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Abstract.—The invariable site plus � model (I+�) is widely used to model rate heterogeneity among alignment sites in
maximum likelihood and Bayesian phylogenetic analyses. The proof that the I+ continuous � model is identifiable (model
parameters can be inferred correctly given enough data) has increased the creditability of its application to phylogeny
reconstruction. However, most phylogenetic software implement the I+ discrete � model, whose identifiability is likely but
unproven. How well the parameters of the I+ discrete � model are estimated is still disputed. Especially the correlation
between the fraction of invariable sites and the fractions of sites with a slow evolutionary rate is discussed as being
problematic. We show that optimization heuristics as implemented in frequently used phylogenetic software (PhyML,
RAxML, IQ-TREE, and MrBayes) cannot always reliably estimate the shape parameter, the proportion of invariable sites,
and the tree length. Here, we propose an improved optimization heuristic that accurately estimates the three parameters.
While research efforts mainly focus on tree search methods, our results signify the equal importance of verifying and
developing effective estimation methods for complex models of sequence evolution. [Gamma model; invariable sites;
maximum likelihood; phylogenetic inference; rate heterogeneity among sites.]

In model based phylogenetic analysis, the invariable
site plus � model (Yang 1994; Gu et al. 1995), hereafter
referred to as I+�, is widely used to model rate
heterogeneity among sites, because it often fits the data
better than the � model or the invariable-sites model
alone (Sullivan and Swofford 1997). Thus, the I+� model
is frequently selected by MODELTEST (Posada and
Crandall 1998). The I+� model has two parameters: the
proportion of invariable sites pinv (0�pinv <1) and the
shape parameter � (>0) of the � distribution. A small �
(<1) indicates strong rate heterogeneity, whereas a large
� (>1) corresponds to weak rate heterogeneity. Under
certain conditions pinv and � compete with each other for
the same phylogenetic signal. For example, ��1 already
accounts for sites with low rates; that interferes with
pinv and causes a correlation between the parameters
making reliable estimation of those parameters difficult
(Sullivan et al. 1999; Mayrose et al. 2005). Despite this
interference, it has been shown that the I+ continuous
� model is identifiable for “all but members of the F81
family of rate matrices on any phylogeny with more
than two distinct interspecies distances” (Rogers 2001;
Allman and Rhodes 2008; Chai and Housworth 2011).
Since the I+ continuous � model is identifiable, reliable
parameter estimation for this model should be possible
for sufficiently long multiple sequence alignments.

However, most phylogenetic software only implement
the I+ discrete � (Yang 1994) model as an approximation
to the continuous � model because of its computational
efficiency. The discussed competition between pinv and

� is based on the analysis of the discrete � -distribution.
The results have led to the suggestion to discourage the
use of the I+ discrete � model (Yang 2006; Jia et al. 2014;
Stamatakis 2014).

On the other hand, the identifiability of the I+
discrete � model is likely, but unproven (Chai and
Housworth 2011), and it is unclear how accurately
popular phylogenetic software estimate parameters of
the I+ discrete � model.

Thus, we used simulations to assess the accuracy
of the I+ discrete � estimators implemented in
three maximum likelihood (ML) phylogenetic software:
RAxML (Stamatakis 2014), PhyML (Guindon et al. 2010),
IQ-TREE (Nguyen et al. 2015), and one Bayesian inference
program MrBayes (Ronquist et al. 2012). More precisely,
we simulated 100,000-bp long alignments along three
balanced trees of 6, 24, and 96 taxa. The lengths of
the alignments ensure the recovery of the correct tree
topology. The three trees have uniform branch lengths
of 0.1 substitutions per site except for one internal
branch on the 6-taxon tree whose length equals 0.2 to
allow for three distinct distances between the sequences
as required for identifiability in the continuous case
(Chai and Housworth 2011). We assumed the K2P
model (Kimura 1980) with a transition/transversion
ratio of 2.0 and the rate heterogeneity model I+
discrete � with four rate categories. For each tree and
each pair (pinv,�)∈{0.0, 0.1, ...0.9}×{0.1,0.5,1.0}, we
simulated 100 alignments using Seq-Gen (Rambaut and
Grassly 1997). We used RAxML version 8.2.2, PhyML
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version 20141029, IQ-TREE version 1.3.7, and MrBayes
version 3.2.6 compiled with the BEAGLE library
(Ayres et al. 2012) to infer the invariable proportion, the
shape parameter, and the tree length from the simulated
alignments. For RAxML, PhyML, and IQ-TREE, we used
the default options.

For MrBayes we used the default priors, that
is, uniform distribution within interval [0,1] for
pinv, exponential distribution with mean 1.0 for �,
nonclocklike uniform Dirichlet distribution for branch
lengths and � distribution with mean of 10 for tree
lengths (Unconstrained:GammaDir(1.0,0.1,1.0,1.0)). The
sequential version of MrBayes was run with four chains
(one hot and three cold chains) and one million MCMC
generations. One thousand four hundred and eighty-
nine (16.5%) nonconvergent MrBayes runs, where the
effective sample sizes (ESS) on pinv, �, or tree lengths
are smaller than 100, were repeated with five million
generations. However, 52 of the extended reruns were
stopped after 4 weeks without completing all five million
generations. We note that 207 of the 1489 reruns still did
not converge. MrBayes estimates are then summarized
as the mean of the posterior distribution with a default
burn-in of 25%.

CURRENT PHYLOGENETIC PROGRAMS DO NOT PRODUCE

ACCURATE ESTIMATES FOR THE I+ DISCRETE � MODEL

Figure 1 displays the averages ¯̂� of the estimated
shape parameter �, the averages p̂inv of the estimated
invariable fraction pinv and the average ¯̂l of the estimated
tree length l produced by PhyML, RAxML, IQ-TREE,
and MrBayes for the 100 alignments simulated from
each parameter combinations. A program is called
accurate if the estimated averages ¯̂�, p̂inv, ¯̂l deviate no more
than 10% from the true values.

None of the tested programs estimated all parameter
combinations accurately. The problem is especially
pronounced for the 6-taxon alignments. For extreme
rate heterogeneity (�=0.1) MrBayes and PhyML
recovered the true �, pinv, and l for 9/10 and
5/10 parameter combinations respectively, whereas the
average estimates from IQ-TREE and RAxML were
inaccurate. For strong rate heterogeneity (�=0.5), the
degrees of inaccuracy observed among all programs
differ unsystematically. On the one hand, IQ-TREE and
MrBayes accurately estimated the parameters in four and
six settings. On the other hand, RAxML and PhyML
could not estimate accurately the three parameters for
any of the ten parameter-combinations. For medium rate
variation (�=1.0), only IQ-TREE produced the accurate
estimates for all settings. All other programs exhibited
varying degrees of inaccuracy.

For the 24- and 96-taxon alignments we observed
an increase in the number of accurate estimates for
all programs. These results corroborate a previous
study (Sullivan et al. 1999) showing that increased
taxon sampling leads to more reliable estimates.
However, under extreme rate heterogeneity (�=0.1),

only MrBayes estimated all parameter sets accurately.
We note that our measure of accuracy correlates
well with the Bayesian coverage probabilities,
the frequency with which true parameter values
are included in the 95% credible interval of the
estimates (Supplementary Fig. S1 available on Dryad
at https://doi.org/10.5061/dryad.4j5c7). Two hundred
and seven (2.3%) nonconvergent MrBayes runs (effective
sample size of � or pinv are smaller than 100) partly
overlap with cases where MrBayes was not accurate
for 6-taxon simulations (�=0.1 and pinv =0.9; �=0.5
and pinv �0.5; �=1.0 and 0.2�pinv �0.5). Hence,
nonconvergence is a predictor of difficult settings
but does not fully explain the inaccuracy of MrBayes
(Fig. 1).

We also observed that inaccurate estimates of �
and pinv could sometimes lead to tree lengths that
substantially deviate from the simulated lengths. For
instance, for the 96-taxon alignments simulated with
�=0.1 and pinv =0.8 (expected tree length = 18.9) IQ-
TREE estimated an average tree length of 177.0 that is
nine times longer than the simulated tree length. The
other programs also sometimes produced tree lengths
that were considerably longer than the simulated ones.

In terms of computing times PhyML, RAxML, and IQ-
TREE needed for all analyses 62,441, 12,563, and 7,675
CPU hours, respectively. MrBayes needed 740,681 CPU
hours to complete one million MCMC generations, thus
it is 96.5 times slower than the fastest ML program. We
note that this is only a lower-bound for the effective time
one needs to wait for MrBayes results because 16.5%
of MrBayes runs did not converge after one million
MCMC generations. These runs were repeated with five
times more generations, that led to significantly more
computations.

MULTIPLE LOCAL OPTIMA ON THE LIKELIHOOD SURFACE

CAUSE INACCURACY

Because the tested programs performed quite
differently with respect to the accuracy of parameter
estimation, the number of taxa cannot be the only
explanation. We suspected that the optimization
heuristics as implemented in these programs drive the
accuracy. Examining the likelihood surfaces for many
simulated alignments revealed a common feature that
the parameter space has two distinct peaks of high
log-likelihoods (Fig. 2): one global close to the true
parameters and one suboptimal peak with slightly lower
log-likelihood (�LnL=−27 in this example) separated
by a flat valley from the true parameters. In this
particular instance, MrBayes and PhyML found the true
parameters whereas RAxML and IQ-TREE were trapped
in the local maximum (not necessarily the case for other
instances). In fact, whether the global or local optimum is
detected depends on the starting values of the numerical
optimization routines.

To summarize, we compared for each simulated
alignment the log-likelihoods of the estimates with
the log-likelihoods obtained for the true parameters.

https://doi.org/10.5061/dryad.4j5c7
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FIGURE 1. The averages ¯̂� of the estimated shape parameter �, the averages p̂inv of the estimated invariable fraction pinv and the average
¯̂l of the estimated tree length l produced by PhyML, RAxML, IQ-TREE, and MrBayes for the 100 alignments simulated from each parameter
combinations. The averages are highlighted according to their differences from the true values: inaccurate (more than 25% deviation, red in
online version), moderately inaccurate (10% to 25% deviation yellow in online version), and accurate (less than 10% deviation green in online
version). For pinv =0.0 the estimated p̂inv is accurate if 0� p̂inv �0.01, moderately inaccurate if 0.01< p̂inv �0.05, and inaccurate if 0.05< p̂inv.
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FIGURE 2. The likelihood surface for one simulated alignment as a
function of � and pinv.

TABLE 1. Percentage of alignments where the true
simulation parameters result in higher log-likelihoods than the
inferred parameters from the programs for three simulation scenarios
(6-, 24-, and 96-taxon trees)

Program 6-taxon tree (%) 24-taxon tree (%) 96-taxon tree (%)

MrBayes 34.7 6.6 5.6
PhyML 60.2 21.9 45.0
RAxML 89.2 37.7 49.5
IQ-TREE 36.0 34.1 44.0

Table 1 show how often the true parameter combination
produced a higher likelihood than the inferred
parameters from MrBayes, PhyML, RAxML, and IQ-
TREE. These fractions are particularly high for the 6-
taxon tree and for the ML inference programs. Most ML
phylogenetic programs use general-purpose numerical
methods to find � and pinv (e.g., Brent 1973). These
methods are obviously not well adapted to the complex
likelihood surface (Fig. 2) and explain the poor overall
performance of the ML programs (Fig. 1).

EFFECTIVE OPTIMIZATION HEURISTIC PRODUCES ACCURATE

ESTIMATES

As remedy, we propose an alternative optimization
heuristic which employs the Expectation-Maximization
(EM) algorithm (Dempster et al. 1977) to estimate
pinv. We assume a discrete � distribution with k rate
categories. Under the I+ discrete � model, the site
rates follow a discrete mixture model consisting of k+1
categories with rates r0,..,rk , where r0 =0 represents
invariable sites and ri >0 (i=1,...,k) are the k rates
determined from the shape parameter �of the discrete
� distribution (Yang 1994). Given a tree topology, the

optimization heuristic does the following:

1. Choose initial values for � and pinv.

2. Optimize branch lengths by the Newton–Raphson
method.

3. Optimize substitution model parameters by the
Broyden–Fletcher–Goldfarb–Shanno algorithm.

4. For each alignment site Di compute its posterior
probability of being invariable (1� i�n, where n is
the number of alignment sites):

P
(
r0|Di

)= P
(
Di|r0

)
w0

k∑
j=0

P(Di|rj)wj

,

where P(Di|rj) is the likelihood of site Di having

rate rj and w0 =pinv, wj = 1−pinv
k (1� j�k).

5. Update pinv = 1
n

n∑
i=1

P(r0|Di).

6. Optimize � by the Brent method.

7. If the log-likelihood improvement is greater than
a predefined � value, go back to Step 2. Otherwise,
stop the parameter optimization.

Steps 4 and 5 correspond to the E- and M-step of the
EM algorithm, respectively. To avoid being stuck in local
optima, we repeat this optimization procedure from ten
starting values of pinv evenly spaced between 0 and the
fraction of constant sites observed in the alignment. The
initial value of � is always set to 1.0.

We implemented the new optimization heuristic in
IQ-TREE now called IQ-TREE-EM (IQ-TREE version
1.4.3) and repeated the previous simulations. Figure 3
shows that IQ-TREE-EM successfully recovered the true
parameters for all but one parameter combination (6-
taxon, �=0.5 and pinv =0.0) where the average estimates
( ¯̂�=0.59 and p̂inv =0.06) slightly deviated from the true
values.

Also, the percentage of instances where the estimated
log-likelihoods were lower than the log-likelihood for
the true parameters dropped considerably (0.06% 6-
taxon tree, 0.0% 24-taxon tree, and 0.03% 96-taxon tree;
compare also with Table 1).

This increase in accuracy comes at the cost of an
increased total computing time by a factor of 1.3
compared to IQ-TREE.

Thus, we conclude that the inaccurate parameter
estimation of the I+ discrete � shown for the
tested phylogenetic programs is caused by ineffective
optimization methods.

IMPACT ON REAL DATA

To investigate the impact of accuracy on real data
for ML estimates, we analyzed 70 DNA and 45 protein
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FIGURE 3. The averages ¯̂� of the estimated shape parameter �, the averages p̂inv of the estimated invariable fraction pinv and the average ¯̂l of
the estimated tree length l produced by IQ-TREE-EM for the 100 alignments simulated from each parameter combinations. The highlighting is
explained in Fig. 1.

TreeBase alignments (Nguyen et al. 2015). We applied
the GTR+I+�4 and LG+I+�4 models for DNA and
protein data, respectively. Among 115 alignments, we
detected 15 (5 DNA and 10 protein) alignments where
the estimated � and pinv by PhyML, RAxML, or IQTREE
deviated more than 10% from those by IQ-TREE-EM
(Fig. 4; Supplementary Table S1 available on Dryad).
The estimates by PhyML and IQ-TREE deviated from
those by IQ-TREE-EM only for one and two alignments,
respectively. However, RAxML estimated � and pinv
dramatically different from IQ-TREE-EM, PhyML, and
IQ-TREE for all 15 alignments. Interestingly, RAxML
systematically overestimated � and pinv for all 5 DNA
and underestimated them for all 10 protein alignments
(pinv sometimes very close to zero).

DISCUSSION

Our simulations revealed a major issue for parameter
estimation of the I+ discrete � model as implemented
in phylogenetic software. Despite using very long
alignments, none of the tested programs recovered
the true �, pinv, and tree length for all parameter
combinations. Often, the estimates deviated heavily
from the true values and different programs estimated
different values for the same evolutionary parameters,
although all programs inferred the true tree. Our
further analysis of 115 TreeBase alignments showed that
PhyML, IQ-TREE, and IQ-TREE-EM estimates generally
agree with each other except for two alignments.
However, we identified 15 (13%) alignments where
RAxML systematically overestimated � and pinv for
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FIGURE 4. Estimation of � (left) and pinv (right) for TreeBase alignments using IQ-TREE-EM (x-axis) and IQ-TREE (circle), PhyML (cross) and
RAxML (triangle). Dashed lines show the boundaries of 10% deviation from the IQ-TREE-EM estimates. Points above the upper dashed lines
indicate overestimation compared with IQ-TREE-EM, whereas points under the lower dashed lines indicate underestimation.

DNA and underestimated for protein, compared with
other programs. The reasons for that behavior are
unclear and deserve further analyses. While this
result may not be extrapolated to other data sets,
phylogenetic software should benefit from the more
robust optimization described for IQ-TREE-EM.

We showed that the estimation heuristics
implemented in popular phylogenetic programs
causes such inaccurate estimates and the I+� model per
se is not problematic. The relatively good performance
of MrBayes is likely attributed to the Bayesian sampling
of the parameter space but comes at the cost of excessive
computing time.

With IQ-TREE-EM, we provided an alternative
optimization heuristic for ML methods that allows
accurate estimation of the parameters for the I+ discrete
� model. IQ-TREE-EM combines two optimization
techniques: the multiple starting point strategy and the
EM algorithm. We note that the EM algorithm alone

will not achieve this accuracy (Supplementary Fig. S2
available on Dryad). Therefore, while the former allows
to escape local optima, the latter helps to speed-up
the optimization using analytical formula for pinv. This
new approach effectively infers the true evolutionary
parameters for long alignments. Thus, it is tempting
to speculate that the GTR+I+ discrete � model is also
identifiable as shown for the GTR+I+ continuous �
model (Chai and Housworth 2011).

Our observations show that as models of sequence
evolution become more and more complex (e.g.,
Dirichlet rate and other mixture models), tailored
numerical optimization methods are necessary to
achieve accurate estimates of evolutionary parameters.
It is not enough to recover the true tree, if one
wants to understand how evolutionary forces shaped
contemporary genomes. The effect of wrong parameter
estimates for the substitution model on the total tree
length is sometimes dramatic (see Fig. 1). This may
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in turn bias downstream analysis such as divergence
time dating, inference of site-specific evolutionary
rates, and ancestral sequence reconstruction, which
are sensitive to the parameter estimates. Thus, one
should critically scrutinize the heuristics implemented
in popular programs. A more thorough evaluation
of phylogenetic inference programs allowing for very
complicated models of sequence evolution is necessary,
but beyond the scope of this article.

Finally, we would like to point out that we only
addressed the accurate computation of pinv and � for
the widely used I+ discrete � model. We do not discuss
the biological interpretation of pinv. The estimate of pinv
depends very much on the multiple sequence alignment
at hand. pinv may change if we enlarge the alignment.
Thus, drawing an absolute conclusion from pinv is in any
case questionable.
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