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A B S T R A C T   

Objective: Studies showed that many COVID-19 survivors develop sub-clinical to clinical heart damage, even if 
subjects did not have underlying heart disease before COVID. Since Electrocardiogram (ECG) is a reliable 
technique for cardiovascular disease diagnosis, this study analyzes the 12-lead ECG recordings of healthy and 
post-COVID (COVID-recovered) subjects to ascertain ECG changes after suffering from COVID-19. 
Method: We propose a shallow 1-D convolutional neural network (CNN) deep learning architecture, namely ECG- 
iCOVIDNet, to distinguish ECG data of post-COVID subjects and healthy subjects. Further, we employed ShAP 
technique to interpret ECG segments that are highlighted by the CNN model for the classification of ECG re-
cordings into healthy and post-COVID subjects. 
Results: ECG data of 427 healthy and 105 post-COVID subjects were analyzed. Results show that the proposed 
ECG-iCOVIDNet model could classify the ECG recordings of healthy and post-COVID subjects better than the 
state-of-the-art deep learning models. The proposed model yields an F1-score of 100%. 
Conclusion: So far, we have not come across any other study with an in-depth ECG signal analysis of the COVID- 
recovered subjects. In this study, it is shown that the shallow ECG-iCOVIDNet CNN model performed good for 
distinguishing ECG signals of COVID-recovered subjects from those of healthy subjects. In line with the literature, 
this study confirms changes in the ECG signals of COVID-recovered patients that could be captured by the 
proposed CNN model. Successful deployment of such systems can help the doctors identify the changes in the 
ECG of the post-COVID subjects on time that can save many lives.   

1. Introduction 

The first Case of COVID-19 was registered in the Wuhan City of 
China. COVID-19 is a type of viral disease that is contagious and rapidly 
spreads through spilled respirational material (cough, sneeze) present in 
the exhaled air of the infected people. Reverse Transcription- 
quantitative PCR (RT-qPCR) is a gold standard test for diagnosis of 
COVID-19 [1]. This disease crossed the geographical boundaries with 
devastating effects in a short period, and today the entire world is 
fighting against this pandemic and hence, COVID-19 has caused 
immense social and economic losses throughout the world [2]. Based on 
the global statistics, until August 12, 2021, more than 205 million 
people suffered from this infection, and 4.3 million people lost their 
battle to COVID-19 (https://www.worldometers.info/coronavirus). 

Researchers have been trying to develop time-series models to predict 
the statistics in order to support the agencies with appropriate policy 
decisions [2,3]. 

The infection impacts the respiratory tract and causes lung pneu-
monia, fever, cough, and loss of taste and smell [4]. Although medical 
science is focused on developing effective medication and preventive 
therapy like vaccines, there is no effective therapy available for 
COVID-19. Early diagnosis, patient isolation, supportive therapy are the 
primary modes of management of COVID-19. Recently, some studies 
have indicated cardiac problems in patients recovered from COVID [5, 
6]. It has been observed that even after recovering from COVID-19, 
survivors develop sub-clinical to clinical heart damages, even though 
subjects did not have underlying heart disease before COVID-19 [7]. 
Type 1 heart attack, which is caused due to blockage in heart arteries 
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because of a blood clot, is rarely reported during or after COVID-19 
infection. Type 2 heart attacks, caused by stress or low oxygen levels, 
are most commonly reported in subjects with COVID-19 [8]. It has been 
discovered that during the COVID-19 blood report, some people have 
elevated levels of a substance called “troponin” in their blood, along 
with ECG changes and chest pain. Elevated “troponin” levels are a sign 
of damaged heart tissues, and this can cause a heart attack [9]. 

Electrocardiogram (ECG) is used to identify cardiac abnormalities. A 
12-lead ECG is generated using six unipolar chest leads (V1 to V6), three 
bipolar limb leads (I, II, and III), and three unipolar limb leads (AVR, 
AVL, and AVF) placed on the specific locations of the body surface. Each 
ECG wave consists of P, Q, R, S, T and U waves. To diagnose or detect 
heart abnormalities, cardiologists analyze the Electrocardiogram (ECG) 
recordings of the subjects that is time-consuming. Thus, it is required to 
develop methods to analyze and interpret the variability in ECG signals 
of post-COVID subjects. 

Several deep learning models have been developed to diagnose or 
predict a disease in early stage using the signals generated from human 
body such EEG, ECG, and non-invasive images [10–14]. Antczak [15] 
trained an Inception network, generated synthetic ECG data from 
time-domain Wasserstein GAN, and trained a denoising encoder to 
perform ECG denoising. Ullah et al. [16] first pre-processed the ECG 
data for denoising to remove the drift noise and then transformed them 
into two-dimensional spectrogram images. These spectrograms were fed 
to the 2D convolutional neural network (CNN), which extracts and 
represents prominent features and classifies the ECG recordings into 
eight major cardiovascular diseases. Li et al. [17] suggest transforming 
the ECG recordings into two-dimensional spectrogram images. These 
transformed images carry the patient’s heartbeat morphology and the 
temporal relation between two adjacent heartbeats. These images are 
input to a 2D CNN that performs classification using the information 
fusion techniques. 

Jun et al. [18] suggest that there is no need to pre-process the ECG 
signals manually because they can be directly converted into 
two-dimensional gray-scale images by plotting. These images are input 
to a two-dimensional neural network with an architecture similar to 
VGGNet. Zhang et al. [19] proposed a novel deep learning technique for 
multi-class arrhythmia classification using a spatio-temporal atten-
tion-based convolutional recurrent neural network. The feed-forward 
CNN extracts only the local features of ECG. Spatial attention-based 
pooling extracts the more significant channels. All the local features 
then combine to form the global features learned using a bi-directional 
gated recurrent unit (GRU). Avanzato & Beritelli [20] used a convolu-
tion neural network (CNN) to diagnose cardiovascular diseases using the 
subjects’ ECG data. 

Zhang et al. [21] proposed a deep learning architecture that includes 
stacking of residual blocks and convolutional layers. The model per-
forms better when considering 12 leads of the ECG simultaneously. 
CNNs extract the temporal features of the ECG. The use of recurrent 
neural networks has also brought significant results, but that deals with 
the time-series aspect of ECG. Xu et al. [22] proposed combining CNN 
and RNN to analyze the ECG beat patterns and diagnose heart diseases. 
The first two layers of the convolutional network extract the ECG 
morphology patterns and feed them to the RNN. Transfer learning 
technique in training the RNN gives outstanding accuracy and an 
optimal global solution for abnormal ECG classification into different 
cardiovascular diseases. 

Borra et al. [23] performed several experiments on decoding ECG 
signals using deep learning techniques on the standard dataset of PTBXL. 
They applied Inception Time, ResNet, and XResNet models to classify 
the ECG abnormalities into 27 different categories and reported the 
Inception Time model to perform the best with the 12-lead ECG data. Jo 
et al. [24] presented an explainable artificial intelligence mechanism to 
detect irregularities in the heartbeat pattern, atrial fibrillation, and the 
absence of P-waves using 8-seconds ECG of subjects of multiple hospi-
tals. The usage of explainability of multi-labelled data was observed as 

helpful in validating the deep learning models. One module detects 
irregular heartbeats, and the other detects the absence of P waves. 
Another recent study has built a CNN based interpretable AI model for 
cardiac disorders using ECG wave analysis on PTBXL dataset [25]. 
Similarly, interesting machine learning and deep learning studies have 
been conducted recently to detect stress in COVID healthcare workers 
using ECG signal analysis [26,27]. Thus, we observe that CNN based DL 
models are increasingly being used for ECG analysis. 

Heart Rate Variability (HRV) indicates variation in the consecutive 
heartbeats of ECG signals. The maximum upwards deflection of a normal 
QRS complex is called the R wave peak in the ECG and the duration 
between two adjacent R wave peaks is termed the R-R interval. The time 
period between the adjacent QRS complexes is termed the N–N (normal- 
normal) interval. HRV is the measurement of the variability of these N–N 
intervals. Some recent studies have indicated change in heart rate 
variability (HRV) in COVID-recovered subjects [28–30]. This indicates 
that tracking of the heart status of post-COVID recovered subjects can 
help in providing timely assistance to these subjects for better survival. 

In general, the analysis of HRV involves preprocessing of ECG data 
including noise removal [31–33], feature extraction, normalization. 
Traditionally, ECG signals are analyzed using the time domain and the 
frequency domain features, say HRV features, extracted from the 
one-dimensional waveforms of different leads. The manual examination 
of ECG signals requires expertise in the field and is a time-consuming 
process. Recent advances in AI can help to analyze and interpret ECG 
data accurately. 

Motivated with the above discussion, we employed DL model to 
classify post-COVID subjects from healthy using the ECG data. Overall, 
the salient points of this work are as follows:  

1 ECG data of COVID-recovered and healthy subjects were collected at 
two hospitals in Delhi, India. 

2 Several traditional and deep learning models are trained and eval-
uated on the ECG data of healthy and post-COVID subjects. 

3 Two shallow convolutional neural network architectures are pro-
posed for the classification task. The first model, ECG-iCOVIDNet, 
works only on the raw ECG data, while the second model, ECG- 
HiCOVIDNet carries out the late fusion of the HRV features with 
the latent space embedding of the CNN features extracted from the 
raw ECG data. In general, traditional ML methods are used on HRV 
features, while DL methods utilize only raw ECG waveforms. In this 
paper, we have designed a DL architecture, ECG-HiCOVIDNet, that 
works on the raw ECG signals and on HRV features. To the best of our 
knowledge, this is one of the first studies that carries out the late 
fusion of HRV features in the DL model for ECG data analysis. Both 
the proposed models are shown to outperform the standard state-of- 
the-art CNN models on the ECG data.  

4 ShAP technique is used to evaluate interpretability at the patient and 
the population level. At the patient level, the segments of ECG wave 
contributing to the classification are highlighted. The lead-wise 
contribution to the classification is identified.  

5 To the best of our knowledge, this is one of the first studies to analyze 
the raw ECG signals of COVID-recovered patients for detecting car-
diac abnormalities. 

2. Materials 

Data were collected by the Department of Cardiology, G.B. Pant 
Hospital, Delhi, India and Lok Nayak Hospital, Delhi, India. COVID-19 
patients who had recovered (30–60 days after the date of infection) 
were initially screened for the eligibility criteria. Patients with preex-
isting cardiac conditions and pathological conditions before COVID-19 
infections were excluded from the study. After screening, 117 subjects 
were eligible for the study. A 12 lead, 500 Hz, 60 s ECG data was 
collected. These data were recorded during supine paced breathing 
using VESTA 301i (500 Hz). Similarly, ECG data of 430 healthy subjects 
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recorded in the study [34] at the same hospitals using the same ma-
chines were used as the control group data. We removed 12 
post-COVID-19 and 3 healthy samples because their ECG data were very 
noisy. Finally, the ECG data of 105 post-COVID subjects (labelled as 
class ‘1’) and 427 healthy subjects (labelled as class ‘0’) were included 
for analysis in the study. 

The dataset is divided into five folds corresponding to which five 
classifiers are trained. Each time while training a new classifier, one fold 
is used as the test set and the rest of the 4 folds are used for training the 
model. For each classifier, the training data of 4 folds is further divided 
into 80% as the training data and 20% as the validation data. The dis-
tribution of samples into training set, validation set and test set is shown 
in Table-1. 

2.1. Feature extraction 

Heart rate features were extracted using the HRV-analysis module 
Tarvainen et al. [35]. This tool removes outliers and ectopic beats from a 
signal using Malik’s rule Acar et al. [36]. The following time-domain 
HRV features were extracted: mean heart rate (Mean-HR), standard 
deviation of heart rate (STD-HR), mean of NN intervals (Mean-NNI), 
where R peak of ECG is also called the N point, median of the successive 
difference between NN intervals (Median-NNI), range NNI (Range-NNI), 
PNNI-20 (percentage of successive NN interval greater than 20 ms), 
PNNI-50 (percentage of successive NN interval greater than 50 ms) and 
standard deviation of the NN intervals (STD-NNI). HRV features derived 
from the NN intervals included RMSSD (root mean square NN intervals), 
CVNNI (Co-efficient of variation equal to the ratio of standard deviation 
of the NN intervals divided by mean NN interval) and CVSD (Coefficient 
of variation of successive difference equal to the root mean square NN 
intervals divided by mean NN interval). Frequency domain HRV features 
included High frequency (HF), Low Frequency (LF), Very Low Fre-
quency (VLF), HFNU (normalized high frequency power), LFNU 
(normalized low frequency power value), and LF/HF (ratio of low fre-
quency and high frequency power). 

3. Methods 

3.1. Models 

In this subsection, we present the existing state-of-the-art DL models, 
traditional ML classifiers, and the proposed architectures that were 
trained and tested using five-fold cross-validation, on the above 
described dataset. In general, traditional ML methods are used on HRV 
features, while DL methods are used on only raw ECG waveforms. 
Hence, we used the existing state-of-the-art DL models on the raw ECG 
data, the traditional ML classifiers on the HRV features, and our pro-
posed DL models with and without HRV features. 

3.1.1. Existing standard state-of-the-art DL models 
Spatio-Temporal CNN Model (ST-CNN-8): Attia et al. [37] pro-

posed a spatio-temporal CNN model for ECG data analysis that considers 
the temporal aspect of ECG signal of the leads along time using eight 
temporal layers and spatial aspect across the leads using one spatial 

layer. These temporal and spatial layers are followed by two fully con-
nected dense layer with sigmoid activation function. We implemented 
this architecture and also named it as ST-CNN-8. 

ResNet50: ResNet architecture was introduced by He et al. [38] for 
image recognition problem. ResNet50 is a 50-layer deep architecture. 
These networks have a general architecture of convolution, pooling, 
activation and fully-connected layers stacked one over the other. 
Although this stacking allows better feature to be learned, a deeper ar-
chitecture can still show degradation owing to multiple reasons 
including the problem of vanishing or exploding gradients. Thus, each 
layer of ResNet learns a residual function instead of fitting a desired 
underlying function via the use of skip connections. These skip con-
nections solve the problem of vanishing gradients and enable the model 
to learn an identity function. This ensures good performance in the 
deeper layers as well. Thus, ResNet provides better performance, in 
general. Here, ResNet50 model is adapted for one-dimensional inputs. 
We have used the publicly available implementation by Kotikalapudi 
[39]. 

SENet: Squeeze-and-Excitation Network or SENet [40] explicitly 
model the independencies between channels and adaptively gives 
importance to them according to the relevance. SENet applies global 
average pooling to generate channel-wise statistics to squeeze global 
spatial information into a channel vector of size equal to the number of 
convolutional channels. This squeezed vector is passed through a 
two-layer neural network and the output can be used as weight on 
original feature maps and, thus, one can adaptively recalibrate 
channel-wise feature responses. 

Attention-56: This architecture was proposed by Wang et al. [41]; 
wherein attention modules are stacked between the residual units for 
modeling an attention-aware network that can learn attention-aware 
features. We have used the publicly available implementation by Sour-
ajit2110 [42]. 

3.1.2. Traditional machine learning models 
Logistic Regression: Logistic regression is a supervised learning 

method that is used to implement binary classification. It predicts the 
probability of the input sample belonging to each class. It is computed by 
fitting an “S” shaped logistic function to the data. The output probability 
indicates the likelihood of a subject belonging to the “post-COVID class”. 

SVM: Support vector machine (SVM) is a very popular traditional 
supervised machine learning classifier. In SVM, a data sample is plotted 
as a point in an n-dimensional space (where n is the number of features). 
These data points are divided into different classes via finding the hy-
perplane that maximizes the distance of the nearest data point of each 
class (on opposite sides of this plane) from the hyperplane. Thus, it is 
also called the maximum-margin classifier. We utilized SVM classifier 
with RBF kernel. 

Decision Tree: Decision tree is a supervised tree-structured classifier 
that takes decision by asking binary questions. Based on the answers 
(yes/No), it splits the branches of the tree. Features are present at the 
nodes and the branches represent the decision rules. The outcome is 
represented by the leaf nodes. This is also one of the most efficient 
traditional machine learning method. We utilized GINI criterion in the 
decision tree. 

Table 1 
In each split, one of the folds is treated as the test set and the remaining 4 folds are divided into 80% as training data and 20% as validation data.  

Split Training Data Validation Data Test Data Total Data 

healthy post-COVID healthy post-COVID healthy post-COVID healthy post-COVID 

1 273 67 68 17 86 21 427 105 
2 273 67 68 17 86 21 427 105 
3 273 67 69 17 85 21 427 105 
4 273 67 69 17 85 21 427 105 
5 273 67 69 17 85 21 427 105     

Total 427 105    

A. Agrawal et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 146 (2022) 105540

4

3.1.3. Proposed DL models 
Convolutional Neural Network without HRV: ECG-iCOVIDNet 

(Fig. 1) The architecture of the proposed ECG-iCOVIDNet model com-
prises of three convolutional blocks stacked sequentially after each 
other. Each convolutional block comprises of a 1D-convolutional layer 
with ReLu activation followed by a batch-normalization (BN) layer. BN 
layer is used to deal with the internal covariance-shift problem. After the 
BN layer of the first convolutional block, a dropout layer is also used. 
Dropout layer discards some nodes randomly from a layer by removing 
all their connections, and helps in preventing overfitting of the model. 
The third convolutional block is followed by a global average-pool layer 
that produces the final feature set of the raw ECG data. These features 
are also called as the latent space embedding and are fed as input to the 
fully-connected (FC) layer of 50 nodes. The FC layer also uses Relu 
activation and is followed by a hidden layer with a single output node 
with sigmoid activation. This layer outputs the probability value that is 
used to determine the class of an input data sample as healthy or post- 
COVID. For the classification, the raw ECG data of a subject is fed as 
input to the proposed network. A block diagram of ECG-iCOVIDNet is 
shown in Fig. 1. 

Convolutional Neural Network with HRV: ECG-HiCOVIDNet 
(Fig. 2) Since HRV features are also important from the medical point 
of view, late fusion of these features is carried out to the latent space 
embeddings of CNN blocks of the ECG-iCOVIDNet. In other words, 
features extracted by the flatten layer of the ECG-iCOVIDNet are 
concatenated with the HRV features. These concatenated features are 
passed to the fully connected dense layer as shown in Fig. 2. This 
modified model is named as ECG-HiCOVIDNet. 

3.2. Evaluation metrics 

For evaluating the proposed model, we have used six evaluation 
metrics: accuracy, precision, recall, AUC, F1-score, and Matthews cor-
relation coefficient (MCC). These evaluation metrics are derived from 
true positive (TP), false positive (FP), true negative (TN) and false 
negative (FN). Here, a sample is defined as TP if it is class ‘1’ (post- 
COVID) and also predicted by the model as class ‘1’ label; a sample is 
defined as FP if it is class ‘0’ (healthy) and predicted as class ‘1’ label; a 
sample is defined as TN if it is class ‘0’ (healthy) and predicted as class 
‘0’ label; and a sample is defined as FN if it is class ‘1’ (post-COVID) and 
predicted as class ‘0’ label. A brief description of these evaluation met-
rics is given as below:  

● Accuracy is the ratio of correctly classified samples (both positive 
and negative class) to the total number of samples. It informs about 
the percentage of correct predictions of the model. 

Accuracy =
Correctly classified samples

Total number of samples
=

TP + TN
TP + TN + FP + FN    

● Precision is the ratio of correctly classified positive samples to all the 
positive samples claimed by the model. It is used to decide how 
precise a model is on the positive predicted samples. 

Precision =
Correctly positive classified samples

Total number of positive claimed samples
=

TP
TP + FP    

● Recall is the ratio of correctly classified positive samples to the total 
number of positive samples in the data. It tells how many of actual 
positives a model is able to capture of the total number of ground 
truth positives. 

Recall =
Correctly positive classified samples

Total number of positive samples in data
=

TP
TP + FN    

● F1-score is used to find a balance between precision and recall, 
particularly, when the dataset contains uneven class distribution. 

F1 − score = 2
Precision x Recall
Precision + Recall    

● Area Under Curve (AUC) represents the measure of separability and 
how much the model is capable of distinguishing between the clas-
ses. It does this by plotting the ROC (receiver operating character-
istics) curve with True Positive Rate (TPR) on the y-axis and False 
Positive Rate (FPR) as the x-axis. AUC of 1 indicates complete 
separability, 0.5 indicates no model separability and AUC of 0 in-
dicates wrong predictions.  

● Matthews Correlation Coefficient (MCC) is used to measure the 
quality of binary classifications. It is similar to the correlation coef-
ficient between the observed and predicted binary classifications and 
considers TP, TN, FP and FN as a balanced measure. MCC of +1 in-
dicates perfect prediction and − 1 indicates completely wrong 
prediction. 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ .

4. Results and analysis 

All the models were trained on the above explained dataset using 
five-fold cross validation. Google Colab, a cloud-based Jupyter notebook 
environment, was utilized. The data split is provided in Table 1 
describing the number of subjects in the training, validation and test 
phase for each of the fold’s classifier. It was made sure that no test set 
sample was shown during the training phase. GPU was used as the 
hardware accelerator. Keras API, which runs on top of the Tensor flow 
framework, was used to implement the models. 

Fig. 1. Block Diagram of ECG-iCOVIDNet Architecture: The model comprises of three convolutional blocks followed by a global average pool layer. The output of 
global average pool layer is flattened and passed through a fully connected layer, which is connected to a single neuron with sigmoid activation function to obtain the 
probability of the sample belonging to each class. 
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Since traditional ML methods are used on HRV features, these are 
trained and tested on HRV features, existing state-of-the-art DL models 
and the proposed ECG-iCOVIDNet are tested on raw ECG data, while the 
proposed ECG-HiCOVIDNet utilizes both the raw ECG data and HRV 
features. In Both ECG-iCOVIDNet and ECG-HiCOVIDNet, a dropout rate 
of 0.5 was used and the models were trained using 100 epochs for each 
of the five splits of the data. The models use Adam optimizer as the 
optimization algorithm that combines the best of the AdaGrad and 
RMSProp algorithms and performs much better than other optimizers. 
Binary cross-entropy is used as the loss metric. 

The parameter settings for different DL models are described next. 
Resnet-50 was trained with the learning rate of 0.0001 for 100 epochs 
using ADAM optimizer with binary cross entropy loss function. ST-CNN- 
8 was trained with the learning rate of 0.0005 for 100 epochs using 
ADAM optimizer with binary cross entropy loss function. A batch size of 
64 was chosen. We also used a dropout rate of 0.05. Both SENet and 
Attention-56 were trained with the learning rate of 0.0005 for 100 
epochs using ADAM optimizer with binary cross entropy loss function. A 
batch size of 64 and a dropout rate of 0.2 was chosen. 

4.1. Performance 

Results of all models that are described above are shown in Table-2. 
The table contains all the evaluation metrics described above, namely 
accuracy, precision, recall, F1-score, AUC and MCC, calculated on the 
test fold for each of the fold’s classifier and compiled for all five folds. 
Results show that our proposed architecture yields the best performance 
with 100% accuracy, F1-score and AUC as 1, on the test data. To visually 
demonstrate the ability to distinguish between the healthy and post- 
COVID classes, t-SNE plots are shown in Figs. 3 and 4 that demon-
strate that initially the input data is not distinguishable in two classes. 
The samples from different classes start forming clusters as we moves 
from the first convolution block to the last convolution block. Eventu-
ally, the data gets segregated into two different classes as seen from the 
tsne plots made of data after the flatten layer. Thus, we can infer from 

this that both the proposed models have the ability to separate healthy 
and post-COVID samples. 

The deep learning models show improvement over the traditional 
models. The SVM approach applied using only on the HRV features of 
the ECG dataset shows best performance among these traditional ML 
models with an accuracy of 80.26%. Logistic Regression tries to classify 
the linearly separable data, but performs poorly with only 69.81% ac-
curacy on the test data. Attention-based model, namely Attention-56 
scored an accuracy of 98.07% and, hence, performed better than ST- 
CNN-8 and SENet models. The ST-CNN-8 model yielded an accuracy 
of 97.93% and demonstrated an improvement over the SENet model. 
The reason behind the improvement could be the use of spatial and 
temporal layers that could exploit the information of all the channels as 
well as the information present across channels. 

The proposed approach of using CNN architecture features concat-
enated with the HRV features in the ECG-HiCOVIDNet model demon-
strated better performance than the attention-based model. ECG- 
HiCOVIDNet model scored an accuracy of 99.28%. Resnet model with 
50 layers gained higher accuracy with 99.81% on the test data. The 
proposed ECG-iCOVIDNet model yielded the best results with an accu-
racy of 100% on the test data. It scored an AUC of 100% and F1-score as 
1. It outperformed the traditional ML models and the state-of-the-art DL 
models. Global Average Pooling (GAP) layer after the third convolu-
tional block outputs the average of each feature map and reduced the 
vector size to 32 before the dense layers. This also reduced the total 
trainable parameters to nearly 9, 500 in all the five classifiers for five 
folds. In the ECG-HiCOVIDNet model, the GAP layer outputs the average 
of each feature map with vector size to 32. These 32 features when 
concatenated with 43 HRV features, result in a total of 75 features after 
the concatenation layer. The total trainable parameters increased to 
nearly 66, 500 in all the five classifiers for five folds. The proposed ECG- 
HiCOVIDNet model demonstrated an improvement of 19.02% over the 
traditional models, and 1.14% improvement over Attention-56 model, 
while the ECG-iCOVIDNet model displayed an improvement of 19.74% 
over the traditional model, and 0.19% over the ResNet-50 model. 

Fig. 2. Block Diagram of ECG-HiCOVIDNet Architecture: The model comprises of three convolutional blocks followed by a global average pool layer. The output is 
flattened and concatenated with the HRV features and then passed through fully connected dense layers. The output is passed through the sigmoid activation function 
to obtain the probability. For each split of the data, one classifier of ECG-HiCOVIDNet is trained. The details of the CNN blocks in these classifiers is as follows. 
Classifier-1: (W = 32,X = 3,Y = 1,Z = 1); Classifier-2: (W = 32,X = 5,Y = 1,Z = 1); Classifier-3: (W = 32,X = 5,Y = 1,Z = 1); Classifier-4: (W = 64,X = 5,Y = 1,Z = 1); 
Classifier-5: (W = 96,X = 3,Y = 1,Z = 1). 

Table 2 
Comparative performance of the proposed models with the existing models.  

Models Accuracy Precision Recall F1-Score AUC MCC 

ECG-iCOVIDNet 100% 1.0 1.0 1.0 1.0 1.0 
Resnet 50 99.81% 0.995 0.999 0.997 0.9988 0.9942 
ECG-HiCOVIDNet 99.28% 0.994 0.985 0.989 0.9809 0.9783 
Attention 56 98.07% 0.966 0.977 0.971 0.9483 0.9418 
ST-CNN-8 97.93% 0.977 0.958 0.965 0.9583 0.934 
SENet 95.38% 0.873 0.887 0.878 0.8845 0.7795 
SVM using HRV 80.26% 0.8026 1.0 0.8905 0.5 0.0 
Decision Trees using HRV 74.62% 0.8438 0.8407 0.8414 0.6013 0.1975 
Logistic Regression using HRV 69.81% 0.8442 0.7647 0.8024 0.5512 0.5966  
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4.2. Interpretability 

Although we have seen that CNN based architecture, ECG- 
iCOVIDNet, performed best for ECG data classification, it is difficult 
for humans to understand the features learned by DL models due to their 
complex architecture and non-linear behaviour. CNNs are considered as 
“black boxes” due to the lack of interpretability. ShAP (Shapley Additive 
Explanations) developed by [43], is an excellent way to interpret the 
features learnt by the deep neural network. It provides visual explana-
tion of the classification done by our CNN models. We employed ShAP 

Gradient Explainer for interpreting the (relevant) distinguishing fea-
tures. It is based on integrated gradients method, which is a feature 
attribution method for deep neural networks. From these ShAP values, 
we used the top 500 ShAP values as the important features for the 
diagnosis of the particular class. The regions in the ECGs corresponding 
to these important features are highlighted in red, while the features 
with lesser importance are seen in the blue color. The analysis is done at 
two levels as described below. 

Fig. 3. t-SNE plots of ECG data being separated layer after layer when features are learnt gradually by the ECG-iCOVIDNet model.  
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4.2.1. Patient level 
At the level of single patient, it is important to identify the features 

from the data of a particular patient that help in classifying a patient into 
a particular class. 

ShAP applied on the CNN model accepts raw ECG data and generates 
an output of the same size as the input, with ShAP value for each posi-
tion of input ECG data. A ShAP value of S > 0 indicates positive 
contribution of the corresponding input position towards the 

classification of that patient into its predicted class. Top 500 ShAP 
values of each lead are used to highlight the most contributing features 
with red colour as shown in Figs. 5 and 6. 

4.2.2. Lead-wise importance 
To compute the lead-wise importance for each class, we added the 

ShAP values of one lead for all the patients of each class separately. This 
is the total contribution of each lead in each class. Next, we averaged this 

Fig. 4. t-SNE plots of data being separated layer after layer when features are learnt gradually by the ECG-HiCOVIDNet model. Here, HRV features are concatenated 
with the latent space embedding of the convolutional blocks. 
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lead-wise contribution for each class. The average contribution of each 
lead is also calculated. This process is documented in Algorithm-1. Fig. 7 
shows the impact of all the 12 leads on the two classes and also the 
average contribution of each lead. It is observed that in the classifica-
tion/prediction of “post-COVID” class, lead-aVL has the highest contri-
bution, whereas in the prediction of “healthy” class, lead-aVR has the 
highest contribution. The average contribution of lead-aVL is highest 
amongst all the leads followed by lead-aVR. It shows that lead aVL 
contributes maximum to the classification of healthy versus post-COVID. 
Indeed, this lead is known to have good predictive capability. 

We also worked towards the explainability/interpretability of the 
ECG-iCOVIDNet classifier. In our study, subjects had Left Ventricular 

Diastolic Dysfunction (LVDD) that is measured in terms of Global Lon-
gitudinal Strain (GLS) during ECHO. A GLS value of less than 16% in-
dicates LVDD and correspondingly, change should have been observed 
in ECG as slurred S wave. These slurred S wave changes were indeed 
highlighted by our ECG-iCOVIDNet AI model via ShAP analysis in such 
patients as shown in Fig. 6. Similarly, the ECG data of subjects having 
ejection fraction less than 45% has notching or wider P wave. These 
changes were also detected by the ShAP interpretable AI model and were 
highlighted in the red color as shown in Fig. 5). 

Algorithm 1. Algorithm for Lead Wise Analysis   

Fig. 5. Wider P wave and/or notching of P wave highlighted in lead I of ECG, in subjects having ejection fraction less than 45%: (a) Showing healthy lead I ECG, (b) 
wide/notching P wave as reported in the literature, and (c) segments of ECG highlighted in red color by our ECG-iCOVIDNet model correspond to wide/notching P 
wave regions.). 

Fig. 6. Slurred S wave highlighted in lead II of ECG, in subjects having left ventricular dysfunction: (a) Showing healthy lead II ECG, (b) slurred S wave reported in 
the literature, and (c) segments of ECG highlighted in red color by our ECG-iCOVIDNet model correspond to slurred S wave. 

Fig. 7. Lead wise Importance: showing the impact of all the 12 leads on the two classes. The average contribution of lead-aVL is the highest followed by lead aVR.  
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5. Discussion and conclusion 

The 12-lead ECG is the most common screening test to check heart 
diseases. However, most of the time underlying heart disease can not be 
seen with ECG and require higher diagnostic methods such as ECHO and 
CT scan. Our ECG-iCOVIDNet model is able to predict the underlying 
heart problem in post-COVID subjects using only ECG data with 100% 
accuracy. In this paper, we presented results of various models trained 
using the ECG data of healthy and post-COVID subjects. It is evident that 
deep learning models perform better with ECG dataset. We observed 
that Spatio-temporal CNN (ST-CNN-8), Attention-56, and ResNet, were 
good architectures for the classification of the samples. The proposed 
ECG-iCOVIDNet and ECG-HiCOVIDNet models use convolution blocks 
with global average pool layer to learn features from the 12-lead raw 
ECG data and demonstrate outstanding performance. This observation is 
aligned with the visual inferences drawn from the t-SNE plots also. ECG- 
HiCOVIDNet model that uses HRV features derived from ECG waves 
along with the raw ECG data yields 99.28% accuracy, while the ECG- 
iCOVIDNet model without HRV features score 100% accuracy. This 
shows that ECG-iCOVIDNet could extract relevant features from the raw 
ECG waveforms and hence, addition of HRV features derived from the 
raw ECG waveforms did not yield any advantage, again affirming the 
good performance of the trained model. 

Secondly, we also worked towards the explainability/interpretability 
of the best classifier developed. This can help the medical teams to trust 

the decisions made by the ECG-iCOVIDNet model. Our model high-
lighted the important abnormal segments of ECG that help to distinguish 
between classes using ShAP at patient-level and population-level. 
Recently, non-invasive ECG finding P-wave dispersion (Pd) and Wide/ 
notching P wave have been shown as the sign of various pathological 
conditions in the literature, where Pd is calculated by the shortest and 
the longest P-wave duration recorded from ECG waves [44]. Identifi-
cation of Pd for human eye is really impossible. Here, our model high-
lighted wide/notching P wave in lead I of ECG of Post-COVID in ShAP 
(Fig. 5). Left ventricular dysfunction is seen in some COVID recovered 
subjects without previously diagnosed heart disease. Slurred S wave is a 
sign of left ventricular dysfunction [45,46]. This is highlighted in lead II 
of ECG of post-COVID subjects (Fig. 6). This explainable AI model with 
interpretable ShAP figures showing the abnormal segments in ECG 
waves yields relevant medical results that would help doctors in primary 
and secondary healthcare centers to trust this AI model that can help to 
diagnose post-COVID heart abnormalities using the ECG. 

Our AI model with visualization of the abnormal ECG segments helps 
the cardiologists in finding any underlying heart irregularities with less 
human error, especially, in overloaded healthcare setup in low/middle- 
income countries such as India. Therefore, this proposed architecture of 
deep neural networks can be easily deployed at clinical setups, where 
the entire nation is struggling with a high burden of heart issues after 
suffering from COVID-19. Moreover, explainable AI models developed 
on 12-lead ECG data and its HRV features can help the non-cardiologist 
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diagnose the issues faster and timely, which can improve the efficiency 
of primary and secondary healthcare services to early diagnose the heart 
pathology accurately. 

6. Benefits and limitations 

This work can be helpful for doctors to screen the post-COVID pa-
tients who come for follow-up care for addressing the heart issues using 
ECG without costlier investigation as ECHO, especially, for the doctors 
at primary and secondary healthcare centers, where no cardiologist is 
available. Furthermore, the model can be used to analyze the ongoing 
changes in post-COVID patients and treat them before this changes into 
major heart problems. Last but not the least, such a study can also be 
used to identify and develop a broader understanding of the cardiac 
abnormalities due to coronavirus. 

This study has certain limitations. First of all, although an elaborate 
effort was made to collect the ECG data of post-COVID subjects, the 
dataset is small as of now. Further, there are many interpretability 
methods that can be employed to draw inferences on the decisions made 
by the AI model. We employed SHAP analysis, which is one of the most 
widely used methods. Here, models are able to learn the abnormalities 
that exist in the patient’s data, but it is possible that inference for all such 
abnormalities is not easy to generate. In the future, it would be inter-
esting to conduct a benchmarking study on the available interpretability 
methods on ECG application to figure out which model(s) work best on 
ECG datasets. A good question to answer is: Is there an interpretability 
method that works best on ECG data, in general? Researchers can do 
such a benchmarking study using multiple ECG dataset and multiple 
interpretability methods. Further, a webapp can be made and installed 
for use by COVID healthcare workers/doctors, where they can upload 
the ECG in a tabular format as an input and obtain the results on whether 
the person is normal or has suffered from COVID earlier. Further, the 
app can also be used to inform the ECG wave regions where the changes 
are observed. This work can also be extended to study the nature of 
COVID and its action on the human heart. 
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