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Abstract 

Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic 
cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared 
with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of 
pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic 
cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is 
not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups 
through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic 
cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the 
survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, 
artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, 
developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will 
require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some 
limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its 
mighty computing power. 
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Introduction 
Pancreatic cancer (PC) is the deadliest form of all 

cancer. The five-year relative survival rate for PC is 
only 11% in the USA, which is the lowest among all 
cancers [1]. There were 495773 new cases and 466003 
deaths from PC worldwide in 2020, accounting for 
2.6% of all new cancer diagnoses and 4.7% of all 
cancer deaths, respectively [2]. In China, the incidence 
and mortality of PC among tumors are 2.47% and 
3.64%, respectively [3]. The main reason for such a 
poor prognosis of PC is the late diagnosis, with only 
about 20% of patients being diagnosed at an early 
stage. Most patients have non-specific first symptoms, 
such as jaundice, fatigue, change in bowel habits, and 
indigestion, that make it difficult to distinguish from 
non-cancer diseases [4]. Most chemotherapy [5-7], 
targeted therapy [8], and immunotherapy [9-11] are 
ineffective because most patients are already in the 
progressive stage with local invasion and distant 

metastases at the detection time [12,13]. A multicenter 
study demonstrated that patients with PC detected by 
screening had a 5-year survival rate of 73.3% and a 
median survival time of 9.8 years, compared with 1.5 
years for patients with PC seen by non-screening [14]. 
To diagnose early-stage PC accurately is desperately 
needed [15,16]. 

Radiographic imaging-based investigations 
[17-20] are fundamental techniques in PC screening, 
including endoscopic ultrasound (EUS), computed 
tomography (CT), magnetic resonance imaging (MRI), 
etc. Related techniques based on the above methods, 
such as EUS-guided fine needle aspiration (FNA) and 
biopsy (FNB), contrast-enhanced EUS (CE-EUS), CT 
(CE-CT), MRI (CE-MRI), and positron emission 
tomography-computed tomography (PET/CT), can 
further improve the accuracy of diagnosis. However, 
screening in the asymptomatic population is not 
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recommended due to the economic burden and the 
relatively low incidence of PC in the general 
population [21,22]. Also, early PC lacks biomarkers. 
Carbohydrate Antigen 19-9 (CA19-9), the best- 
validated biomarker in PC, does not have enough 
accuracy and specificity in screening early PC [23,24]. 
Thus, many scientists are working to develop new 
early screening methods. Meanwhile, it is also 
essential to use better ways to assess treatment 
efficacy and prognosis, which will facilitate the 
development of appropriate clinical treatment options 
and critical drugs [25,26]. 

Artificial intelligence (AI) is a branch of 
computer science dedicated to producing a new kind 
of intelligent machine that can respond similarly to 
human intelligence [27]. Nowadays, many researchers 
are attempting to apply AI to the medical field, 
including healthcare [28], oncology [29], cardiology 
[30], and more. Compared with traditional biometric 
methods, AI has greater flexibility and scalability, 
which allows it to be deployed for many tasks. 
Another advantage is its ability to integrate a large 
number of different data types and understand 
complex relationships between variables in a flexible, 
trainable manner. As the scale of medical data 
continues to expand and computer computing power 
continues to improve, AI is showing more and more 
advantages in processing big data. In clinical practice, 
AI can perform routine tasks consistently, freeing up 
physicians’ time to solve more complex clinical 
problems [27,31]. For PC, AI-assisted diagnostic 
techniques are also gaining more attention. The 2020 
AI and Early Detection of Pancreatic Cancer Virtual 
Summit discussed and highlighted the potential of AI 
in the early diagnosis of PC [32]. In the recent meeting 
of The Alliance of Pancreatic Cancer Consortia, the 
discussion focused on imaging methods and the use 
of AI for the early detection of PC [33]. 

Despite the unparalleled advantages of AI, there 
are still many concerns about its application in the 
clinical field. For example, no one model can solve all 
problems, and all models have their range of 
adaptation [34]. There is a risk that AI algorithms may 
ignore specific differences, such as gender and race, 
which can lead to bias because of the heterogeneity 
between the training set and other patients [35-37]. AI 
also faces many ethical issues in clinical practice, such 
as the need for researchers and healthcare 
organizations to protect data from hacking for patient 
privacy. Healthcare systems should strive to ensure 
that the benefits of AI are passed on to all patients 
they serve, not just those with access to more 
resources. Also, it is difficult to assign liability for 
medical malpractice arising from defects in AI [37,38]. 
In addition, AI's transparency and interpretability are 

challenged by factors such as patient privacy, 
algorithm interpretability, publication bias, etc. 
[39,40]. Most of the AI devices approved by the FDA 
have only undergone retrospective studies. The lack 
of prospective studies may lead to unexpected 
conditions during the clinical application of AI 
devices [41,42]. Solving these problems is a key point 
for the future of AI in clinical applications. 

In this review, using “artificial intelligence”, 
“machine learning”, and “pancreatic cancer” as the 
keywords, we searched the relevant literature 
published by July 2022 in PubMed, Embase, Web of 
Science, and other databases. We summarized the 
application of AI in several aspects of PC. Compared 
with the existing studies, our review summarizes 
more comprehensively [43,44]. We outlined how AI 
could help in medical image analysis, pathological 
examination, and biomarkers in the tumor diagnosis 
process. In prognosis respect, the AI analysis includes 
survival time, recurrence risk, metastasis, and therapy 
response. Finally, we summarized the current status 
of AI in PC and discussed the future challenges and 
directions for the field. 

State-of-the-art AI Algorithms involved 
in Pancreatic Cancer 
Machine Learning 

Machine learning (ML) is a subfield of AI that 
solves the problem of how to build computers that 
improve automatically through experience (Figure 1). 
Based on a large amount of feature data, ML can use 
specific algorithms to learn how to accomplish a task 
[45]. In today’s medical field, there is a massive 
amount of data generated every day, and it becomes a 
challenge to integrate this data to make predictions. 
The most significant advantage of ML is the ability to 
integrate vast amounts of data and combine the 
observed and predicted quantities in nonlinear and 
highly interactive ways [46]. ML techniques can be 
broadly classified based on the type of labels. Based 
on labels, machine learning can be classified as 
supervised, unsupervised, semi-supervised, and 
reinforcement learning. There is also ensemble 
learning that integrates multiple algorithms (Figure 
2A-2E). 

Receiver operating characteristics (ROC) curves 
help organize ML classifiers and visualize their 
performance. ROC curve is a line graph plotted with 
sensitivity as the vertical coordinate and (1-specificity) 
as the horizontal coordinate. The area under the ROC 
curve (AUC) is the evaluation metric, and the larger 
the AUC value, the better the corresponding 
algorithm performs [47]. Other metrics, including 
accuracy, sensitivity, specificity, F1-Score, positive 
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predictive value (PPV), and negative predictive value 
(NPV), are also commonly used to evaluate the result 
of the ML [48]. 

Supervised Learning 
Supervised learning is constructing a model in 

which each observation vector has a corresponding 
response variable. In other words, all data is labeled. 
By fitting a model that relates responses to predictors, 
supervised learning can accurately predict future 
observed responses or better understand the 
relationship between responses and predictors [49,50]. 
Examples of such algorithms include Logistic 
Regressions (LR), Decision Trees (DT), Support Vector 
Machines (SVM), Naïve Bayes (NB), Artificial Neural 
Networks (ANN), etc., and the best application 
scenario for each algorithm varies [51]. In this review, 
most of the algorithms used in PC are supervised 
learning. A typical application of supervised learning 
algorithms is the precise diagnosis, including 
detection, grading, and differential diagnosis, using 
radiomics, digital pathology slides, or biomarkers. 
The prognosis of PC is also widely used to predict 
survival time, recurrence rate, metastasis, and therapy 
response. 

Unsupervised Learning 
Unsupervised learning means we can know the 

observation vector, not the associated response. In 
other words, all data is unlabeled. Using the 
observation vector’s data makes it possible to perform 
clustering, correlation evaluation, dimensionality 
reduction, etc. [50,52]. Examples of such algorithms 
include K-mean clustering [53], Principal Component 

Analysis (PCA) [54], Non-negative Matrix 
Factorization (NMF) [55], etc. The application of 
unsupervised learning in PC is relatively rare, but 
there have been attempts to do so, including 
classification [56], feature extraction of CT images 
[57,58] or pathological slides [59], and estimation of 
medical imaging parameters [60]. 

Semi-supervised Learning 
As its name suggests, semi-supervised learning 

is somewhere between supervised and unsupervised 
learning, allowing the use of large amounts of 
available unlabeled data in combination with small 
labeled datasets in many use cases. Semi-supervised 
learning can utilize a small amount of labeled data to 
obtain better performance than supervised learning 
while utilizing less labeled data to achieve the same 
level of performance close to that of supervised 
learning [61,62]. Examples of such algorithms include 
generative models, self-training, co-training, graph- 
based learning, Semi-supervised support vector 
machines, etc. [61,63]. 

The application of semi-supervised learning is 
mostly seen in medical imaging. Supervised learning 
algorithms may lack annotated data because 
annotation of medical imaging data is time- 
consuming and requires a high level of expertise. By 
using semi-supervised learning algorithms, the task of 
segmentation or diagnosis using medical images can 
be accomplished with fewer annotations [64]. For 
example, CT images of PC can be used for 
segmentation and diagnosis [65]. 

 

 
Figure 1. The relationship between artificial intelligence, machine learning, and deep learning. Artificial intelligence refers to the use of machines to simulate human intelligence. 
Machine learning is a subfield of artificial intelligence, which mainly studies how to simulate or realize the learning function in human intelligence. The deep learning model is a 
subset of machine learning, which is a model combining multi-layer neural networks. 
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Figure 2. Based on labels, machine learning can be classified as supervised (A), unsupervised (B), semi-supervised (C), reinforcement learning (D), and ensemble learning (E) that 
integrates multiple algorithms. In supervised learning, all data is labeled, while unsupervised learning is unlabeled. Semi-supervised learning contains a small amount of labeled data 
and a large amount of unlabeled data. Reinforcement learning is when the agent interacts with the unknown environment and obtains rewards or punishments from the 
environment. In ensemble learning, multiple algorithms are integrated to solve problems. The algorithms may be parallel (Bagging) or sequential (Boosting). 

 

Reinforcement Learning 
The reinforcement learning process is guided by 

a specific goal. Agents interact with the unknown 
environment and get reward or punishment feedback 
from the environment. Then, it uses this feedback to 
train itself and collect experience and knowledge 

about the environment to achieve specific goals [66]. 
Reinforcement learning can also be combined with 
deep learning to become deep reinforcement learning. 
It uses dynamic data and labels to bring feedback 
signals into the learning process rather than 
constructed, static dataset labels as in traditional 
machine learning [67]. 
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Figure 3. Schematic diagram of machine learning and deep learning process. Traditional machine learning usually needs four steps: input, feature extraction, classification, and 
output. Moreover, deep learning is a subset of a machine learning algorithm, which can extract labels by itself without manual extraction. 

 
Reinforcement learning algorithms are 

commonly used in decision-making in the medical 
field. Due to the heterogeneity of patients’ conditions 
and treatment responses, it is challenging to realize 
precision medicine. Reinforcement learning can 
construct dynamic treatment regimens that consider 
the immediate effect of treatment and the long-term 
benefit to the patient [68,69]. For PC, reinforcement 
learning algorithms can generate high-quality 
treatment plans for pancreas stereotactic body 
radiation therapy (SBRT) to achieve optimal metering 
distribution [70]. 

Ensemble Learning 
Rather than a single algorithm, ensemble 

learning seamlessly integrates various machine 
learning algorithms into a unified framework, 
typically for supervised learning. Specifically, 
ensemble learning samples the data and produces 
prediction results using multiple learners. The above 
results are combined, and the errors of individual 
learners are potentially compensated by other 
learners, resulting in better prediction performance 
[71,72]. Depending on whether the different learners 
are independent of each other, the ensemble approach 
can be divided into two main frameworks: the 
dependent and independent [71]. The output of each 
learner of the dependent framework affects the next 
learner, which is represented by AdaBoost in the 
“Boosting” algorithm [73]. In an independent 
framework, individual learners can output in parallel, 
which is represented by Random Forest (RF) in the 
“Bagging” algorithm [74]. Both dependent and 

independent frameworks have applications in 
diagnosing [75-77] and prognosis [78-81] PC. 

Deep Learning 
Deep learning (DL) is a subset of ML algorithms 

(Figure 1). It allows a machine to feed raw data and 
automatically build complex concepts. Take image 
recognition as an example. The mapping from many 
different pixels to an image is very complex. DL 
solves this difficulty by decomposing the complex 
mappings required to recognize an image into a series 
of simple nested mappings. The algorithm can be 
divided into one visible layer and several hidden 
layers. The visible layer is where the image is fed, 
while hidden layers are where the algorithm 
gradually extracts the features from the image [82,83]. 
Compared to shallow ML and traditional data 
analysis methods, DL models have superior 
performance in many applications, especially in 
domains with extensive and high-dimensional data. 
However, shallow ML performs better for 
low-dimensional data, especially when a limited 
training set [84]. With the significant development of 
computer technology, many DL algorithms, such as 
Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), MultiLayer Perceptron 
(MLP), Generative Adversarial Networks (GAN), and 
Deep Belief Networks (DBN), have been widely used 
in the field of oncology (Figure 3) [85-87]. 

AI in Tumor Diagnosis Process 
Reading medical images to make judgments is 

essentially a problem of recognizing complex 
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patterns, which computers can be trained using ML 
models to achieve efficient and repeatable 
recognition. AI can play a role in several steps in 
medical image-based PC diagnosis, including image 
reconstruction, segmentation, and detection, 
characterization, grading of pancreatic disease based 
on image features. Using similar techniques, AI can 
also identify digitized histopathology slides. It can 
potentially improve the accuracy, reproducibility, and 
efficiency of diagnosis using histological sections. In 
addition, the computer can analyze biomarker 
information with high throughput and accuracy, thus 
identifying tumor-related biomarkers more efficiently 
and using this information for diagnosis. 

AI in Medical images-based diagnosis 
Imaging techniques play an essential role in the 

diagnosis of PC. Current clinical imaging modalities 
include EUS, CT, MRI, and PET, with different 
advantages and disadvantages in clinical applications 
(Table 1). In the traditional process of medical image 
analysis, experienced radiologists are required. With 
AI technology, it is possible to free imaging 
physicians from tedious and repetitive labor to handle 
tasks that require more creativity. 

 

Table 1. Advantages and disadvantages of imaging modalities for 
pancreatic cancer 

Modality Advantages Disadvantages 
EUS High-resolution;  

Useful in tissue sampling 
Invasive; Operator dependent 

CT High spatial resolution;  
Widely available 

Poor contrast resolution 

MRI High contrast resolution;  
High sensitivity to small tumor 
and metastasis 

Limited availability;  
Image artifacts 

PET Provides functional metabolic 
information 

Poor spatial and contrast 
resolution; Physiological FDG 
uptake disturbance 

 
 
Radiomics refers to the high-throughput 

extraction of many image features from radiographic 
images, which may be challenging to recognize or 
quantify by the human eye. Radiomics can be used to 
identify lesions, allowing for early detection and 
diagnosis of disease. Also, radiological features can 
predict prognoses, such as survival, tumor metastasis, 
and treatment response, and correlate with genomic, 
transcriptomic, or proteomic features [88-91]. 
Conventional workflow in radiomics usually contains 
four steps: image acquisition, segmentation, feature 
extraction, and analysis [92]. For image acquisition, 
standard protocols are needed to minimize 
confounding variables [93]. Segmentation involves 
identifying the images’ regions of interest (ROIs) and 
defining the boundaries in the pictures. While this 
step can be done manually by practiced radiologists, 

many ML methods have been used for image 
segmentation [88,94,95]. The dice similarity coefficient 
(DSC), used to measure the similarity of two sets, is 
the most used metric in evaluating segmentation 
performances. In some research, segmentation 
performances also used Hausdorff distance and 
intersection over union for evaluation [96]. The next 
step is extracting radiomics features from ROIs, 
including histogram-based, texture-based, model- 
based, transform-based, and shape-based features. 
Radiomic features are usually numerous, highly 
correlated, and redundant features that need to be 
filtered out before they can be used for model 
building [91,94]. The final step is to build a predictive 
model using ML and evaluate the model’s 
performance. 

Endoscopic Ultrasound 
EUS is widely used in diagnosing pancreatic 

lesions because it provides high-resolution images of 
the pancreas without being disrupted by gas, bone, or 
subcutaneous fat. EUS and its related techniques, such 
as CE-EUS and EUS elastography, show high 
specificity and sensitivity in diagnosing pancreatic 
diseases. Furthermore, it is frequently used to identify 
regional lymph nodes and assess the relationship of 
tumors to nearby vascular structures [19,97]. In 
addition, EUS can guide tissue sampling to obtain 
pathological information about the cancerous tissue 
[20,98]. The disadvantage is that EUS is an invasive 
procedure with a risk of pancreatitis or bleeding. The 
method is also demanding on the operator, and 
improper handling may reduce the accuracy of the 
diagnosis [99,100]. As early as 2001, scientists had 
researched using neural networks to enhance EUS to 
detect and diagnose PC. Many studies have emerged 
in recent years (Table 2) [101-112]. 

AI in EUS is frequently used to aid in the 
differential diagnosis of PC and other conditions. In 
our statistics, a few studies applied AI in the 
differential diagnosis of PC. The overall AUC, 
accuracy, sensitivity, and specificity were 0.940-0.986, 
80%-98.26%, 87.59%-100%, 50%-93.38%, respectively 
[101-109]. Udriştoiu et al. combined CNN and long 
short-term memory (LSTM) neural networks to 
construct an ML algorithm for differential diagnosis 
of focal pancreatic masses, using multi-sequences EUS 
(grayscale, color Doppler, arterial and venous phase 
contrast-enhancement, and elastography). Their 
model achieved high AUC and accuracy among the 
studies [105]. Kuwahara et al. used CNN (ResNet-50) 
in turn to extract image features and distinguish 
between benign and malignant intraductal papillary 
mucinous neoplasm (IPMN) [110]. 
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Table 2. Applying AI based on EUS in the differential diagnosis of pancreatic cancer and other pancreatic tumors 

Reference Sample size Data source Algorithms Aim Best result 
Zhu et al. [101] 388 cases EUS SVM PC vs CP Accuracy (94.2%), Sensitivity (96.25%), Specificity (93.38%), PPV 

(92.21%), NPV (96.68%) 
Udriştoiu et al. [102] 65 cases multi- 

sequences EUS 
CNN, LSTM 
neural network 

PDAC vs CPP vs PNET AUC (0.98), Accuracy (98.26%) 

Tong et al. [103] 558 cases CE-EUS CNN (ResNet-50) PDAC vs CP AUC (0.986) 
Tonozuka et al. [104] 1390 images EUS CNN PDAC vs CP AUC (0.940), Sensitivity (92.4%), Specificity (84.1%), PPV (86.8%), NPV 

(90.7%) 
Sǎftoiu et al. [105] 167 cases CEH-EUS ANN PC vs CP Specificity (94.44%), Sensitivity (94.64%), PPV (97.24%), NPV (89.47%) 
Marya et al. [106] 1174461 images 

from 583 cases 
EUS CNN AIP vs PDAC vs CP vs 

NP 
For PDAC: AUC (0.976), Sensitivity (95%), Specificity (91%), PPV 
(87%), NPV (97%) 

Sǎftoiu et al. [107] 68 cases EUS 
elastography 

NN_MLP PC vs CP vs NP vs 
PNET 

AUC (0.932), Accuracy (89.7%), Sensitivity (91.4%), Specificity (87.9%), 
PPV (88.9%), NPV (90.6%) 

Norton et al. [108] 35 cases  EUS NN PC vs CP Accuracy (80%), Sensitivity (100%), Specificity (50%) 
Sǎftoiu et al. [109] 258 cases EUS 

elastography 
ANN_MLP PC vs CP AUC (0.94), Accuracy (91.14%), Sensitivity (87.59%), Specificity 

(82.94%), PPV (96.25%), NPV (57.22%) 
Kuwahara et al. [110] 3,970 images EUS CNN (ResNet-50) Diagnosis of 

malignancy in IPMN 
AUC (0.98), Accuracy (94.0%), Sensitivity (95.7%), Specificity (92.6%), 
PPV (91.7%), NPV (96.2%) 

Iwasa et al. [111] 100 cases CE-EUS U-Net PC segmentation Median IoU (0.77) 
Zhang et al. [112] 2207+19486 

images 
EUS ResNet Pancreas segmentation; 

station recognition  
Pancreas segmentation: DSC (71.5%); Station recognition: accuracy 
(82.4%) 

Abbreviations: AIP: autoimmune pancreatitis; ANN: artificial neural network; AUC: area under the curve; CE-EUS: contrast-enhanced EUS; CEH-EUS: contrast-enhanced 
harmonic EUS; CNN: convolutional neural network; CP: chronic pancreatitis; CPP: chronic pseudotumoral pancreatitis; DSC: dice similarity coefficient; IPMN: intraductal 
papillary mucinous neoplasm; IoU: intersection over union; LSTM: long short-term memory; MLP: multilayer perceptron; NN: neural network; NP: normal pancreas; NPV: 
negative predictive value; PDAC: pancreatic ductal adenocarcinoma; PNET: pancreatic neuroendocrine tumor; PPV: positive predictive value; SVM: support vector machine. 

 
 
The physician can also use AI in EUS for 

pancreas segmentation. Iwasa et al. analyzed 100 
patients with different PC. Segmentation was 
performed using U-Net with 100 epochs and was 
evaluated with 4-fold cross-validation. The median 
intersection over the union of all cases was 0.77 [111]. 
Zhang et al. developed a station classification model 
and a pancreas segmentation model for EUS training 
and quality control. The DSC of the pancreas 
segmentation model was 71.5%, and the accuracy of 
the station recognition model reached 82.4% [112]. 

Computed Tomography 
CT is the dominant imaging modality for 

diagnosing and staging PC, which is more widely 
available and less expensive than other imaging 
modalities. Due to the high spatial resolution of CT 
can be used for diagnosing and staging the tumor, 
identifying vascular involvement, tumor resectability 
analysis, etc. However, the tumor may not be visible 
due to the poor contrast resolution of CT. With the use 
of multiplanar reformations, 3D techniques, and 
spatial and temporal resolution improvement, CT has 
achieved high sensitivity (96%) in tumor identification 
[18,97]. AI can assist CT-based diagnosis in many 
ways, including pancreas segmentation, diagnosis 
and staging of PC, differential diagnosis, and 
resectability analysis (summarized in Table 3). 

In our statistics, several studies focused on PC or 
PC precursor lesions diagnosis or prediction by 
AI-assisted CT. Their AUC, accuracy, sensitivity, 
specificity were 0.79-0.999, 77.66%-99.2%, 76.64%- 
100%, 85.59%-98.5%, respectively [113-122]. The 
method of Chu et al. [120] has the highest accuracy 

(99.2%) among the studies. 190 pancreatic ductal 
adenocarcinoma (PDAC) patients and 190 healthy 
control cases with 64-MDCT scans were included, and 
0.75-mm slices of venous phase images were chosen 
for segmentation and radiomics analysis. Images were 
manually segmented, and their features were 
extracted by a binary mask and selected by 
minimum-redundancy maximum-relevancy feature 
selection. Finally, an RF classifier was constructed to 
classify PDAC from the normal pancreas. All of the 
PDAC cases were correctly classified. Only one 
normal case from a renal donor was classified as 
PDAC, giving an AUC of 0.999, an accuracy of 99.2%, 
a sensitivity of 100% and a specificity of 98.5%. 

Some studies focused on the differential 
diagnosis of pancreatic disease. Ikeda et al. 
investigated a neural network classifier for the 
differential diagnosis of PDAC and mass-forming 
pancreatitis, with an AUC of 0.866 [123]. Chen et al. 
combined imaging features and enhanced CT texture 
analysis. Then they used LASSO and RFE_LinearSVC 
algorithms to select features to differentiate pancreatic 
serous cystadenomas (SCN) from pancreatic 
mucinous cystadenomas (MCN), with an AUC of 
0.932 [124]. Ren et al. extracted 792 radiomics features 
from the late arterial and portal venous phases of 
CE-CT. They then used an RF classifier for differential 
diagnosis between pancreatic adenosquamous 
carcinoma (PASC) and PDAC and achieved an AUC 
of 0.98 [125]. Xie et al. extracted and screened ten 
optimal imaging features and applied an RF 
algorithm to build a Rad-score to discriminate 
between MCN and atypical SCN. The method 
achieved an AUC of 0.97 [126]. Li et al. extracted 1409 
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radiomics features from the portal phase of 
multidetector computed tomography (MDCT). After 
removing irrelevant features and Bonferroni 
correction, four features by LASSO regression were 
still significantly associated with focal-type 
autoimmune pancreatitis (AIP) and PDAC. The 
LASSO logistic regression formula was used to obtain 
the rad-score for discriminating focal-type AIP from 
PDAC (AUC 0.97) [127]. In addition to using 

traditional algorithms (PyRadiomics), Ziegelmayer et 
al. used deep CNN for radiomics feature extraction. 
For the prediction of AIP or PDAC, an extremely 
randomized tree classifier was fit on the extracted 
features with an AUC of 0.90 [128]. Yang et al. adopted 
the RF method to construct a diagnostic prediction 
model based on textural parameters of CE-CT images 
to discriminate between SCN and MCN [129]. 

 

Table 3. Application of AI based on CT in the differential diagnosis of pancreatic cancer and other pancreatic tumors 

Reference Sample size Data source Algorithms Aim Best result 
Ma et al. [113] 3494 images 

from 190 cases 
CE-CT CNN PC diagnosis Accuracy (95.47%), Sensitivity (91.58%), Specificity 

(98.27%) 
Liu et al. [114] 338 cases CE-CT faster R-CNN PC diagnosis AUC (0.9632), Precision (76.64%) 
Si et al. [115] 143,945 images 

from 319 cases 
CE-CT ResNet18, U-net32, ResNet34 PC diagnosis AUC (0.871), Accuracy (82.7%), Sensitivity (86.8%), 

Specificity (69.5%) 
Qiu et al. [116] 312 cases Plain CT MSTA architecture, SVM PDAC diagnosis AUC (0.88), Accuracy (81.19%), Sensitivity 

(76.64%), Specificity (85.59%) 
Qureshi et al. [117] 216 cases CE-CT RFE_NB PDAC prediction Accuracy (86%) 
Ebrahimian et al. [118] 103 cases DECT RF Benign vs Malignant 

Pancreatic Lesions 
AUC (0.94), Accuracy (89%), Sensitivity (90%), 
Specificity (88%) 

Chakraborty et al. [119] 103 cases CE-CT RF, SVM Predict High Risk IPMN AUC (0.81) 
Chu et al. [120] 380 cases MDCT RF PDAC detection AUC (0.999), Accuracy (99.2%), Sensitivity (100%), 

Specificity (98.5%) 
Mukherjee et al. [121] 420 cases CE-CT KNN, SVM, RF, and XGBoost PDAC detection AUC (0.98), Accuracy (92.2%), Sensitivity (95.5%), 

Specificity (90.3%) 
Polk et al. [122] 51 cases CE-CT LR IPMN malignancy prediction AUC (0.93) 
Ikeda et al. [123] 71 cases CE-CT NN PDAC vs mass-forming 

pancreatitis 
AUC (0.916) 

Chen et al. [124] 100 cases CE-CT LASSO, SVM (RFE_LinearSVC) SCN vs MCN AUC (0.932), Sensitivity (87.5%), Specificity (82.4%) 
Ren et al. [125] 112 cases CE-CT RF PASC vs PDAC AUC (0.98), Accuracy (94.5%), Sensitivity (98.3%), 

Specificity (90.1%), PPV (91.9%), NPV (97.8%) 
Xie et al. [126] 216 cases CE-CT RF MCN vs atypical SCN AUC (0.734), Accuracy (72.8%), Sensitivity (74.8%), 

Specificity (70.5%), PPV (73.2%), NPV (79.8%) 
Li et al. [127] 97 cases MDCT LASSO regression focal-type AIP vs PDAC AUC (0.97), Accuracy (94%), Sensitivity (95%), 

Specificity (93%) 
Ziegelmayer et al. [128] 86 cases CE-CT Deep CNN+ Extremely 

Randomized Trees  
AIP vs PDAC AUC (0.90), Sensitivity (89%), Specificity (83%) 

Yang et al. [129] 78 cases CE-CT RF+ LASSO MCN vs SCN AUC (0.77), Accuracy (85%), Sensitivity (95%), 
Specificity (83%) 

Gao et al. [143] 170 cases CE-CT mRMR+ LASSO MCN vs SCN AUC (0.91), Accuracy (85%), Sensitivity (92%), 
Specificity (81%) 

Panda et al. [130] 1917 images Venous 
phase CT 

3D CNN Pancreas segmentation DSC (91%), HD (0.15mm) 

Mahmoudi et al. [131] 157 cases CT 3D CNN, U-Net, TAU-Net PDAC segmentation DSC (60.6%), Precision (57.8%), Recall (78.0%), HD 
(3.73mm) 

Huang et al. [132] 170 cases CE-CT U-net PNET segmentation, grading DSC (81.8%), AUC (0.87) 
Lim et al. [133] 1006 cases CE-CT 3D U-Net Pancreas segmentation and 

volumetry 
DSC (84.2%), Precision (86.9%), Recall (84.2%) 

Boers et al. [134] 1995 images Venous 
phase CT 

3D U-net Pancreas segmentation DSC (78.1%) 

Xie et al. [135] 82 cases CE-CT RSTN Pancreas segmentation DSC (84.53%) 
Wang et al. [65] 800 images Venous 

phase CT 
IGA-Net PDAC segmentation; NP vs 

PDAC 
DSC (60.29%), Sensitivity (99.75%), Specificity 
(96.50%) 

Zhou et al. [136] 14 cases 4DCT ResNet-50, FPN  Tumor positioning DSC (98%) 
Abel et al. [137] 221 images Venous 

phase CT 
nnU-Net PCL detection Sensitivity (78.8%) 

Lyu et al. [138] 47 cases CE-CT DLIR-H PC resectability prediction AUC (0.91), Sensitivity (97%), Specificity (87%) 
Chang et al. [139] 401 cases CE-CT SVM+LASSO PDAC grading AUC (0.961), Accuracy (90.1%), Sensitivity (88.6%), 

Specificity (91.7%), PPV (92.1%), NPV (88.0%) 
Luo et al. [140] 112 cases CE-CT CNN PNET grading AUC (0.82), Accuracy (82.1%), Sensitivity (88.3%), 

Specificity (84.6%) 
Wan et al. [57] 137 cases CT SAE+ mRMR+ SVM PNET grading AUC (0.715, SAE-based model), (0.771, hybrid 

feature-based model) 
Wan et al. [58] 114 cases CE-CT SAE+ SVM/MLR/ANN PNET grading AUC (0.845, SVM) (0.856, MLR) (1.00, ANN) 

Abbreviations: 4DCT: four dimensions CT; AIP: autoimmune pancreatitis; ANN: artificial neural network; AUC: area under the curve; CE-CT: contrast-enhanced CT; CNN: 
convolutional neural network; CT: computed tomography; DECT: dual energy CT; DLIR: deep learning image reconstruction; DSC: dice similarity coefficient; FPN: feature 
pyramid network; HD: Hausdorff distance; IGA-Net: Inductive Attention Guidance Network; IPMN: intraductal papillary mucinous neoplasm; KNN: k-nearest neighbor; 
LASSO: least absolute shrinkage and selection operator; MCN: pancreatic mucinous cystadenoma; MDCT: multidetector CT; MLR: multivariable logistic regression; mRMR: 
minimum redundancy; MSTA: multiresolution-statistical texture analysis; NB: naïve Bayes; NN: neural network; NP: normal pancreas; PASC: pancreatic adenosquamous 
carcinoma; PCL: pancreatic cystic lesion; PDAC: pancreatic ductal adenocarcinoma; PNET: pancreatic neuroendocrine tumor; RF: random forest; RFE: recursive feature 
elimination; RSTN: recursive feature elimination; SAE: sparse autoencoder; SCN: pancreatic serous cystadenoma; SVM: support vector machine. 
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Table 4. AI-based on MRI is applied in the differential diagnosis of pancreatic cancer and other pancreatic tumors 

Reference Sample size Data source Algorithms Aim Best result 
Li et al. [146] 267 samples from 4 

modalities (T1: 67, T2: 
68, DWI: 68, AP: 64) 

T1, T2, DWI, AP MRI UDA+ meta 
learning+ GCN 

PC segmentation DSC (62.08%, T1), (61.35%, T2), (61.88%, DWI), (60.43%, AP) 

Chen et al. 
[147] 

73 cases multi-sequences MRI Spiral-ResUNet PC segmentation DSC (65.60%), Jaccard index (49.64%), HD (7.27mm), Recall 
(76.69%), Precision (62.96%) 

Liang et al. 
[148] 

56 DCE MRI sets DCE MRI CNN (SGDM) PDAC 
segmentation 

DSC (71%), HD (7.36mm), MSD (1.78mm) 

Goldenberg 
et al. [149] 

30 mouse models T1 relaxation, CEST, 
and DCE MRI 

SVM PC classification Accuracy (87.5%, CEST) (85.1%, DCE) 

Cui et al. 
[150] 

202 cases T1-w, T2-w, CET1-w 
MRI 

LASSO BD-IPMN 
grading 

AUC (0.903), Specificity (94.8%), Sensitivity (73.4%) 

Corral et al. 
[151] 

139 cases multi-sequences MRI CNN IPMN 
classification 

AUC (0.783), Sensitivity (75%), Specificity (78%), PPV (73%), 
NPV (81%) 

Hussein et al. 
[56]  

171 cases T2 MRI SVM, RF, 3D 
CNN 

IPMN 
classification 

Unsupervised:Accuracy (58.04%), Sensitivity (58.61%), 
Specificity (41.67%); Supervised: Accuracy (84.22%), 
Sensitivity (97.2%), Specificity (46.5%) 

Cheng et al. 
[152] 

60 cases CE-CT, T2 MRI LR, SVM Malignant IPMN 
prediction 

MRI+SVM: AUC (0.940), Accuracy (86.7%), Sensitivity 
(95.7%), Specificity (81.1%), PPV (75.9%), NPV (96.8%) 
CT+SVM: AUC (0.864), Accuracy (83.3%), Sensitivity 
(78.3%), Specificity (86.5%), PPV (78.3%), NPV (86.5%) 

Abbreviations: AUC: area under the curve; BD-IPMN: branching type IPMN; CEST: chemical exchange saturation transfer; CNN: convolutional neural network; DCE: 
dynamic contrast enhancement; DSC: dice similarity coefficient; GCN: Graph Convolutional Networks; HD: Hausdorff distance; IPMN: intraductal papillary mucinous 
neoplasm; LR: logistic regression; MLP: multilayer perceptron; MSD: mean surface distance; NPV: negative predictive value; PC: pancreatic cancer; PDAC: pancreatic ductal 
adenocarcinoma; PPV: positive predictive value; RF: random forest; SGDM: stochastic gradient descent with momentum; SVM: support vector machine; UDA: unsupervised 
domain adaptation; AP MRI: atrial phase MRI; DWI: diffusion weighted imaging. 

 
 
Several studies used AI-assisted CT for pancreas 

or PC segmentation. Their DSCs ranged from 60.6% to 
91% [65,130-135]. Panda et al. developed a two-stage 
3D CNN model based on a modified U-net 
architecture. 1917 portal venous phase CT scans with 
normal pancreas were used for training, validation, 
and testing. The mean DSC of their method was 91%, 
the highest among the studies. The authors also 
demonstrated that their approach could be applied to 
CT images containing PC (mean DSC=0.96) [130]. 
Zhou et al. developed a 4DCT-based method for 
tumor positioning without pancreas segmentation. 
Using 4DCT, they built a digitally reconstructed 
radiograph dataset for each patient, with clinical 
target volume (CTV) contours labeled. Then the 
datasets trained the ResNet and FPN algorithm to 
predict CTV. DSC of their method was 98%, which 
shows the accuracy of the positioning [136]. 

For other applications of AI in CT, Abel et al. 
developed and evaluated an algorithm based on a 
two-step nnU-Net architecture for automated 
detection of pancreatic cystic lesions (PCL) in CT 
[137]. Lyu et al. used high strength levels of the DL 
image reconstruction (DLIR-H) algorithm to predict 
the resectability of PC [138]. Chang et al. extracted 
radiomics features of CE-CT images by the SVM 
model and generated a radiomics signature by the 
LASSO model for the preoperative prediction of 
histological grades of PDAC. The radiomics signature 
for the training set and external validation data had 
an AUC of 0.961 and 0.770, respectively [139]. Luo et 
al. built a CNN-based model to analyze CE-CT images 
for pancreatic neuroendocrine neoplasms (PNET) 

grading [140]. Wan et al. built handcrafted, SAE, and 
hybrid features-based SVM prediction models for 
PNET grading. Among them, the hybrid feature 
model performs best (AUC 0.771) [57]. 

In addition to using CT image features to aid the 
precise diagnosis of PC, some studies attempted to 
improve CT image quality. Ohira et al. constructed a 
deep CNN that generates virtual monochromatic 
images from single-energy computed tomography 
(SECT) images for improved PC imaging quality 
[141]. Noda et al. used a DL image reconstruction 
algorithm to reconstruct dual-energy computed 
tomography images, thus assisting PC diagnosis 
[142]. 

Magnetic Resonance Imaging 
MRI is of great value in diagnosing PC due to its 

ability to collect many types and superior soft-tissue 
contrast. The best application circumstances for MRI 
include: (1) detection of small non-contour-deforming 
tumors, (2) evaluation of local extension and vascular 
encasement, and (3) determination of lymph node, 
liver, and peritoneal metastases [17,144]. However, 
MRI is usually more expensive than CT. Also, metal 
implants may cause image artifacts and hinder 
imaging [145]. The applications of AI in MRI-based 
diagnosis include pancreas segmentation, PC 
classification, and grading (summarized in Table 4) 
[56,146-152]. 

Li et al. collected four modalities of MRI for PC 
segmentation. Since MRI image labeling is 
time-consuming and laborious, they attempted to 
train the algorithm on labeled MRI images in one 
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modality and test the model’s performance in another 
modality to achieve unsupervised labeling of MRI 
images. The DSC of their methods on different models 
are 62.08% (T1), 61.35% (T2), 61.88% (DWI), and 
60.43% (AP) [146]. To achieve pancreas segmentation, 
Chen et al. developed a spiral-transformation 
algorithm to map 3D images onto a 2D plane. 
Combined with U-Net, their method has a relatively 
high mean DSC (65.60%) [147]. Liang et al. trained the 
CNN with Stochastic Gradient Descent with 
Momentum algorithm, and their method got 71% 
DSC [148]. 

Four teams used AI-assisted MRI to classify or 
grade PC. Goldenberg et al. built three groups of 
tumor models with different types of PDAC cells. The 
method of support vector machine predicted the 
correct tumor model with 87.5% (CEST MRI) and 
85.1% accuracy (DCE MRI) [149]. Cui et al. used 
multivariate logistic regression to analyze the 
extracted MRI image features, and the AUC of their 
method was 0.903 [150]. Corral et al. used a CNN to 
classify IPMN. Sensitivity and specificity to identify 
high-grade dysplasia or cancer were 75% and 78%, 
respectively. Moreover, the AUC was 0.78 [151]. 
Hussein et al. were among the few teams using an 
unsupervised learning algorithm. 3D CNN was used 
to classify IPMN. Their method’s accuracy, sensitivity, 
and specificity were 58.04%, 58.61%, and 41.67% [56]. 

Cheng et al. compared the predictive value of 
two medical imaging methods for predicting 
malignant IPMN. Radiomics features were extracted 
from arterial and venous phase images of CT and 
T2-weighted images of MRI, respectively. The LASSO 
algorithm was used for feature selection, and LR and 
SVM algorithms were applied to construct radiomics 
models. The results show that the MRI-based model 
(AUC 0.940) has a better performance compared to the 
CT-based model (AUC 0.864) [152]. 

Positron Emission Tomography 
Positron Emission Tomography (PET) is a 

molecular imaging technique that has a vital role in 
diagnosing and staging tumors (Table 5). In 
combination with CT technology, PET/CT can help 
localize functional abnormalities and provide 
information on the biological characteristics of the 

tumors, such as metabolism, hypoxia, and 
proliferation [153,154]. Fluorine 18-fluorodeoxy-
glucose (FDG), a glucose analogue, is the most widely 
used radiotracer in PET. However, glucose 
metabolism is not specific, and physiological uptake 
of FDG by inflamed tissues may lead to false-positive 
results [155]. Also, FDG intake is reduced in patients 
with hyperglycemia, leading to a false negative result 
[156]. For PC, FDG-PET is more sensitive than CT for 
treatment monitoring after radiotherapy and 
description of recurrence after tumor resection [17]. 

Li et al. used simple linear iterative clustering on 
PET/CT pseudo-color images for pancreas 
segmentation and developed threshold component 
analysis to select the most beneficial feature 
combination. Then they designed a hybrid feedback- 
support vector machine-random forest (HFB-SVM- 
RF) model to identify normal pancreas or PC. The 
DSC and Jaccard index for pancreas segmentation is 
78.9% and 65.4%, respectively. For PC diagnosis, the 
accuracy and sensitivity of their method were 96.47% 
and 97,51%, respectively [75]. Liu et al. extracted 502 
radiomics features from dual-time PET/CT and used 
SVM to build a classifier to distinguish between 
PDAC and AIP. The AUC, Accuracy, Sensitivity, and 
Specificity were 0.9668, 89.91%, 85.31%, and 96.04%, 
respectively [157]. Xing extracted 251 expert-designed 
features from PET/CT images and combined them 
into five feature sets according to their modalities and 
dimensions. Four feature selection strategies 
(Spearman’s rank correlation coefficient, minimum 
redundancy maximum relevance, support vector 
machine recursive feature elimination, and no feature 
selection) and four machine learning classifiers (RF, 
adaptive boosting, SVM with the Gaussian radial 
basis function, and SVM with the linear kernel 
function) were used to found the optimal feature set. 
Based on the best combination of the feature selection 
strategy and classifier, the model that differentiates 
AIP from PDAC was developed and achieve an AUC 
of 0.93 [158]. Xing et al. extracted radiomics features 
from PET/CT images using Pyradiomics and used the 
XGBoost algorithm to build a prediction model for 
PDAC pathological grade prediction [159]. 

 

Table 5. Applying AI based on PET in the differential diagnosis of pancreatic cancer and other pancreatic tumors 

Reference Sample Size Data Source Algorithm  Aim Best result 
Li et al. [75] 80 cases PET/CT HFB-SVM-RF PC diagnosis Accuracy (96.47%), Sensitivity (95.23%), Specificity (97.51%) 
Liu et al. [157] 112 cases PET/CT SVM PDAC vs AIP AUC (0.9668), Accuracy (89.91%), Sensitivity (85.31%), Specificity (96.04%) 
Zhang et al. [158] 111 cases PET/CT RF, adaptive 

boosting, SVM 
PDAC vs AIP AUC (0.93), Accuracy (85%), Sensitivity (86%),  

Specificity (84%) 
Xing et al. [159] 149 cases PET/CT XGBoost PDAC grading AUC (0.994) 
Abbreviations: AIP: autoimmune pancreatitis; AUC: area under the curve; CT: computed tomography; NP: normal pancreas; PASC: pancreatic adenosquamous carcinoma; 
PDAC: pancreatic ductal adenocarcinoma; PET: positron emission tomography; RF: random forest; SVM: support vector machine. 
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Table 6. Application of AI based on pathological examination in the differential diagnosis of pancreatic cancer and other pancreatic 
tumors 

Reference Sample Size Data Source Algorithm  Aim Best result 
Song et al. [163] 11 images 

from 7 cases 
WSI DCM+BAYES, 

KNN, SVM, ANN 
SCN vs MCN Accuracy (90%), Sensitivity (89%), Specificity (91%), PPV 

(91%), NPV (89%) 
Song et al. [164] 240 images WSI SVM PDAC diagnosis and 

grading 
For diagnosis: Accuracy (94.38%), Sensitivity (93.13%), 
Specificity (95.63%), PPV (95.78%), NPV (93.50%); 
For grading: Accuracy (77.03%), Sensitivity (74.38%), 
Specificity (79.69%), PPV (79.65%), NPV (75.40%) 

Kriegsmann et al. 
[165] 

201 cases WSI CNN  PIN, PDAC 
identification 

Balanced accuracy (73% for non-aggregated; 92% for 
aggregated) 

Niazi et al. [166] 33 cases Ki67 stained 
slides 

CNN PNET identification Accuracy (96.2%), Sensitivity (97.8%), Specificity (88.8%) 

Vance et al. [76] 31 cases WSI and MxIF RF PDAC cell populations 
identification 

Accuracy (90.0%) 

Momeni-Borouje
ni et al. [167] 

277images 
from 75 cases 

FNA MNN Benign vs malignant 
pancreatic cytology 

Accuracy (100%) 
For atypical cases: Accuracy (77%), Sensitivity (80%), 
Specificity (75%) 

Naito et al. [168] 532 images EUS-FNB CNN PDAC detection AUC (0.9836), Accuracy (94.17%), Sensitivity (93.02%), 
Specificity (97.06%) 

Kurita et al. [169] 85 cases cyst fluid and 
EUS-FNA 

NN Benign vs malignant 
PCLs 

AUC (0.966), Accuracy (92.9%), Sensitivity (95.7%), Specificity 
(91.9%), PPV (81.5%), NPV (98.3%) 

Abbreviations: ANN: artificial neural network; AUC: area under the curve; BAYES: Batesian classifier; CNN: convolutional neural network; DCM: direction cumulative map; 
FNA: fine needle aspiration; FNB: fine needle biopsy; KNN: k-nearest neighbor; MCN: pancreatic mucinous cystadenoma; NPV: negative predictive value; PC: pancreatic 
cancer; PIN: pancreatic intraepithelial neoplasia; PPV: positive predictive value; MNN: multilayer perceptron neural network; MxIF: cyclic 
multiplexed-immunofluorescence; NN: neural network; PDAC: pancreatic ductal adenocarcinoma; RF: random forest; PNET: pancreatic neuroendocrine tumor; SCN: 
pancreatic serous cystadenoma; SVM: support vector machine; WSI: Whole slide imaging. 

 
 

AI-assisted Pathological Examination 
In addition to the above radiographic images, 

The pathologist can apply AI to Hematoxylin and 
Eosin (H&E)-stained or immunofluorescent-stained 
whole slides images (WSI) for PC diagnosis [160]. 
FNA and FNB are essential diagnostic methods for 
suspended PC with high accuracy [161,162]. AI can 
assist in the diagnosis of PC by analyzing cytology 
and biochemical characteristics of FNA/FNB samples. 
Here, we summarized the application of AI in 
pathological examination (Table 6) [76,163-169]. 

Song et al. constructed a system to automatically 
segment epithelial cell nuclei on slide images and 
extract morphological features. They subsequently 
used multiple classifiers to demonstrate the 
effectiveness of the designed method in the 
differential diagnostic of SCN and MCN [163]. Using 
a similar approach, Song also worked on diagnosing 
and grading PDAC [164]. Kriegsmann et al. used CNN 
to construct models for automatic localization and 
quantification of tissue categories in whole tissue 
slides, including pancreatic intraepithelial neoplasia 
and PDAC [165]. Ki67 index has clear guidance for 
proliferation rate and grading of PNET. However, the 
non-specificity of Ki67 staining and counterstaining 
hinders the accurate quantification of the Ki67 index. 
Therefore, Niazi et al. proposed a DL method based on 
Ki67-stained biopsy images to distinguish NET from 
non-tumor areas automatically and achieved 97.8% 
sensitivity and 88.8% specificity [166]. Vance et al. 
combined WSI and cyclic multiplexed immuno-
fluorescence to collect 31 markers of PDAC and used 

an RF algorithm to identify tumor cell populations, 
achieving an accuracy of 87% [76]. 

Momeni-Boroujeni et al. used a K-means 
clustering algorithm to segment cell clusters from 
FNA-based slides, extracted the morphological 
features of the cell clusters, and trained a multilayer 
perceptron neural network (MNN) with these 
features. Then tested their ability to discriminate 
between benign and malignant pancreatic cytology 
(accuracy 100%) [167]. Vance et al. trained the CNN 
using FNB-based slides to assess PDAC and achieved 
an AUC of 0.984 [168]. Kurita et al. combined 
biomarkers in the cyst fluid, cytological features 
obtained by FNA, and clinical variables to training 
neural networks for differentiating malignant and 
benign PCLs [169]. 

The applications of AI in Biomarkers 
Biomarkers have a significant role in diagnosing, 

staging, and treating PC. The use of appropriate 
biomarkers for screening in high-risk populations is 
an essential aspect of the early diagnosis of PC. 
However, the current PC biomarkers lack sufficient 
sensitivity and specificity for clinical application 
[44,161,170]. Liquid biopsies allow a comprehensive 
cancer profile to be evaluated in a non-invasive and 
real-time manner and help discover more data for 
cancer research, including CTCs, cfDNA, exosomes, 
etc. The biomarkers in these data can be analyzed 
using AI for their association with diseases. With the 
expansion of data obtained from liquid biopsies, 
scientists can better apply AI to biomarker-based 
early diagnosis of cancers [161,171,172]. 
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As summarized in Table 7, various biomarkers 
have been used to diagnose or detect PC with the aid 
of AI, including exosomes [173-175], proteins 
[176-179], cell-free DNA (cfDNA) [77], circulating 
microRNA [180], extracellular vesicles long RNA 
[181], gene expression pattern [182], etc. The above 
studies mainly contain two categories, 1) biomarkers 
were known, these data trained ML algorithms to 
obtain prediction models for PC [173,178,179,181,182], 
and 2) biomarkers were uncertain, features in the 
dataset needed to be extracted, then ML models were 
used to evaluate the value of these features in the 
diagnosis of PC [77,174-177,180]. 

Genomics 
All cancers occur due to a series of mutations in 

the cellular genome. The most common driver genes 
of PDAC are KRAS, CDKN2A, TP53, and SMAD4, and 
genetic alterations of the SWI/SNF and COMPASS 
complexes significantly impact PC. The genome can 
be used as biomarkers for PC diagnosis, and genome 
studies can also reveal features that make PC 

therapeutically susceptible [183]. 
A part of some researchers used AI to analyze 

the existing genomic data in the database to find their 
association with PC. Wang et al. used 78 PDAC 
samples from the GEO database as the training set. By 
combining Support Vector Machine Recursive Feature 
Elimination (SVM-RFE) and Large Margin 
Distribution Machine Recursive Feature Elimination 
(LDM-RFE) algorithms, they predicted seven 
differentially expressed genes as specific biomarkers 
for PC [184]. Ko et al. developed a Gene Vector for 
Each Sample (GVES) model, which generated vector 
representations of genes using gene expression and 
biological network data from the TCGA database. In 
cases of small sample sizes, GVES had good accuracy 
for predicting prognostic genes [185]. Cristiano et al. 
developed an approach to evaluate fragmentation 
patterns of cfDNA across the genome and constructed 
a gradient tree boosting (GBM) model to detect 
cancer. For PC, the AUC, accuracy, and specificity 
were 0.86, 67%, and 71%, respectively [77]. 

 

Table 7. Applications of artificial intelligence in biomarker-based pancreatic cancer diagnosis 

Reference Sample Size Data Source Algorithm  Aim Best result 
Chen et al. [173] 28 samples* DNA-PAINT (exosomes)  LDA Cancer detection Accuracy (100%) 
Zheng et al. [174] 220 cases** MALDI-TOF-MS (exosomes) ANN Cancer 

discrimination 
AUC (0.86) 

Ko et al. [175] 28 mice + 34 
cases 

ExoTENPO chip (exosomes) LDA PC diagnosis Accuracy (100%) 

Gao et al. [176] 199 cases SELDI-TOF-MS (proteomes) SVM, KNN, 
ANN 

PC diagnosis AUC (0.971), Sensitivity (96.67%), Specificity (100%) 

Yu et al. [177] 100 serum 
samples 

SELDI-proteinchip DT PC prediction Sensitivity (88.9%), Specificity (74.1%) 

Yang et al. [178] 913 serum 
samples 

Multiple serum tumor 
markers 

ANN, LR  PC diagnosis AUC (0.905), Accuracy (83.53%), Sensitivity (90.86%), 
Specificity (67.50%) 

Qiao et al. [179] 136 cases CT images+ serum tumor 
markers 

2D-3D CNN Image segmentation; 
PC vs CP 

For image segmentation: DSC (84.32%); 
For PC vs CP: Accuracy (87.63%), Sensitivity 
(94.57%), Specificity (93.25%), PPV (84.57%), NPV 
(90.34%) 

Cristiano et al. [77] 34 cases Cell-free DNA GBM  Cancer detection AUC (0.86), Accuracy (67%), Specificity (71%) 
Alizadeh Savareh et 
al. [180] 

671 cases GEO database (circulating 
microRNA) 

PSO-ANN-NC
A 

PC diagnosis Accuracy (93%), Sensitivity (93%), Specificity (92%) 

Yu et al. [181] 501 cases exLR SVM PDAC detection AUC (0.960), Accuracy (90.43%), Sensitivity (93.39%), 
Specificity (85.07%) 

Almeida et al. [182] 648 samples Gene expression microarray ANN PDAC prediction F1-score (0.86), Accuracy (89.66%), Sensitivity 
(87.6%), Specificity (83.1%) 

Yang et al. [197] 204 cases Liquid biopsy KNN, SVM, 
LDA, LR, and 
Naive Bayes 

PC diagnosis and 
staging 

For diagnosis: AUC (0.95), Accuracy (92%), 
Sensitivity (88%), Specificity (95%); 
For staging: Accuracy (84%), Sensitivity (78%), 
Specificity (88%) 

Sinkala et al. [198] 185 cases TCGA database (proteins, 
mRNAs, miRNAs, and DNA 
methylation patterns) 

NCA, SVM, DT, 
LR, ET, KNN  

PC subtypes 
differentiation 

Accuracy (98.7% for mRNA-based KNN classifier; 
97.8% for the DNA methylation-based SVM 
classifier) 

Zhang et al. [199] 1183 cases*** LDI-MS SVM Pan-cancer diagnosis 
and classification 

For PC: Accuracy (100%) 

*Including 9 healthy samples, 10 breast cancer samples, 9 PC samples; 
**Including 79 breast cancer cases, 57 PC cases, 84 healthy controls; 
***Including 97 PC cases. 
Abbreviations: ANN: artificial neural network; AUC: area under the curve; CNN: convolutional neural network; CP: chronic pancreatitis; DT: decision tree; DNA-PAINT: 
DNA points accumulation for imaging in nanoscale topography; ET: ensemble tree; exLR: extracellular vesicles long RNA; GBM: gradient tree boosting; KNN: k-nearest 
neighbor; LDA: liner discriminate analysis; LDI-MS: laser desorption/ionization mass spectrometry; LR: logistic regression; MALDI-TOF-MS: matrix-assisted laser 
desorption/ionization time-of-flight MS; MLP: multilayer perceptron; NCA: neighborhood component analysis; PC: pancreatic cancer; PDAC: pancreatic ductal 
adenocarcinoma; PPV: positive predict value; SELDI-TOF-MS: surface-enhanced laser desorption/ionization time-offlight mass spectrometry; SVM: support vector machine. 
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Transcriptomics 
Both coding and non-coding RNAs are essential 

for gene expression. In addition to mRNAs directly 
related to protein expression, many non-coding RNAs 
are involved in or reveal tumor progressions, such as 
miRNA, lncRNA, and circRNA [186]. The study of PC 
transcriptomics helps to understand the mechanism 
of tumor progression and provides valuable 
prognostic markers [187]. 

Xuan et al. obtained miRNA-disease association 
data from the human miRNA-disease database and 
built a network representation learning and 
CNN-based model to predict disease miRNAs. The 
AUC of the model in PC miRNA prediction is 0.971 
[188]. Some researchers have also identified 
biomarkers directly from pathological samples. Mori 
et al. directly sequenced the RNA from PDAC tumor 
tissues and normal tissues, and DL analyzed the data. 
The selected genes were all important prognostic 
factors for PC based on the TCGA database [189]. 
Alizadeh Savareh et al. identified a series of 
circulating miRNAs associated with PC by analyzing 
four GEO microarray datasets. The value of the top 
miRNAs was then assessed by ML methods (Particle 
Swarm Optimization (PSO) + ANN and 
Neighborhood Component Analysis (NCA)). The 
final model, which consist of five miRNAs (miR-663a, 
miR-1469, miR-92a-2-5p, miR-125b-1-3p and 
miR-532-5p), showed good diagnostic results on the 
investigated cases and validation set (Accuracy: 0.93, 
Sensitivity: 0.93, Specificity: 0.92) [180]. Yu et al. 
analyzed the extracellular vesicles’ long RNA profile 
of PDAC, chronic pancreatitis (CP), and healthy 
plasma samples. The d-signature was identified using 
an SVM algorithm to detect PDAC (0.960), identify 
resectable stage I/II cancer (AUC 0.949), and 
distinguish PDAC from CP (AUC 0.931) [181]. 
Almeida et al. identify five differentially expressed 
genes (AHNAK2, KRT19, LAMB3, LAMC2, and S100P) 
from a gene expression microarray meta-analysis to 
train an ANN to classify PDAC or healthy samples. 
The ANN model could classify the test samples with a 
sensitivity of 87.6% and a specificity of 83.1% [182]. 

Proteomics 
Proteins are the performers of gene-encoded 

functions. Although proteins are the direct products 
of mRNA translation, many unexpected associations 
in the proteome are primarily absent in RNA. Tumor 
proteome is closely related to epithelial and 
mesenchymal markers, cell lineage sensitivity, etc. 
Interventions on the proteome also provide new 
avenues for tumor treatment [190]. 

Gao et al. used SELDI-TOF-MS to analyze serum 

proteomes from PC patients and healthy controls. 
SVM analysis of the spectra was used to generate a 
predictive algorithm based on maximally 
differentially expressed proteins between PC patients 
and healthy controls. Four significant peaks were 
used to build a classifier to distinguish PC patients 
from healthy controls. Combining the SELDI protein 
peaks and CA19-9, their classifier achieves the AUC of 
0.971 [176]. Yu et al. used SDLDI-Proteinchip to 
analyze serum protein profiling from PC patients and 
healthy controls. A decision-tree algorithm was 
trained to separate PC from controls. The sensitivity 
and specificity of their method were 88.9% and 74.1%, 
respectively [177]. Yang et al. used three tumor 
markers (CA19-9, CA125, and CEA) from serum 
specimens to train the ANN model for PC diagnosis. 
The AUC, accuracy, sensitivity, and specificity were 
0.905, 83.53%, 90.86%, 67.50%, respectively [178]. 

Exosomes 
Exosomes are extracellular vesicles secreted by 

eukaryotic cells involved in intercellular 
communication containing nucleic acids, proteins, 
lipids, and glycoconjugates. It can regulate tumor cell 
proliferation, metastasis, Epithelial-to-Mesenchymal 
Transition (EMT), and angiogenesis during tumor 
development. In clinical practice, it can be used as a 
biomarker for tumor diagnosis, grading, and 
prognosis prediction [191,192]. Many studies have 
used exosomes to diagnose, treat, and monitor 
treatment response in PC [193]. 

Chen et al. developed a quantitative analysis 
platform for continuously quantifying multiple 
exosomal surface biomarkers from blood samples. 
Four exosomal surface biomarkers (HER2, GPC-1, 
EpCAM, EGFR) were immunostained to calculate the 
number. Linear discriminant analysis was further 
used to identify exosomes from pancreatic and breast 
cancer samples. The accuracy of their method was 
100% [173]. Zheng et al. used sequential size exclusion 
chromatography (SSEC) to separate exosomes from 
human plasma. Matrix-assisted laser desorption/ 
ionization time-of-flight mass spectrometry (MALDI- 
TOF-MS) data of samples were collected, and a 
multi-classifier artificial neural network (denoted as 
Exo-ANN) model was used to identify pancreatic and 
breast cancer samples. The AUC of their method for 
PC was 0.86 [174]. Ko et al. developed a multichannel 
nanofluidic system to isolate exosomes with an 
ExoTENPO chip, profiled the RNA cargo inside these 
exosomes, and applied a linear discriminate analysis 
(LDA) algorithm to identify samples derived from PC 
patients. Eight exosomal mRNA biomarkers were 
identified in their mice studies and used to 
distinguish PC patients from healthy controls. All 
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samples (N=24) in the blinded test set were classified 
correctly [175]. 

Multi-omics 
It is also possible to combine multiple types of 

biomarkers to detect PC. The analysis of multiple 
biomarkers revealed the complex molecular 
landscape of PC and offered the possibility of 
precision medicine [194-196]. Yang et al. constructed a 
multi-analyte panel, including extracellular vesicle 
miRNAs and mRNAs, cfDNA, and CA19-9. These 
data are used in the training of various ML 
algorithms. When applied to PDAC diagnosis, the 
model achieved an AUC of 0.95 and an accuracy of 
92%. Furthermore, the model achieved an accuracy of 
84% for disease staging [197]. Sinkala et al. extracted 
several types of biomarkers from the TCGA database. 
Then they used neighborhood component analysis 
(NCA) to identify biomarker sets. Different 
biomarkers trained several ML algorithms for PC 
subtypes differentiation [198]. Zhang et al. reported a 
laser desorption/ionization (LDI) mass spectrometry- 
based liquid biopsy for cancer screening and 
classification. The study included many cancer types, 
with 100% accuracy for PC detection in an internal 
validation cohort [199]. Cheng et al. deployed ALICE 
(Automated Liquid Biopsy Cell Enumerator) to 
identify and enumerate minute amounts of tumor cell 
phenotypes bestrewed in massive leukocytes and 
discovered two subpopulations of circulating hybrid 
cells from PC patients [200]. Qiao et al. used CT 
images to train a 2D-3D CNN model for pancreas 
segmentation and achieved an average DSC of 
84.32%. The diagnostic performance (accuracy 
87.63%, sensitivity 94.57%, specificity 93.25%, PPV 
84.57%, NPV 90.34%) of CT combined with tumor 
marker (CA-50, CA-199, CA-242) was better than CT 
or serum tumor markers only [179]. 

AI in Prognosis 
Accurately predicting the prognosis of PC has 

important implications for clinical decision-making. 
This information can help clinicians decide on 
treatment options, analyze the outcome of 
pancreatectomy, improve the management of 
patients, etc. However, classical prognostic factors, 
such as lymph node status and American Joint 
Committee on Cancer (AJCC) stage, are not entirely 
relevant in some long-term survivors [201,202]. Also, 
long-term survivors and general patients did not 
show significant differences in their mutation profiles 
[203]. These facts make it challenging to predict the 
prognosis of PC. Due to its excellent computational 
power, AI was used to analyze PC prognoses, 
including survival time [204-221], recurrence risk 

[78,221-224], metastasis [225-230], therapy response 
[79-81,231-240], etc. 

Survival time 
The non-invasive identification of specific 

imaging features (or signatures) that can predict 
tumor genomic alterations is termed 
“radiogenomics,” which integrates radiomics and 
genomics information. The gene expression profiles 
obtained in radiogenomics can be used as biomarkers 
to predict prognosis [241]. With the aid of ML, the 
radiologist used radiological images (CT, MRI) to 
detect multiple gene expression profiles in PC, 
including p53 status and PD-L1 expression [204], FAP 
expression [205], and ITGAV expression [206]. These 
genes had been shown to have predictive ability for 
the prognosis of PC. 

Radiomics can also be applied alone for 
prognosis prediction. Xu et al. used EUS images to 
predict the prognosis of PC patients undergoing 
interstitial brachytherapy [207]. By extracting the 
radiomics features of FDG-PET [208,209] or CT 
[210-212] images and combining them with ML 
models, researchers could improve the accuracy of 
survival prediction for PC patients. In addition to 
direct extraction of image features, CT images have 
also been used to analyze patient body compositions 
[213] and tumor heterogeneity [214] in PC to predict 
survival. 

In addition to the radioactive approach 
mentioned above, some non-imaging methods can 
predict PC survival. Walczak et al. and Aronsson et al. 
combined clinical variables (sex, age, year of 
diagnosis, tumor stage, etc.) with ANN algorithms to 
predict survival in PC (91% sensitivity and 38% 
specificity) [215] and invasive IPMN (82% accuracy 
and 83% precision) [216], respectively. Using the ML 
algorithm, Hayward et al. combined clinical variables 
and treatment records to predict PC clinical 
performance (patient survival time, quality of life 
scores, surgical outcomes, and tumor characteristics) 
[217]. Biomarker analysis is also a common approach 
in prognosis. Yokoyama et al. evaluated the 
methylation status of MUC1, MUC2, and MUC4 
promoter regions and integrated these results and 
clinical pathologic features. Then they used SVM-, 
NN-, and multinomial-based methods to develop a 
prognostic classifier [218]. Winter et al. used the 
NetRank algorithm to filtrate marker genes 
prognostic for the outcome from PC gene expression 
profiles. Accuracies were assessed using SVM 
classifiers and Monte Carlo cross-validation [219]. A 
wavelet-based DL method was proposed by Tang et 
al. to select variables and predict prognosis for PC by 
training with multi-omics data (genomic, epigenomic, 
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and clinical cohort information). This method predicts 
prognosis better than the traditional LASSO model 
(AUC: 0.937 vs. 0.802) [220]. Beak et al. used 
multi-omics data to analyze survival and recurrence 
in PC, with data sources including whole-exome 
sequencing, RNA sequencing, microRNA sequencing, 
DNA methylation data, and other clinical data. LR 
analysis generally revealed the best performance for 
both disease-free survival (DFS) and overall survival 
(OS) (accuracy = 0.762 and AUC= 0.795 for DFS; 
accuracy = 0.776 and AUC = 0.769 for OS) [221]. 

Recurrence risk 
Clinical features, such as CA19-9 level, tumor 

location, size, stage, and differentiation degree, are of 
considerable importance for predicting the risk of 
recurrence. Li et al. collected demographics and 
various biochemical and pathological variables of 
PDAC patients from multiple institutions and used 
six ML algorithms to construct predictive models. 
SVM and KNN models had the highest accuracy in 
predicting 1-year and 2-year recurrence (70.9% and 
73.4%), respectively [222]. Lee et al. compared the 
effects of RF and Cox models on the prognosis of 
PDAC. Training these two models using multiple 
clinical variables yielded a mean c-index of 0.6805 and 
0.7738 for the RF and Cox models, respectively [78]. 

In combination with clinical features from 
patients, radiomics features can be used to predict the 
risk of recurrence of PC. He et al. collected PDAC 
patients’ CT images performed three months after 
surgery for radiomics analysis. Using 
clinicoradiological information and radiomics feature 
jointly or separately, multivariable LR was applied to 
construct the local recurrences model of PDAC. The 
combined model achieved an AUC of 0.742 in the 
validation cohort, which is better than the 
clinicoradiological-only risk model (AUC 0.533), and 
the radiomics-only risk model (AUC 0.730) [223]. Li et 
al. preprocessed CE-CT and extracted and selected 
optimal radiomics features from intratumoral volume 
(ITV) and peritumoral volume (PTV). Then, ANN and 
LR models were employed to develop the ITV model, 
PTV model, combined model, clinical model, and 
radiomics-clinical model. Radiomics-clinical model 
outperformed other models in predicting 1-year 
recurrence (AUC 0.764 for validation set) and 2-year 
recurrence (AUC 0.773 for validation set) [224]. 

Metastasis 
The lymph node metastasis status of PDAC 

significantly impacts the choice of treatment options, 
the risk of postoperative recurrence, and the overall 
survival rate of patients [242,243]. Therefore, correct 
prediction of lymph node metastasis status can 

enhance patient prognosis. An et al. analyzed 
preoperative DECT images of regional lymph node 
dissection in PDAC patients using the Res-Net 18 
algorithm to classify lymph node metastasis. The 
authors compared the prediction effects of virtual 
monoenergetic images at different voltages. 100 + 150 
keV DECT yielded the best predictions (AUC 0.87). If 
key clinical features (CT-reported T stage, LN status, 
glutamyl transpeptidase, and glucose) are integrated 
can further improve the prediction of the model (AUC 
0.92) [225]. Some studies employed CT radiomics for 
PC lymph node metastasis prediction, and they all 
applied multivariable LR to construct a radiomics- 
based model with AUCs ranging from 0.75 to 0.912 
[226-228]. Shi et al. employed T2-weighted (T2WI) and 
portal venous phase (PVP) MRI images for lymph 
node metastasis analysis. Radiomics features were 
extracted by PHIgo software and selected by a 
gradient-boosting decision tree. T2WI combined with 
the PVP model has the best performance. The AUCs 
were 0.834 and 0.807 in the training and validation 
cohorts, respectively [229]. 

Liver metastases are more common after PDAC 
resection but are unpredictable and lead to a poorer 
prognosis. Zambirinis et al. performed liver radiomics 
analysis on preoperative CE-CT scans and developed 
an LR classifier to predict early liver metastasis. By 
incorporating preoperative clinicopathological 
variables with radiomics features, their model 
achieved an AUC of 0.76 [230]. 

Therapy response 
AI has also been used to predict treatment 

responses, including chemotherapy, radiotherapy, 
immunotherapy, and surgery. Wei et al. used a 
variational autoencoder (VAE) algorithm to extract 
tumor transcriptome features. Regularized gradient 
boosted decision trees (XGBoost) were further used to 
predict chemotherapy drug response for cancer (for 
PC: AUROC 0.738; AUPRC 0.764) [80]. Cos et al. 
collected preoperative activity metrics (step count, 
heart rate, and sleep time series) from patients with 
the help of wearable devices and built ML models to 
predict whether the pancreatectomy achieved the 
desired outcome (the absence of postoperative 
pancreatic fistulae, etc.). Their model combined 
clinical characteristics and achieved an AUC of 0.7875 
[231]. Facciorusso et al. developed ANN and LR 
models to predict pain response after repeat 
echoendoscopic celiac plexus neurolysis. The 
predictive performance of the ANN model was higher 
than the LR model (AUC 0.94 vs. 0.85) [232]. Using 
clinical data and MRI images, Kaissis et al. 
distinguished two subtypes of PDAC (KRT81+ and 
KRT81-) by gradient boosted-tree algorithm. 
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Subsequently, they assessed chemotherapy response 
and survival stratified by subtype and radiographic 
characteristics. Patients with the KRT81+ subtype 
responded significantly better to gemcitabine-based 
chemotherapy than FOLFIRINOX (HR 2.33) [81]. 
Schperberg et al. combined clinical trials, drug-related 
biomarkers, and molecular profile information to 
construct an RF model to predict drug oncologic 
outcomes in randomized clinical trials. The Spearman 
correlation (𝑟𝑟𝑠𝑠) between their predicted model’s and 
actual outcomes was statistically significant 
(progression-free survival (PFS): 𝑟𝑟𝑠𝑠  = 0.879, overall 
survival (OS): 𝑟𝑟𝑠𝑠 = 0.878, P < .0001) [79]. Nasief et al. 
collected CT images of patients during chemotherapy 
and compared the changes in radiomics features 
therein. Bayesian-regularization-neural-network was 
used to build a response prediction model with AUC 
of 0.98 for kurtosis–coarseness–NESTD (normalized- 
entropy-to-standard-deviation-difference) 
combination [233]. 

Stereotactic body radiotherapy (SBRT) is a 
therapeutic option in PC care, which permits the 
precise application of high-dose radiation in 1 to 5 
fractions to a limited target volume. It has been 
proven that SBRT has significantly better outcomes 
than chemotherapy alone or in combination with 
conventional external-beam radiotherapy (EBRT) 
[244]. Several studies with radiomics have emerged to 
predict the response to SBRT. Based on the radiomics 
features of CT and clinical characteristics, Gregucci et 
al. applied a multivariate LR model to predict local 
response to SBRT for locally advanced PC (AUC 
0.851) [234]. Based on CT radiomics features, Parr et al. 
used the gradient boosting machine model to 
construct OS (c-index 0.66) and recurrence prediction 
model (AUC 0.78) for PC following SBRT [235]. 
Simpson et al. extracted radiomics features from low 
field strength (0.35 T) MRI for predicting treatment 
response in PC patients undergoing SBRT. RF 
algorithm was adopted to construct a prediction 
model with the AUCs of 0.81 and 0.845 in two similar 
studies [236,237]. 

Immunotherapy has shown remarkable efficacy 
against various tumors, but PC has shown minimal 
response to immunotherapy. Tumor-infiltrating 
lymphocytes (TILs) have been proven to be associated 
with immunotherapy response [245], OS, and PFS 
[246]. Analysis of TILs may help identify PC patients 
most likely to respond to immunotherapy. Bian et al. 
developed an XGBoost-based model for preoperative 
prediction TILs in PDAC patients with CT radiomics 
features (AUC 0.79) [238]. Based on MRI radiomics 
features, Bian et al. also predicted Tumor-infiltrating 
CD8+ T cell [239] and other TILs [240] in PDAC 
patients with LDA-based model (AUC 0.76) and 

XGBoost-based model (AUC 0.79), respectively. 
Some researchers have used ML to analyze the 

recovery condition of long-term survivors of PC. 
Kong et al. analyzed CT images by ML to determine 
changes in body composition (skeletal muscle, 
adipose tissue) in long-term survivors of pancreatic 
head cancer. They performed a multi-factor LR 
analysis of the factors affecting the changes in body 
composition. Their research concluded that long-term 
survivors of PC did not recover their preoperative 
body composition status, and preoperative sarcopenia 
and recurrence influenced body composition changes 
[247]. The tumor–stroma ratio (TSR) is an 
independent prognostic factor for solid tumors [248]. 
Based on MRI radiomics features, Meng et al. 
developed and validated an XGBoost classifier for 
evaluating TSR in patients with PDAC for interstitial 
targeted therapy selection and monitoring (AUC 0.78 
in the validation set) [249]. 

Other applications of AI in PC 
In addition to the research mentioned above, AI 

has also been applied to many aspects of PC, 
including predicting gene mutation [250,251], nucleus 
segmentation [252], tumor target localization [253], 
and predicting the risk of ICU admission for PC 
patients [254], etc. 

Electronic health records (EHR) are also 
considered to be useful for early screening of PC. In a 
workshop (Early Detection of Pancreatic Cancer: 
Opportunities and Challenges in Utilizing Electronic 
Health Records) held in March 2021, experts from 
multiple fields assessed the feasibility of AI-based 
data extraction and modeling applied to EHRs and 
identified future directions [255]. In another article 
published the same year, Malhotra et al. used logistic 
regression on EHRs to screen people at high risk of 
PC. Their method could indicate cancer risk over a 
decade before diagnosing PC patients [256]. Roch et al. 
developed a natural language processing-based 
pancreatic cyst identification system. It could search 
and identify keywords of pancreatic cysts based on 
electronic medical records (EMR), with sensitivity and 
specificity of 99.9% and 98.8%, respectively. This 
system could help capture patients at risk of PC [257]. 

Some studies have also focused on analyzing the 
omics of PC. Kim et al. classified PC using ML and DL 
to classify quantitative proteomics data [258]. Song et 
al. employed AI techniques to deconvolute spatial 
transcriptomics data to uncover the cell states and 
subpopulations based on spatial localization [259]. 
Bagante et al. integrated whole-exome sequencing 
data with the help of artificial neural networks for 
cell-of-origin pattern prediction and molecular 
subtypes classification of hepato-pancreato-biliary 
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cancers. Combining the clinical data and the above 
information, they also analyzed the prognosis of 
cancer patients using random survival forest and Cox 
analysis [260]. 

Some studies have attempted to apply DL to 
estimate medical imaging parameters. Misha et al. 
present an unsupervised physics-informed DL 
algorithm of intravoxel incoherent motion (IVIM) 
model called IVIM-NEToptim to fit diffusion-weighted 
imaging (DWI)-MRI data. MRI images of 23 PDAC 
patients showed IVIM-NEToptim superior performance 
to the least squares and Bayesian approaches at SNRs 
< 50 [60]. Ottens et al. presented various frameworks, 
including non-linear least squares (NLLS), Gated 
Recurrent Unit (GRU), FCN, LSTM, GRU, CNN, and 
U-Net, that analyze DCE-MRI concentration curves 
and output extended Tofts-Kety parameter estimates. 
Testing on 28 PC patients showed that GRU had the 
best performance [261]. 

Some researchers have attempted to develop 
new computer-aided diagnosis (CAD) systems. Li et 
al. constructed a Raman spectroscopic system using 
CNN models to efficiently distinguish between 
cancerous and normal pancreatic tissue. The AUCs of 

all three Raman image-based (1D, 2D Raman images, 
and 2D Raman PC1) methods were close to 0.99 [262]. 
Jadhav et al. developed a 3D virtual pancreatography 
system using ML algorithms for non-invasive 
diagnosis and classification of pancreatic lesions, the 
precursors of PC [263]. Dmitriev et al. developed a 
CAD system for classifying pancreatic cystic lesions 
based on RF and CNN. They proposed a visual 
analytics approach to uncover the system’s 
decision-making process [264]. Combining clinical 
and radiological characteristics, Kang et al. built LR 
and ML models to predict the risk of malignant 
IPMN. After 200 repetitions, the mean AUCs of their 
ML and LR models were comparable (0.725 vs. 0.725) 
[265]. 

Challenges and Future Perspectives 
Although AI has many applications on PC, many 

challenges have remained (Figure 4). Data 
accessibility and bias may affect the effectiveness of 
AI predictions. In radiomics, the image’s quality may 
affect the construction of AI models. An assessment of 
quality gaps in public pancreas imaging datasets 
found that a substantial proportion of CT images were 

 

 
Figure 4. Application of artificial intelligence in multiple related fields of pancreatic cancer. Artificial intelligence can use one type of data alone to make predictions about 
pancreatic cancer or integrate multi-omics information for analysis. 
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unsuitable for AI due to biliary stents or other factors 
[266]. Minorities are often underrepresented in 
clinical trials, leading to biased results [267,268]. For 
AI, insufficient data on minorities may result in the 
inability to adequately assess patient diversity for 
algorithm development and testing. 

Though radiomics is thought to hold promise for 
addressing many issues in cancer care, there are still 
some concerns, such as reproducibility. Variations 
include intra-individual test-retest repeatability, 
image-acquisition technique, multi-machine 
reproducibility, segmentation reproducibility, 
radiomics feature definition, parameter setting, and 
implementation. All challenge the reproducibility of 
radiomics [269-271]. To improve the reproducibility of 
radiomics, scientists have attempted many 
approaches. The repeatability of radiomics features 
can be assessed using consistency correlation 
coefficients (CCCs) [272]. In order to build a more 
reproducible model, only repeatable features should 
be retained for subsequent model construction. Many 
studies reuse the dataset from which the model was 
developed for validation, lacking validation from 
external datasets. Using an external dataset for 
validation can improve the reproducibility of the 
model. Since there are many mature algorithms and 
software for radiomics, standardizing the process of 
radiomics, including image acquisition, segmentation, 
and feature extraction, can help to improve 
reproducibility [269,271,273]. 

Due to the specificity of the medicine, an 
interpretable algorithm is preferred. A flawed 
algorithm can lead to terrible consequences. 
Hundreds of hospitals that used IBM Waston Health’s 
cancer AI algorithm for recommending treatments 
proved to have some errors in their operation [274]. 
However, a trade-off exists between performance and 
explainability at present. The DL models usually 
perform better, but they are often the least explainable 
because they are purely data-driven, and the 
underlying structures are challenging to interpret 
[32,275]. Three main approaches have attempted to 
address the interpretability of DL models: (1) proxy 
models, which use more traditional statistical models 
to explain the operational properties of DL; (2) 
visualization, which shows the internal mechanisms 
of DL models; and (3) internal interpretability 
approach, where the model can explain by itself 
which parts are essential [276,277]. This suggests that 
before CAD systems can be used in the clinic, they 
must be approved for safety and efficacy to avoid 
patient harm. 

As knowledge of the disease continues to 
expand, the data collected will gradually increase, and 
clinical decision-making will become more and more 

complex. Training AI by a single type of medical 
image or biomarker is not perfect for the diagnosis 
and prognosis of PC. It should be noted that the study 
of multimodal features based on image and 
multi-omics is a new direction for future research. 
Despite the challenges of AI in PC, it will eventually 
emerge in all areas of PC due to its great advantage in 
integrating complex data. In clinical practice, building 
viable healthcare AI systems requires the joint work of 
experts in multiple fields, including clinicians, basic 
scientists, statisticians, and engineers. As AI 
technology advances and various experts collaborate, 
its features will become more powerful and accurate. 

Conclusions 
Here we summarized the applications of AI on 

PC. AI-based early screening may be a critical factor 
in improving the prognosis of PC patients. The 
combination of medical images and AI may become 
an essential part of CAD systems to assist physicians 
in making adequate and accurate diagnoses. In 
addition, the role of AI in multi-omics and pathology 
cannot be ignored. With the decrease in computing 
costs and improved computer technology and 
biotechnology, AI will make a fantastic process in the 
medical field. This progress requires a collaborative 
effort between clinicians, basic scientists, statisticians, 
and engineers. Despite some limitations, it will still 
dramatically improve many aspects of PC in the 
foreseeable future because of its powerful computing 
capabilities. 
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gradient descent with momentum; SVM: support 
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