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ABSTRACT

Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related
to autophagy. The aim of this study was to explore the unclear protective mechanism
of catalpol against triptolide. The detoxification effect of catalpol on triptolide was
investigated in HepaRG cell line. The detoxification effects were assessed by measuring
cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress
protein and mRNA expression levels. We found that 5-20 pg/L triptolide treatments
increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase
(AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy
proteins including LC3 and Beclinl. The expression of P62 was downregulated and
the production of autophagosomes was increased, as determined by transmission

electron microscope and monodansylcadaverine staining. In contrast, 40 ug/L catalpol
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reversed these triptolide-induced changes in the liver function index, autophagy level,
and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9

by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic
reticulum stress, including the expression of PERK, which regulates autophagy.
Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-
CHOP pathway of the unfolded protein response is an important pathway that could
induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK
pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by
inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of
this study are beneficial to clarify the detoxification mechanism of catalpol against
triptolide-induced hepatotoxicity and to promote the application of triptolide.
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INTRODUCTION

Tripterygium wilfordii Hook F. (TW), a traditional Chinese medicinal herb, has been
clinically and widely used to treat various tumors and inflammatory and autoimmune
diseases because of its remarkable therapeutic effects. However, severe adverse reactions,
including hepatotoxicity, restrict the practical applications of TW (Li, Jiang ¢ Zhang, 2014).
Triptolide (TP), one of the main effective and toxic ingredients of TW (Fu et al., 2020), may
significantly reduce liver injury once its therapeutic effects are realized (Wang et al., 2013). It
is one of the focal points that clarifying the main mechanism of TP-induced hepatotoxicity
and reducing/preventing its hepatotoxicity while guaranteeing its therapeutic effect.

Drug compatibility is an important method to reduce toxicity. In the permanent clinical
practice of traditional Chinese medicine (TCM), TW is frequently used with a formula
that contains a variety of Chinese herbs to obtain synergistic effects and/or alleviate
possible adverse reactions (Feng et al., 2019), which is called the compatibility of TCM. For
example, the proficient National Chinese Medicine Master Zhongying Zhou’s prescription
Qingluotongbi Formula (QLT) is such a compound which includes TW. It has been used
to treat rheumatoid arthritis of Yin Deficiency and Collateral Heat Syndrome for decades,
and proved to be effective (Liu ef al., 2015) and non-hepatotoxic. In our previous studies,
we found that Rehmannia glutinosa (RG), a component of QLT, reduced TW-induced
hepatotoxicity (Zhang et al., 2016), and catalpol (CAT), the main active ingredient of RG,
remarkably protected against TP-induced hepatotoxicity (Zhou et al., 2018).

Autophagy is a highly evolutionarily conserved protective mechanism for maintaining
homeostasis of the intracellular environment, and is a well-recognized mode of TP-induced
hepatotoxicity (Huo et al., 2019; Yuan et al., 2019). Autophagy intimately connects with
endoplasmic reticulum stress (ERS) (Levine ¢ Kroemer, 2008), which may maintain cell
survival and also cause apoptosis or autophagic cell death. A recent study showed that
drpl-associated mitochondrial dysfunction and mitochondrial hyper autophagy are
important mechanisms in TP-induced liver injury (Hasnat et al., 2019). CAT can inhibit
ERS and regulate autophagy to reduce toxicity and resist inflammation (Bi et al., 2020; Liu
et al., 2018). Some studies have shown that CAT decreases the upregulation of autophagy
to protect against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced damage (Choi et al., 2019).
However, the exact mechanism by which CAT alleviates TP-induced hepatotoxicity,
particularly autophagy, remains unclear and requires further studying.

ER is responsible for the quality control of bioactive proteins, such as synthesis,
folding, and post-translational modification, which regulates autophagy in TP-induced
hepatotoxicity and plays a key role in cell function (Hwang ¢ Qi, 2018). Reactive oxygen
species (ROS) and severe ERS may activate multiple signaling pathways that lead to
autophagic cell death, and the integration of these responses is critical to the pathogenesis
of various diseases, including drug-induced liver injury (Song et al., 2017). The significant
role of oxidative stress caused by ROS in TP-induced damage has also been observed (Chan
etal, 2017; You et al., 2018). A previous study showed that TP-induced oxidative stress in
human hepatic cells and led to cytotoxicity (Feng et al., 2019). Under ERS, cells initiate
an unfolded protein response (UPR) to maintain a homeostatic balance. However, under

Zhang et al. (2022), PeerdJ, DOI 10.7717/peerj.12759 217


https://peerj.com
http://dx.doi.org/10.7717/peerj.12759

Peer

long-term or excessive ERS, UPR is not sufficient to restore ER homeostasis and eventually
leads to cell death (Iurlaro ¢ Muifioz Pinedo, 2016; Wang et al., 2018). Among the three
important arms of UPR induced by ERS, the PERK pathway plays a key role in regulating
autophagy. Studies have shown that, through the PERK-ATF4-CHOP pathway, classical
swine fever virus infection induced ERS and complete autophagy both in vivo and in vitro
(He et al., 2017; Zhu et al., 2019). However, whether ERS exacerbates abnormal autophagy
through the PERK pathway and whether the suppression of this pathway mediates the
protective effection of CAT against TP-induced hepatotoxicity requires further study.
Therefore, the aim of this study was to explore the action of autophagy and the
relationship between autophagy and apoptosis, and autophagy and ERS in TP-induced
hepatotoxicity. We also determined whether the PERK pathway plays an important
regulatory role in autophagy. The results may elucidate whether the protective mechanism
of CAT in alleviating TP-induced toxicity is related to the PERK-ATF4-CHOP pathway.

MATERIAL AND METHODS

Cell cultures and reagents

HepaRG cells, a preferable cell model for drug-induced liver injury (DILI) (Wu et al.,
2016), were used for in vitro experiments. The HepaRG cell line was purchased from Beina
Chuanglian Biotechnology (Beijing, China). The cells were cultured in RPMI 1640 medium
containing 10% fetal bovine serum (FBS) and 1% antibiotics, and then incubated in a cell
incubator containing 5% CO; at 37 °C.

CAT (purity > 98.0%) and TP (purity > 98.0%) were purchased from Yuanye
Biotechnology (Shanghai, China). The stock solution of TP (20 mg/mL) was dissolved
in dimethyl sulfoxide (DMSO) and diluted with basal medium to various concentrations
(0, 5, 10, and 20 pg/L). CAT (20 mg/mL) dissolved in DMSO was diluted to various
concentrations (0, 0.4, 4, 40, 400, 4,000, and 40,000 pg/L) with RPMI 1640.

Cell viability assay using cell counting kit 8 (CCK8)

Cell proliferation was assessed using the CCK8 (Beyotime, Shanghai, China) assay. To
detect cell toxicity of TP, HepaRG cells (5 x 10* cells/mL) were plated into 96-well plates
for 24 h, and then treated with different doses of TP for 12, 24, 36, and 48 h. To detect
the protective effect of CAT, the cells were pretreated with CAT (0, 0.008, 0.04, 0.2, and
1 pg/L) for 12 h, and then incubated with TP (20 pg/L) for 24 h. After incubating with
10 pL CCKS solution for 3 h, the optical density value was determined at an excitation
wavelength of 450 nm using a microplate reader (TECAN, Switzerland).

In addition, to evaluate the hepatotoxicity, the supernatant of cells incubated
with TP/CAT was used to detect the total alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and lactate dehydrogenase (LDH) levels using detection kits
(Jiancheng Bioengineering, Nanjing, China).
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Detection of autophagosomes by transmission electron microscope
(TEM)
After incubation, the cells (3 x 10° cells/mL) were treated with electron microscope fixative,
fixed for 2 h at 25 °C, cut into small pieces (1 mm?), fixed, dehydrated, penetrated and
embedded, sliced (1-2 pm) and axial lead stained. The specimens were observed by TEM.
To demonstrate the relationship between autophagy and apoptosis, the autophagy
inhibitor 3-methyladenine (3-MA) (2.5 mM) and agonist rapamycin (RAPA) (50 nM)
were used. Furthermore, the ERS inhibitor 4-phenylbutyric acid (4-PBA) (500 nM) and
PERK inhibitor GSK2656157 (1 wM) (Bastida-Ruiz et al., 2019; Wang et al., 2020) were
also used to study the relationship between PERK and autophagy.

Autophagosome detection by fluorescence microscope

Acidic autophagic vacuoles were measured using monodansylcadaverine (MDC) staining
(Veeran et al., 2017) with an autophagy detection kit (KeyGEN, Nanjing, China). The cells
(1 x 10° cells/mL) were plated in 24-well plates and incubated with different concentrations
of TP/CAT for 24 h at 37 °C. The cells were treated according to the manufacturer’s
instructions and observed at an excitation wavelength of 355 nm using a fluorescence
microscope (ZEISS, Thuringia, Germany).

Flow cytometry for apoptosis

The apoptotic ratio was detected using an Annexin V-FITC/PI Apoptosis Detection kit
(Vazyme, Nanjing, China) and measured by flow cytometry (Beckman Coulter, CA, USA).
Early apoptotic cells are single positive for Annexin V-FITC, and late apoptotic cells are
double positive for Annexin V-FITC and PI (Chen et al., 2008). As triptolide-induced
apoptosis involves early and late apoptosis (You ef al., 2018), the apoptosis rate was
calculated as the sum of the ratios of early and late apoptosis. Data were analyzed using
FlowJo V 10.

Measurement of reactive oxygen species (ROS)

The content of intracellular ROS was measured using the DCFH-DA fluorescent dye
(Wang et al., 2017) with the ROS Assay Kit (Beyotime, Shanghai, China). After incubation,
the cells were treated with 10 uM DCFH-DA reagent and incubated in the dark at 37 °C
for 20 min. Fluorescence was measured by flow cytometry at an excitation and emission
wavelengths of 488 nm and 530 nm.

Western blotting

HepaRG cells (4 x 10° cells/mL) were seeded in six-well plates overnight and then treated
with different concentrations of TP/CAT for 24 h. The cells were collected and lysed
using RIPA buffer (Beyotime, Shanghai, China) on ice for 30 min. The total protein
concentration was detected using a BCA protein assay kit (Beyotime, Shanghai, China).
The protein lysates (30 pug) were separated on 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred onto a polyvinylidene fluoride (PVDF)
membrane (Millipore, Darmstadt, Germany). The membranes were incubated overnight
at 4 °C with the following primary antibodies: p-PERK (CST, Danvers, MA, USA), LC3,
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Table 1 Primersin qRT-PCR.

Target gene Sequence of primers (5’ to 3)
LC3 Forward: CCTGGACAAGACCAAGTTTTTG
Reverse: GTAGACCATATAGAGGAAGCCG
P62 Forward: CAGGCGCACTACCGCGATG
Reverse: ACACAAGTCGTAGTCTGGGCAGAC
Beclinl Forward: CTGAAACTGGACACGAGCTTCAAG
Reverse: TGTGGTAAGTAATGGAGCTGTGAGTT
BAX Forward: CCCGAGAGGTCTTTTTCCGAG
Reverse: CCAGCCCATGATGGTTCTGAG
BCL2 Forward: GGTGGGGTCATGTGTGTGG
Reverse: CGGTTCAGGTACTCAGTCATCC
GRP78 Forward: GGAGCGTCTGATTGGCGATGC
Reverse: CATTCCAAGTGCGTCCGATGAGG
GAPDH Forward: CACCATCTTCCAGGAGCGAG
Reverse: AAATGAGCCCCAGCCTTCTC

SQSTM1/P62, Beclinl, GRP78/BIP, PERK, IRE1, ATF6, ATF4, CHOP, BCL2, Cleaved-
caspase3, Cleaved-caspase9, and GAPDH (Proteintech, Chicago, IL, USA). After incubating
with the secondary antibodies at room temperature for 1 h, the protein membranes were
detected using the ECL system (Bio-Rad, Hercules, CA, USA).

Quantitative real-time PCR (qRT-PCR)

The total RNA from cells was extracted, and the mRNA expression levels of LC3, P62,
Beclinl, BAX, BCL2, GRP78, and GAPDH was detected using QRT-PCR. The primer pairs
are listed in Table 1. Relative expression was calculated as fold changes compared with the
control gene GAPDH using the 2~ 22 CT method.

Statistical analysis

Data were expressed as mean =+ standard deviation (SD) and were analyzed using GraphPad
Prism 8.0.2. One-way ANOVA followed by Dunnett post-hoc test and ¢-test were used
to compare the means of multiple or two groups, respectively. Difference was considered
significant at p < 0.05.

RESULTS

CAT defends from TP-induced hepatotoxicity

The results of the CCK8 assay showed that, 5-20 pg/L TP decreased the relative activity of
cells for 12, 24, 36, and 48 h in a time- and dose-dependent manner (Fig. 1A). Cell toxicity
was moderate under 20 pg/L TP treatment for 24 h, and the concentration was used in
the subsequent experiments. Simultaneously, the levels of ALT, AST, and LDH in the
culture medium increased (Fig. 1B). Using the CCKS8 assay, the relative safe dose of CAT
was determined to be 0.4—400 pg/L (Fig. 1C). The protective effect of CAT was the most
obvious when CAT was used at 40 and 400 .g/L. Based on this, the actual dose of CAT in
the subsequent experiments was set to 40 pg/L. CAT reversed the TP-induced decrease in
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Figure 1 CAT defends from TP-induced hepatotoxicity. (A) Relative viability of cells at different time
points and doses of TP using CCK8. (B) The levels of ALT, AST, and LDH (U/L) in cells incubated with
TP. (C) Relative viability of cells exposed to different doses of CAT. (D) Relative viability of HepaRG cells
treated with CAT and TP. (E) CAT (40 p g/L) reversed the increase in ALT, AST, and LDH levels (U/L)
caused by TP. Data are presented as mean = SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001 vs. control.
#P < 0.05, ##P < 0.01, ###P < 0.001 vs. TP.

Full-size Gl DOI: 10.7717/peerj.12759/fig-1

cell viability (Fig. 1D) and the levels of AST, ALT, and LDH (Fig. 1E). The results indicated
that CAT could defend from TP-induced hepatotoxicity.

TP-induced overactivation of autophagy is inhibited by CAT

Excessive autophagy is one of the important mechanisms by which TP induces
hepatotoxicity (Huo et al., 2019); thus, we focused on investigating autophagy. At 5-20 png/L
TP, the expression of the autophagy proteins, LC3 and Beclinl, was upregulated, whereas
that of P62 was downregulated compared with those in the control group (Fig. 2A). By
MDC staining, fluorescence microscopy suggested that the production of autophagosomes
also increased as the TP dosage increased (Fig. 2B). Simultaneously, the corresponding
mRNA levels of LC3, Beclinl, and P62 also showed tendencies with those of the consistent
proteins (Fig. 2C).

When RAPA (50 nM), an effective and specific mTOR inhibitor, was used to further
activate autophagy, the expression level of LC3 was upregulated and that of P62 was
downregulated (Fig. 2D). Meanwhile, the levels of ALT, AST, and LDH further increased
(Fig. 2E). When 3-MA (2.5 mM), a pan class III PI3K inhibitor, was used to inhibit
autophagy, the expression of LC3 was downregulated and that of P62 was upregulated
(Fig. 2D), and the elevated levels of ALT, AST, and LDH levels were reversed (Fig. 2E).
In addition, cell viability also changed in line with liver function indexes when 3-MA,
RAPA, and TP were used in combination (Fig. 2F). These results indicated that excessive
autophagy is one of the main mechanisms of TP-induced liver cell damage.
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As expected, CAT downregulated LC3 and Beclinl, and upregulated P62 (Fig. 2G).
Simultaneously, elevated levels of ALT, AST, and LDH were reversed by CAT (Fig. 1E),
and cell viability was also improved (Fig. 1D)

TP-induced apoptosis is restrained by CAT via hyperautophagy
repression
Considering the role of apoptosis in TP-induced liver injury, we also detected the level of
apoptosis. The results showed that with the increase in TP exposure, the apoptotic protein
levels of Cleaved-caspase3 and Cleaved-caspase9 increased, and the anti-apoptotic protein
level of BCL2 decreased (Fig. 3A). Flow cytometry revealed that 5-20 wg/L TP increased
the number of apoptotic cells (Fig. 3B). The mRNA level of BAX increased, whereas that of
BCL2 decreased (Fig. 3C). CAT reversed the protein expression levels of Cleaved-caspase3
and Cleaved-caspase9 (Fig. 3D).

To investigate the relationship between autophagy and apoptosis in TP-induced
hepatotoxicity, we further used RAPA and 3-MA. When RAPA (50 nM) was used to
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upregulate autophagy, the level of Cleaved-caspase3 and Cleaved-caspase9 was upregulated
and that of BCL2 was downregulated; when 3-MA (2.5 mM) was used to downregulate
autophagy, the level of Cleaved-caspase3 and Cleaved-caspase9 was downregulated and
that of BCL2 was upregulated (Fig. 3E). Thus, excessive autophagy induced apoptosis in
TP-induced live cell damage.

In summary, CAT could restrain apoptosis by inhibiting excessive autophagy in TP-
induced liver cell damage.

CAT protects against TP-induced extreme autophagy by inhibiting
ERS

TP caused an increase in the ROS ratio as determined flow cytometry (Fig. 4A). Meanwhile,
western blotting and qRT-PCR analysis indicated that GRP78, IRE1, ATF6, and PERK, the
markers of ERS, were upregulated at the protein (Fig. 4B) and mRNA levels (Fig. 4C). To
probe the relationship between autophagy and ERS in TP-induced hepatotoxicity, we used
4-PBA, an ERS inhibitor. When 4-PBA (500 nM) was used along with TP to downregulate
ERS, the autophagy marker protein LC3 was downregulated and P62 was upregulated
(Fig. 4D).

As expected, CAT decreased the ROS generation ratio (Fig. 4A) and downregulated the
protein level of GRP78, which was elevated by TP (Fig. 4E); whereas, the protein level of
LC3 and Beclinl was decreased and that of P62 was increased (Fig. 2G).

In summary, ERS is an important factor in regulating autophagy, and CAT can inhibit
excessive autophagy caused by TP by restraining ERS.

CAT restrains fulsome activation of autophagy by the PERK-ATF4-
CHOP pathway

Western blotting revealed that the expression of p-PERK, ATF4, and CHOP, three key
proteins in the PERK pathway, was upregulated by TP in a dose-dependent manner
(Fig. 5A) and the autophagy flux also increased (Fig. 2B).

To explore whether the PERK-ATF4-CHOP pathway is a key regulator of TP-induced
hype autophagy, we further applied GSK2656157, a selective ATP-competitive PERK
inhibitor. When GSK2656157 (1 wM) inhibited the PERK pathway of ERS, LC3 was
downregulated and P62 was upregulated (Fig. 5B), and simultaneously, the ALT, AST,
and LDH levels also decreased (Fig. 5C). Thus, the PERK-ATF4-CHOP pathway plays an
important role in the regulation of fulsome autophagy.

As envisioned, CAT reversed TP-induced upregulation of autophagic flux under TEM
(Fig. 5D), and the changes in GRP78 (Fig. 4E), LC3, Beclinl, and P62 (Fig. 2G) by inhibiting
the PERK-ATF4-CHOP pathway (Fig. 5E). Simultaneously, elevated ALT, AST, and LDH
levels were also reversed (Fig. 1E).

Overall, CAT inhibited ERS induced by TP through suppressing the PERK-ATF4-CHOP
pathway to restrain excessive autophagy to protect liver cells.

DISCUSSION

The application of TP, a main active and toxic ingredient extracted from TW, is limited
owing to its potential liver toxicity (Huang et al., 2021). CAT, an active ingredient of RG,
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has several activities, including antioxidant, liver-protection, anti-inflammatory, anti-ERS,
anti-aging, and anti-tumor effects (Bi et al., 2020; Liu et al., 2017; Zhang, Chen ¢ Li, 2019).
It has been shown that CAT can effectively reduce the liver toxicity of TP (Feng et al., 2019;
Fu et al., 2020). However, the clear protection mechanism of CAT against TP-induced
hepatotoxicity is still not very explicit.

Macroautophagy (abbreviated as autophagy), a type II cell programmed death
mechanism, can protect cells by removing damaged organelles and proteins (Klionsky ¢
Emr, 2000). The key steps in autophagy include initiation, formation of isolation membrane
or phagophore, vesicle elongation extending into autophagosomes, autophagosome and
lysosome fusion with autophagolysosomes, and degradation of autophagolysosomes
(Mizushima, Yoshimori ¢ Ohsumi, 2011). Among them, the formation of autophagosomes
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is a marker of autophagy. Broadly, a moderate level of autophagy removes damaged
organelles and macromolecular proteins, thereby inhibiting apoptosis to protect cells.
However, excessive autophagy induces apoptosis or autophagic cell death (Nowikovsky &
Bergmann, 2017). Abnormal regulation of autophagy is related to various liver diseases
including drug-induced liver injury, and its adjustment is considered as a potential new
treatment strategy (Allaire et al., 2019). Conversion of LC3-I to LC3-II is an indicator of
autophagosome formation; while P62 is a substrate for autophagolysosome degradation
and Beclinl is necessary to regulate autophagy. In this study, with the increase in TP (5-20
ng/L) exposure, the protein level of the autophagy markers LC3 and Beclinl increased and
that of P62 decreased, which indicated that the autophagy flux increased. Considering that
autophagosome changes under TEM are a criterion to detect autophagy, the changes in
autophagosomes in HepaRG cells were observed by TEM and fluorescence microscope.

To further verify the role of autophagy in hepatotoxicity by TP, we used the autophagy
agonist RAPA and inhibitor 3-MA. When autophagy was further activated by RAPA, cell
viability was further reduced and liver function index was further aggravated. However,
when autophagy was inhibited by 3-MA, cell viability was further increased, and liver
function index was reversed. As the role of apoptosis in TP-induced hepatotoxicity (You
et al., 2018) and the relationship between autophagy and apoptosis is intricate, we explored
their connection. When RAPA was used to further induce autophagy, the protein level
of Cleaved-caspase3 and Cleaved-caspase9 was upregulated, and simultaneously, the level
of anti-apoptotic protein BCL2 was downregulated. When 3-MA was used to inhibit
autophagy, the expression of Cleaved-caspase3 and Cleaved-caspase9 was downregulated
and that of BCL2 was upregulated. Thus, autophagy induced by TP (20 ng/L) promoted
apoptosis. As expected, CAT inhibited the expression of autophagic and apoptotic proteins
(LC3, P62, Beclinl, Cleaved-caspase3, and Cleaved-caspase9) induced by TP to reduce
liver function indicators.

The ER is the key to regulating proteins involved in synthesis, folding, transport, and
degradation. As a crucial factor in regulating intracellular environmental homeostasis, the
ER is sensitive to oxidative stress and plays a vital regulatory role in oxidative stress-induced
injury. An increase in ROS induced by physical, chemical, or drug irritation is the main
reason for ERS. ERS through UPR promotes cell survival or death if ERS is chronic or
severe (Wang ¢ Kaufman, 2016). This study showed that TP caused an increase in the
intracellular ROS ratio and the marker of ERS glucose regulating protein 78 (GRP78)
after TP exposure. However, CAT reduced ROS production and downregulated GRP78
expression, thus inhibiting ERS. Generally, under ERS, cells initiate UPR through three
pathways: protein kinase R-like ER kinase (PERK), inositol requiring enzyme 1 (IRE1),
and activating transcription factor-6 (ATF-6) to reduce damage. Among these, the PERK
signaling is the preferred activation pathway induced by ERS (Fung, Torres ¢ Liu, 2015).
Through the phosphorylation of the a-subunit of eukaryotic initiation factor 2 (elF2a),
phosphorylated PERK (p-PERK) activates its downstream activating transcription factor 4
(ATF4), which can regulate the expression of multiple autophagy-related genes, including
LC3, ATGS5, ATG7, and Beclinl (Rzymski et al., 2009). C/EBP homologous protein (CHOP)
is a non-endoplasmic reticulum-localized transcription factor induced by ERS, which
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forms heterodimers with ATF4 to regulate UPR, autophagy and mRNA translation by the
related genes (Han et al., 2013). A study (Zhou ef al., 2019) showed that sorafenib induced
ERS and caused autophagy, which may be regulated by the PERK-ATF4-Beclinl pathway.
In our study, with the increase in TP concentration, the expression of GRP78, IRE1, ATF6,
and PERK was upregulated; the expressions of LC3 and Beclinl was also upregulated. As a
reverse verification, when 4-PBA was used to downregulate ERS, the autophagy level was
also downregulated. Thus, ERS exacerbates excessive autophagy in TP-induced toxicity.
In addition, after treatment with TP, the protein levels of p-PERK, ATF4, and CHOP
in the PERK pathway were upregulated, and autophagy flux and liver function indexes
were also upregulated. To further verify that excessive autophagy regulated by ERS in
TP-induced damage was through the PERK-ATF4-CHOP pathway, we used the PERK
inhibitor GSK2656157. When GSK2656157 was used to inhibit the protein expression of
PERK, the levels of p-PERK, ATF4, and CHOP were downregulated, autophagy flux was
also downregulated, and liver function indexes and relative cell viability were reversed.
Similar to GSK2656157, CAT downregulated excessive autophagy by restraining the
PERK-ATF4-CHOP pathway to reduce TP-induced liver cell damage.

CONCLUSIONS

In summary, our study proved that TP-induced hepatotoxicity is closely related to excessive
autophagy indued by ERS, mainly via the PERK-ATF4-CHOP pathway. CAT could reduce
excessive autophagy by inhibiting ERS through the PERK-ATF4-CHOP pathway to reverse
TP-induced damage. However, whether the IRE1 and ATF6 pathways of UPR activated by
ERS are also involved in the regulation of autophagy in TP-induced hepatotoxicity remains
to be further studied.
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