revealed that RCV-A1 had probably arrived in Australia together with

the first wild rabbits approximately 150 years ago [17], and had probably reached
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the natural limits of its distribution in Australia well before RHDV was

introduced. Following its initial release, RHDV spread through almost the entire

rabbit population across Australia, yet a reduction of its effectiveness was only

observed in the cooler, wetter areas. This indicated that if RCV-A1 was the

underlying cause of the reduced impact of RHDV, its distribution may be

regionally limited [7, 18].

As RCV-A1 and RHDV are closely related and antibodies raised against each

virus are cross-reactive, the omnipresence of RHDV made it very difficult to

determine the actual distribution of RCV-A1. However, following the discovery

and genetic characterisation of RCV-A1 highly specific and sensitive enzyme-

linked immunosorbent assays (ELISAs) could be developed [19, 20]. These assays

specifically detect RCV-A1 antibodies at an individual level and, for the first time,

allow the estimation of RCV-A1 prevalence in rabbit populations that also carry

RHDV antibodies.

We applied these specific assays to 1805 recent and archival rabbit serum

samples from 78 sites across Australia to determine presence and prevalence of

RCV-A1, and subsequently used generalised linear mixed-effect models to test

whether RCV-A1 distribution and prevalence can be explained by climatic

conditions. We mapped the spatial and temporal variations of RCV-A1 prevalence

in Australia, and discuss the implications for rabbit management.

Materials and Methods

Serum samples and serological assay

Rabbit serum samples collected from 78 sites across Australia between 1972 and

2012 for various rabbit research projects (e.g. to monitor the initial spread of

RHDV) were used for detection of RCV-A1 antibodies (S1 Table). The sample size

varied from 6 to 66 across sites.

Rabbit sera were tested by using a previously described competition ELISA that

specifically detects RCV-A1 antibodies and does not cross react with RHDV

antibodies (RCV-A1 cELISA-2 in [20]). The details of the method are provided in

S1 Text.

Animal ethics

The collection of rabbits from national parks was covered by the scientific licence

#12226/2007 issued by the New South Wales department of Environment and

Climate Change (for Cattai National Park), licenses Q25952-1, Q25952-2 and

Q25952-3 issued by the South Australian Department for Environment, Water

and Natural Resources (national parks in South Australia), or collected by/with

permission of individual parks rangers as part of routine pest animal manage-

ment. The majority of the sampling was carried out on private land with the

landholder’s permission, and the authors should be contacted for potential future

sampling at these sites. Rabbits are a declared pest species in Australia, and no
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specific permission was required to collect rabbits with the exceptions listed

above. The field studies did not involve any endangered or protected species. The

specific locations of all sampling sites are listed in S1 Table.

Rabbits were either shot or trapped. Shooting was carried out by licensed

shooters with a.22 calibre rifle according to Standard Operating Procedures for

Ground Shooting of Rabbits. Trapping was carried out using cage paddle traps

baited with carrots or oats. Traps were set at dusk and checked within two hours

of sunrise, rabbits were removed from the traps and killed by cervical dislocation.

All efforts were made to minimise suffering. The methods involving sample

collection from rabbits were carried out according to the Australian code for the

care and use of animals for scientific purposes and covered by the following AEC

Permit numbers: 23/98, 10/99, 13/01, 09/03 and 11/09 issued by the Department

of Primary Industries and Regions South Australia Animal Ethics Committee,

permit number VPRU ORA 11-14-001 issued by the New South Wales

Department of Primary Industries Orange Animal Ethics Committee, permit

number 95/96-21, issued by the CSIRO Wildlife and Ecology Animal

Experimentation Ethics Committee, permit numbers CSEAEC # 06–31, CESAEC

# 09–14, CESAEC # 12–15 issued by the Commonwealth Scientific and

Industrial Research Organisation (Sustainable Ecosystems and Ecosystem Sciences

Division) Animal Ethics Committees, permit numbers Q25952-1 and Q25952-2

issued by the Department of Environment Water and Natural Resources Animal

Ethics Committee, PAEC 060601, SAWEC 45/2007 and CA2013/01/662 issued by

Queensland Government animal ethics committees.

Statistical model

We used generalised linear mixed-effects models (GLMM; Binomial distribution)

to identify climatic predictors (temperature and rainfall) of RCV-A1 prevalence

(i.e., proportional occurrence of RCV-A1 positive sera at each site). Since mean

annual rainfall can vary considerably between years, and wild rabbits rarely live

beyond three years of age [21], we modelled climate predictors as 3-year rainfall

and temperature averages of the sampling year and the proceeding 2 years.

Climate variables were 3-year average minimum temperature (Tmin), 3-year

average maximum temperature (Tmax) and 3-year average rainfall (Rain).

Variable choice was guided by expert opinion on the most likely climatic drivers

of RCV-A1 prevalence [7, 10]. All daily climate data were obtained from the

Australian Government Bureau of Meteorology for the weather station closest to

the coordinates of each sampling site.

The two-vector response variable comprised the number of screened animals

that were positive for RCV-A1 antibody and the number of animals that were

negative at each site in each year based on the serological assays. Year was treated

as a random effect, not a fixed effect, because we were interested in the variation

among years and not the specific effect of year [22]. Based on likelihood ratio tests

[23], there was no support for treating site as an additional random effect. To

avoid co-linearity among predictors, climatic variables with a Spearman’s Rank
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correlation $0.7 were excluded from the analysis. Tmin and Tmax were strongly

correlated so we removed Tmax but retained Tmin because it was the least

correlated with Rain.

We explored the influence of climate on RCV-A1 prevalence using a candidate

model set including Tmin, Rain and log transformed Rain (logRain); and some

combinations of these (Table 1). We did not model quadratic or interaction terms

because doing so resulted in models not converging or large standard errors for

coefficient estimates for fixed effects. We compared and ranked models using

Akaike’s information criterion corrected for finite sample size (AICc) and the

dimension-consistent Bayesian information criterion (BIC; an approximation of

the Bayes factor given no informative prior information on relative model support

[24]). Specifically, we used BIC model weights (wBIC) to determine the

contribution of the most important variables and AIC weights (wAICc) to identify

the most useful predictive models given the data [25]. We assessed each model’s

structural goodness-of-fit with per cent deviance explained (%DE). Observation-

level random effects were fitted to the models to account for issues of

overdispersion (s51.8) [26]. Likelihood ratio tests were used to confirm support

for modelling an observational level random effect. All residual distributions met

linear model assumptions (assessed using normalised scores of standardised

residual deviance [Q-Q plots]). All models were implemented using lme4 package

in Program R [27].

Spatial correlograms were generated using Moran’s I to assess autocorrelation

in RCV-A1 prevalence (raw data and GLMM residuals) as a function of the

distance between sites [28]. Evidence for spatial autocorrelation was assessed after

a Bonferroni correction [29]. The analysis was implemented using the spdep

package in Program R.

We assessed the predictive capacity of the most parsimonious model (i.e., with

greatest AICc support) using standard 10-fold cross-validation, reporting mean

absolute prediction error for the response variable [30]. This model was used to

make spatial predictions (at a grid cell resolution of ,5 km) of the probability of

RCV-A1 occurrence for the present period of high rainfall (3-year average,

focused on 2011) and a historic period of drought conditions (3-year average,

focused on 2003). The Southern Oscillation Index (SOI) which is a measure of

fluctuations in the air pressure difference between Tahiti and Darwin, Australia

was used for selection of wet and dry periods [31]. Sustained negative values of the

SOI below 28 (El Niño events, as was observed between 2002 and 2004) are often

associated with a reduction in rainfall over much of eastern and northern

Australia. Conversely, positive values of the SOI above +8 (La Niña events, as was

observed between 2010 and 2012) increase the probability that eastern and

northern Australia will receive above-average rainfall.

Annual climate prediction surfaces for Australia were accessed from the

Australian Government Bureau of Meteorology: average annual minimum

temperature and rainfall (0.0560.05˚grid cell resolution) for the years 2002–2004

and 2010–2012. Interpolated data were generated using an optimised Barnes

successive correction technique that applies a weighted averaging process to the
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weather station data from across Australia [32]. We constrained our model

predictions to climate conditions used to build the model. By doing this, we

avoided using the model to extrapolate to novel climatic conditions, because this

can result in increased levels of uncertainty in model predictions [33].

Results

Distribution of RCV-A1 in Australia

Antibodies to RCV-A1 were confirmed in rabbit populations from 53 of the 78

sites tested. Where present, the sero-prevalence of RCV-A1 in different rabbit

populations varied from 13% to 100% (S1 Table). RCV-A1 was found on

mainland Australia in relatively narrow strips along the south-eastern and south-

western coastlines and in Tasmania (TAS) (Fig. 1A). When the prevalence of

RCV-A1 was grouped into five categories from low to high, the sites with higher

prevalence were largely clustered in the south-east of New South Wales (NSW)

and Victoria (VIC), and the Mount Lofty Ranges near Adelaide in South Australia

(SA) (Fig. 1B).

No evidence of RCV-A1 antibodies was found at sites located in arid parts of

the Northern Territory (NT), Western Australia (WA), Queensland (QLD) and

the north of SA. The only site in NSW where rabbits tested negative to RCV-A1

was Montague Island which is isolated from the mainland. The two negative sites

in VIC were interspersed with positive sites, and the sample from one of the sites

was small (n56), and therefore overall confidence in the negative observation in

VIC is reduced.

The 3-year average annual rainfall at sites where RCV-A1 antibodies were

detected was 573¡217 mm (mean ¡SD), compared to 308¡200 mm (mean

¡SD) at sites where RCV-A1 antibodies were not detected. Sites with high

prevalence of RCV-A1 (.50%) had a mean annual rainfall of 608¡179 mm

(mean ¡SD).

Table 1. Correlates of RCV-A1 prevalence in wild rabbit populations in Australia.

Model k LL dAICc wAICc dBIC wBIC % DEV

Tmin+logRain+(1|year)+(1|obs) 6 2117.04 0.00 1.00 0.00 1.00 25.79

logRain+(1|year)+(1|obs) 5 2130.84 25.31 0.00 23.06 0.00 17.04

Tmin+(1|year)+(1|obs) 5 2132.78 29.19 0.00 26.95 0.00 15.81

Rain+(1|year)+(1|obs) 5 2138.70 41.02 0.00 38.77 0.00 12.06

null 4 2157.72 76.84 0.00 72.29 0.00 0.00

This table showed number of parameters (k), Log-likelihood (LL), change in AICc compared with the best-ranked model (dAICc), model AICc weights
(wAICc), change in BIC compared with the best-ranked model (dBIC), model BIC weight (wBIC) and per cent deviance explained (% DEV). Climate
variables are 3-year averages: annual min temperature (Tmin), annual rainfall (Rain) and log annual rainfall (logRain). We modelled year as random effect.
An observation-level random effect (obs) was used to account for issues of overdispersion. The null model has only random effects. See Methods for further
details.

doi:10.1371/journal.pone.0113976.t001
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Correlates of RCV-A1 prevalence

There was strong statistical support for RCV-A1 prevalence as a function of

temperature and rainfall, which was best explained using a multi-term model with

Tmin and logRain (Table 1). This model explained 26% of model structural

deviance. There was no support for the next ranked model, which treated the

proportional occurrence of RCV-A1 as a function of logRain (dAICc525.31,

dBIC523.06, Dev517%). The model averaged coefficients (fixed effects) for the

most parsimonious model were: Tmin 520.298 (SE50.032); logRain 52.21

(SE50.205).

Cross-validated mean prediction error according to the most parsimonious

model (i.e., , Tmin + logRain + [1|year] + [1|obs])) for RCV-A1 prevalence was

¡0.199. There was no evidence of spatial autocorrelation in GLMM residuals (i.e.

P.0.05 at all distance classes).

Projection of RCV-A1 prevalence under different climate scenarios

This model was used to predict RCV-A1 prevalence for observed periods of wet

and drought conditions based on rainfall and minimum temperature data, i.e. 3-

year average focused on 2011 and 2003, respectively. It revealed that: (i) RCV-A1

prevalence was highest along the east coast of Australia, Tasmania, the Fleurieu

Peninsula and Mt Lofty regions of South Australia, and the southern corner of

Western Australia; and (ii) drought conditions negatively impacted the

distribution of RCV-A1 (Fig. 2). During above average wet years in NSW (a

region of eastern Australia) RCV-A1 prevalence increased in a westerly direction

Fig. 1. The distribution and prevalence of RCV-A1 in wild rabbit populations in Australia. (A) The presence (red dot) and absence (black dot) of RCV-
A1 at different sites. Black dots at smaller size indicate sites with sample numbers less than 20. (B) Prevalence of RCV-A1 at the 78 sites tested. Black dot:
prevalence of RCV-A1 is 0% in the tested samples. Circles with varied size and colour indicate the different prevalence of RCV-A1 at each site. WA: Western
Australia, NT: Northern Territory, SA: South Australia, QLD: Queensland, NSW: New South Wales, ACT: Australian Capital Territory, VIC: Victoria, TAS:
Tasmania. The maps were generated using the ‘‘Mapping and analysis’’ tool from the ‘Atlas of Living Australia’ (http://www.ala.org.au/), licensed under a
Creative Commons Attribution 3.0 Australia License.

doi:10.1371/journal.pone.0113976.g001

Modelling the Distribution and Prevalence of RCV-A1 in Australia

PLOS ONE | DOI:10.1371/journal.pone.0113976 December 8, 2014 7 / 15



i.e., encroaching into typically more arid regions of Australia where it was not

found during periods of drought (Fig. 3A and B). RCV-A1 prevalence increased

by up to 0.43 in some areas of NSW in response to higher-than-average rainfall

(Fig. 3C).

Discussion

We describe here for the first time a comprehensive map of the distribution and

prevalence of the benign calicivirus RCV-A1 across the Australian continent. We

show evidence of a strong correlation between RCV-A1 prevalence and

temperature and rainfall, and propose that the prevalence and distribution of

RCV-A1 may vary in response to short-term changes in climatic conditions,

thereby providing a valuable new tool for predicting the dynamics of RCV-A1 at

continental and regional scales in the context of climate change. By improving

understanding of the potential causes of decreased effectiveness of RHDV in

cooler wetter areas in Australia, our results can be used when planning the future

release of new pathogenic caliciviruses and integrating non-biological methods in

these areas for rabbit control.

Fig. 2. Predicted RCV-A1 prevalence in Australia and associated standard error for wet and dry
periods. (A) and (B) RCV-A1 prevalence and standard error for an episode of above average rainfall from
2010 to 2012 (Wet Period). (C) and (D) RCV-A1 prevalence and standard error for an episode of below
average rainfall from 2002 to 2004 (Dry Period). Areas in grey represent novel climate conditions, where
predictions could not be made.

doi:10.1371/journal.pone.0113976.g002

Modelling the Distribution and Prevalence of RCV-A1 in Australia

PLOS ONE | DOI:10.1371/journal.pone.0113976 December 8, 2014 8 / 15



Correlation between RCV-A1 prevalence and climate factors

RCV-A1 has likely existed in Australia for 150 years [17]. Thus, the distribution of

this established virus should have reached a dynamic equilibrium in rabbit

populations. It was therefore appropriate to use a modelling approach to predict

RCV-A1 distribution at a continental scale. We showed that a model with

temperature and rainfall (i.e. Tmin and and logRain) can explain up to 26%

variance in RCV-A1 prevalence; and that the distribution of RCV-A1 is likely to

be restricted to areas with cooler and more humid climates, including the cooler

part of sub-tropical Queensland. In doing so we provided important evidence to

support earlier hypotheses that RCV-A1 is likely to be well established in wild

rabbit populations in cool, wet areas of Australia [7, 18]. We also propose that,

according to this model, the prevalence of RCV-A1 is likely to vary spatio-

temporally in response to short to medium-term variation in rainfall.

The strong association between the occurrence of RCV-A1 and climate factors

is at odds with the distribution of the pathogenic RHDV, which has been able to

spread naturally into all rabbit populations including those in the hot arid and

semi-arid inland [4, 5]. Closer examination of epidemiological factors such as the

relative titres of virus produced and mode of virus transmission may provide the

most likely explanation for the mechanisms by which climate could affect virus

Fig. 3. Predicted RCV-A1 prevalence in New South Wales, Australia. (A) RCV-A1 prevalence for a period
(2010–2012) of above average rainfall. (B) RCV-A1 prevalence for a period (2002–2004) of below average
rainfall. (C) The grid-cell difference between predicted prevalence in a wet year and a dry year.

doi:10.1371/journal.pone.0113976.g003
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spread. RHDV grows to very high titres [15, 34] and while it can spread via the

direct faecal-oral route [35], the high virus load in the carcasses also enables

mechanical transmission through flies over long distances [36–39]. In contrast,

the low virus titre in tissues and excretions of RCV-A1 infected rabbits [14] makes

the transmission of RCV-A1 by insects unlikely. The localized geographic

distribution of RCV-A1 in wild rabbit populations [17] and the spread of RCV-A1

in a rabbit colony [16] support a direct contact or close proximity transmission

model for RCV-A1. While RCV-A1 can be detected in the bile months after

infection [15], true persistent infections and reactivation of virus shedding have

not been confirmed. However, it is feasible that a constant supply of susceptible

rabbits is sufficient to allow RCV-A1 to persist by continual transmission, for

example, in environments that favour prolonged breeding of rabbits throughout

the year and support high rabbit densities. Long breeding seasons supporting the

persistence of viruses in rabbits has also been demonstrated for myxoma virus

[40].

In this respect, it is important to note that duration and frequency of rabbit

breeding are strongly influenced by available soil-moisture, itself a product of

rainfall and evapo-transpiration [41]. Meanwhile, evapo-transpiration is largely

driven by temperature. The sites with higher prevalence of RCV-A1 are

concordant with areas where rainfall is consistently high throughout the year and

favours a long breeding season of rabbits. Therefore, it is highly likely that the

strong correlation between RCV-A1 and climate is unlikely to be a direct response

to climate per se. Rather; the climatic variables identified to correlate with high

prevalence of RCV-A1 are likely to influence breeding patterns and rabbit

densities, which in turn may support efficient spread of RCV-A1. However, even

within areas with generally high prevalence of RCV-A1, the distribution of RCV-

A1 may be patchy, possibly due to different fine-scale climate conditions, and

other factors such as rabbit control programs using poisons may reduce rabbit

densities locally, irrespective of climatic factors.

RCV-A1 impacts the effectiveness of RHDV

RCV-A1 can decrease the mortality of rabbits following RHDV infections

[7, 9, 12, 14, 16, 42]. For example, sera sampled before the first RHDV release in

1996 in NSW (see Cattai National Park, S1 Table) showed high RCV-A1

prevalence. Indeed, there was no evidence of RHDV spread or reduction in rabbit

numbers after two deliberate RHDV releases [43]. Furthermore, rabbits as young

as three weeks have been found infected with RCV-A1 (T. Strive, unpublished

data), so it is possible that most rabbits are infected with RCV-A1 before they are

exposed to RHDV in areas with high prevalence of RCV-A1.

In areas with low prevalence of RCV-A1, the impact of RCV-A1 on RHDV

effectiveness may not be obvious after the initial spread of RHDV, but with even a

small proportion of rabbits surviving the RHDV challenge due to pre-infection

with RCV-A1 each year, the high reproduction rate of these life-long immune

rabbits may contribute significantly to the long-term recovery of the population.
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It should be noted that the climatic conditions associated with high RCV-A1

prevalence can also favour year round breeding of rabbit populations. For reasons

that are not completely understood, RHDV case fatality is greatly reduced in very

young rabbits [44]. The observed reduction of RHDV effectiveness in these areas

may therefore a result of the combined effects of high RCV-A1 prevalence as well

as the age structure of the population.

Impacts of RHDV on RCV-A1 prevalence

While RCV-A1 can directly reduce the impact of RHDV epidemic, it is also

possible that RHDV can indirectly reduce the prevalence of RCV-A1. In the case

of RCV-A1 which is transmitted mainly by the fecal-oral route, it is likely that the

fragmentation of rabbit populations is a major handicap to the re-colonization of

the virus in patchy rabbit populations. As a case in point, after the initial RHDV

release in 1996, rabbit population size declined drastically in south-western

Australia [45], meanwhile RCV-A1 prevalence changed dramatically from 87% to

0% in this area (Stirling Ranges) between 1993 and 2012 (S1 Table; T. Cox,

unpublished data). Furthermore, in semi-arid areas of western NSW (Broken

Hill) and SA (Manunda), RCV-A1 prevalence reduced from 60% to 0% between

1995 (before RHD outbreaks) and 2012 (S1 Table). Both the introduction of

RHDV and degeneration of vegetation across the area due to a decrease in late

autumn and winter rainfall across southern Australia since 1974 [46] have likely

contributed to the reduction in rabbit density, which in turn may have led to

regional extinction of RCV-A1. However, such a reduction in population sizes

followed by an apparent drop in RCV-prevalence was only observed at semi-arid

sites located at the edges of RCV-A1 distribution. In coastal areas where climate

permits year round breeding of rabbits, RHDV had very little impact on rabbit

densities, and RCV-A1 prevalence has remained high [43]. More research is

needed to test whether RHDV or the change in climate or both were the main

driver for this drastic change of RCV-A1 prevalence. However, if rabbit density is

the limiting factor of RCV-A1 persistence in these areas, it may be equally feasible

that RCV-A1 could spread back into these semi-arid areas if rabbit numbers were

allowed to build up again.

Implications for rabbit management in Australia

In order to maximize the benefits of RHDV as a biological control agent and

justify the cost of any additional control methods, integrated management plans

with long-term economic and environmental strategies are needed. The presence

of RCV-A1 in wild rabbit populations in Australia complicates rabbit manage-

ment and considerations of how to best use RHDV as a cost-effective bio-control

agent. Although the protection against lethal RHDV infection by pre-infection of

RCV-A1 is transient [16] and possible seasonal patterns of RCV-A1 activity are

currently unknown, efforts to initiate fresh RHDV outbreaks may have little

impact in areas of high RCV-A1 prevalence, and alternative conventional control
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methods such as warren ripping [47] should be considered. In contrast, in areas

with zero or low RCV-A1 prevalence, additional RHDV releases may prove a cost

effective tool for rabbit management, provided they are well timed and applied

when few very young rabbit kittens are present in the population, and the

proportion of adult rabbits with RHDV antibodies is low.

Ideally, the site-specific presence and prevalence of RCV-A1 should be known

prior to the release of RHDV, but since this is not likely to be practicable in most

circumstances, the predicted RCV-A1 prevalence map can be a powerful tool to

aid decision making by pest managers once its accuracy is demonstrated by

sampling and testing for RCV-A1 seroprevalence at representative sites.

Furthermore, the predictive model can be progressively updated with new climate

data from each year, to predict if and how RCV-A1 distribution and prevalence

are likely to change, and rabbit management strategies that rely on RHDV can be

adjusted accordingly. For example, if RCV-A1 moves to the west in wet years, the

choice for rabbit control in these areas may be changed in a timely fashion from

release of RHDV to other control methods. Or if, under climate change, existing

wet areas become appreciably drier, as they already have in south-west WA, the

cost for rabbit control may be reduced by targeted RHDV releases.

In contrast, the wild rabbit is a key-stone species of some ecosystems in Europe

and rabbit conservation is needed due to the challenge imposed on rabbits by

RHDV and predators [48, 49]. A number of benign rabbit caliciviruses affording

different levels of cross protection against RHDV have been recorded in Europe in

areas where RHDV is endemic [50–52], however the detailed epidemiological

patterns of these viruses in wild populations are currently not well understood.

The approach presented in this study may prove useful to gain better

understanding of the distribution and prevalence of other non-pathogenic enteric

caliciviruses in Europe, and in New Zealand where the presence of benign

caliciviruses have yet to be confirmed.
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