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Abstract

Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The
emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent
study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and
enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of
ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower
metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative
phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that
these bacteria are metabolically fitter and therefore more successful human pathogens.
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Introduction

Urinary tract infections (UTIs) are among the most common

bacterial infections acquired both in the community and hospital

settings [1]. UTIs occur in all age groups and in both genders

[2,3], while their incidence increases with age [4]. Additionally,

they are more common in women than men [2], with an estimated

33% of women suffering from a UTI by the age of 24 [5]. UTIs

can lead to other severe infections such as bacteraemia,

pyelonephritis and sepsis [6]. Worldwide, approximately 150

million people are diagnosed with UTI each year, which has a

great impact not only on public health, but also on the global

economy [7].

It is well documented that Escherichia coli is the main causative

agent of UTIs [8], and the extra-intestinal pathogenic E. coli

[ExPEC] group have the capability of causing community-

acquired UTIs, accounting for more than 85% of infections [9].

Over the past decade, ExPEC have shown an increased level of

antimicrobial resistance to front-line antibiotics such as trimeth-

oprim and ciprofloxacin, and resistance to these antibiotics has

been observed in as many as 20–45% of ExPEC isolates [1,10].

ExPEC have also been associated with a high level of extended

spectrum b-lactamase (ESBL) gene carriage [11,12]. This is of

great concern since it can limit the therapeutic choices used for

treating infections, and these organisms may also act as a major

reservoir of antimicrobial resistance.

Molecular epidemiological analysis of ESBL-producing ExPEC

isolates by multilocus sequence typing (MLST) has recently

uncovered the emergence of a prevalent ExPEC clone, namely,

E. coli sequence type 131 [13]. E. coli ST131 is a CTX-M ESBL

producing E. coli clone [13]. It belongs to the serotype O25:H4,

and to the highly virulent phylogroup B2 [14,15]. E. coli ST131

has been implicated as a major cause of dissemination of the

CTX-M-15 class of ESBL gene [13]. Although E. coli ST131 has

been associated with high levels of antimicrobial resistance, it has

been suggested to display increased pathogenesis [16], countering

the hypothesis that high levels of antimicrobial resistance come at

the expense of a fitness advantage, which leads to decreased

pathogenesis [1]. Several studies have reported an increased

virulence associated gene (VAG) carriage in ST131 isolates [17],

and have also found them responsible for causing a range of

severity in disease cases [18,19].

Previous work conducted in our laboratory reported the

presence of E. coli showing high levels of antimicrobial resistance

in a collection of monomicrobial and polymicrobial urine samples

[10]. Further characterisation of the isolates found that ST131 was

the predominant strain type within the collection, that the ST131

strains were responsible for the high levels of antimicrobial

resistance in the collection and that there were variations in VAG

profile between strains with no specific VAG profile associated

with ST131 [20]. Although the possession of specific virulence

factors, such as adhesins and iron acquisition determinants [21],
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enhances the ability of E. coli to cause a UTI, ST131 has not

shown a significant difference in its VAG carriage compared to

other uropathogenic E. coli (UPEC) of different STs such as E. coli

ST73, ST69 and ST127 [20,22]. This questions the role of VAG

carriage in the current success of ST131 [15,23], suggesting the

presence of other factors that can contribute to ST131 fitness.

Several reports have proposed that bacterial metabolic potential

can enhance fitness leading to increased pathogenesis. For

example, previous studies have shown that sugar metabolism in

enterobacteria [24], and the possession of specific metabolic

enzymes [25], may increase bacterial virulence. A recent study

comprising 47 biochemical tests using the Vitek2 Advanced Expert

System for metabolic profiling on a collection of 300 UPEC

isolates concluded that ST131 isolates have higher metabolic

potential profiles in comparison to other ST isolates. It also

showed that ST131 isolates have a significant association with

eight biochemical tests including those for peptidase, decarboxyl-

ase, and alkalinisation activity. Moreover, it also found a

correlation between metabolic activity and antibiotic susceptibility

profiles, with multi-drug resistant isolates showing the highest

metabolic potential [26].

In this study, we tested and compared the metabolic activity of a

collection of extra-intestinal pathogenic E. coli isolates including

ST131 and non-ST131 isolates, using all available API metabolic

profiling substrates (Biomerieux, UK). We further tested the

metabolic activity of ten E. coli isolates to a more comprehensive

level using Biolog automated phenotypic microarray technology in

order to provide a comparison between ST131 and E. coli of

different STs in terms of their global metabolic potential, and to

examine the correlation between the antimicrobial resistance and

the metabolic activity of ST131 isolates. Our data agrees with that

of Gibreel et al (26) in that analysis of a limited number of

metabolites can produce differential profiles for different sequence

types. However, our Biolog analysis demonstrated no detectable

difference in metabolic fitness between ST131 and other ExPEC

sequence types, suggesting E. coli ST131 does not display elevated

metabolic fitness. In addition we reanalysed the genome sequences

of a dozen ST131 isolates previously sequenced by our group

[27,28] creating an ST131 core genome which we compared

against reference ExPEC genome sequences, showing that there is

little difference at the genome level in presence or absence of

metabolic operons.

Materials and Methods

Bacterial Strains
A collection of fifty E. coli isolates, twenty five ST131 and twenty

five non-ST131 isolates, were included in the metabolic profiling

assay. Thirty six of these isolates were collected between October

2008 and June 2009 from urine samples of elderly patients from

Queens Medical Centre, Nottingham, while the other fourteen

isolates were collected between March 2011 and June 2011 from

urine samples of patients from Queens Medical Centre, Notting-

ham. The MLST of the isolates and identification of virulence

factors and antibiotic susceptibility profiles have been previously

described [10,20,29]. A subset of ten E. coli isolates, five ST131

and five E. coli non-ST131, were used to carry out the Biolog

phenotypic microarray assay. The five ST131 isolates were

previously genome sequenced [27], and varied in CTX-M-15

gene carriage, source of isolation, and invasion levels. The non-

ST131 isolates were chosen to represent the major ExPEC STs

associated with human disease [20]. Table 1 shows full details of

the strains used in the phenotypic microarray assay.

Metabolic Profiling Assay by API Reagents
Four API kits: API 20E, ID32 E, API 50 CH and API ZYM kits

(Biomerieux, UK) were used in metabolic profiling. This resulted

in a total of 120 biochemical tests and allowed the measurement of

carbon source utilisation, carbohydrate fermentation and enzy-

matic activity of E. coli isolates. Preparation of bacterial

suspensions and inoculation of test kits were performed according

to the manufacturer’s instructions (Biomerieux, UK). The assays

were performed in duplicate on two independent occasions giving

completely concordant results.

Biolog Phenotypic Microarray (PM) Assay
The PM assay was performed using Biolog Inc. (Hayward, CA).

This assay consisted of two 96 well PM panels (PM1, PM2A),

which were used to test the ability of five E. coli ST131 and five

non-ST131 isolates to utilise 190 carbon sources. E. coli isolates

were plated out on LB agar (Fisher Scientific, UK) at 37uC prior to

starting the assay. The bacterial cell suspension for each isolate

was prepared by transferring around 20–25 bacterial colonies into

a sterile tube containing 15 ml of sterile dH2O. A uniform

suspension was made until a turbidity of 42% transmittance (T)

61% in the Biolog turbidimeter was obtained. Two millilitres of

this cell suspension was then added to 10 ml of inoculation fluid-0

(IF-0)+120 ml dye A to yield a final cell density of 85% T.

Afterwards, 100 ml of the 85% T cell suspension was added to

each well. The plates were then placed in the OmniLog reader

(Biolog), and incubated for 48 h. The OmniLog reader analyses

the plates every 15 minutes, converting the pixel density in each

well to a signal value reflecting cell growth and dye conversion.

Phenotypic microarray data analysis was performed using a signal

value calculation approach described previously by Homann et al

[30]. Each substrate was tested in duplicate per strain.

Statistical Analysis
The production of heat maps for API metabolic profiling results

was performed using SPSS PAWS (version 20.0) statistics software.

Phenotypic microarray results were analysed using R statistics

package. The significance of association between E. coli STs and

different biochemical tests used for the metabolic profiling assay

was determined by performing Fisher’s exact test (FET) in a

pairwise fashion, and the threshold for statistical significance was a

P value of #0.05. Testing for correlation between metabolic

profile and sequence type was performed by principal component

analysis (PCA) in R.

Comparative Genomics
To compare metabolic potential between strains at a genomic

level, an ST131 core genome was created to ensure any differences

observed were conserved across all the ST131 strains. This was

done as previously described by our group [28] using all available

ST131 genomes [27]. The ST131 core genome was then

compared against CFT073, UTI89, and P5B (table 1) using

ACT [31] in a pairwise fashion to determine metabolic loci

uniquely present or uniquely absent to ST131.

Results

API Test Results Identify a Small Number of ST131
Discriminatory Tests

120 API test reagents were used to perform metabolic profiling

on twenty five ST131 and twenty five non-ST131 isolates

belonging to the four major ExPEC sequence types: ST69,

ST73, ST95 and ST10. Figure 1 shows a comparison of results

ST131 Biolog comparison
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obtained from selected biochemical tests for all fifty E. coli ST131

and non-ST131 isolates. All isolates were positive for utilisation of

thirty substrates, and negative for forty three others, with

variations between STs in terms of their capability of utilising

the remaining forty seven substrates.

ST131 isolates exhibited a strong trend in the inability to utilise

five tested substrates: 5-keto-D-gluconate (5KG), D-ARAbinose

(DARA), esculin, cellobiose and dulcitol, in comparison to other

ST isolates. With regard to 5KG utilisation, only 2 of the 25

ST131 isolates (8%) were able to utilise this substrate, whilst the

utilisation percentages for ST69, ST73, S795 and ST10 isolates

were 100%, 85%, 66% and 60%, respectively. Additionally,

ST131 isolates exhibited poor DARA utilisation compared to

other ST isolates. Only 20% of ST131 isolates were able to utilise

this substrate compared to 100% for ST69 isolates, 85% for ST73

isolates, 100% for ST95 isolates, and 60% for ST10 isolates.

Similarly dulcitol utilisation percentage for ST131 isolates was

36% compared to 100% for ST69 isolates, 85% for ST73 isolates,

83% for ST95 isolates, and 60% for ST10 isolates. The capability

of ST131 isolates to utilise esculin was 24% compared to 42% for

ST69, 100% for ST73, 66% for ST95 and 100% for ST10

isolates. The cellobiose utilisation percentage for ST131 isolates

was 12% compared to 42% for ST69 isolates, 50% for ST73

isolates, 33% for ST95 isolates, and 40% for ST10 isolates.

ST131 isolates did not show higher metabolic activity for any

biochemical substrate tested when compared to other ST isolates,

which is in contrast to the previous study [26]. The ability of

ST131 to utilise substrates for which it was more active in that

study, such as ODC, bGUR and SAC, was not higher using API

methodology, while some other substrates do not appear in the

API substrate panel.

Table 1. Details of strains used in the phenotypic microarray assay.

Strain E. coli ST Strain history Patient source CTX-M carriage Reference

UTI18 ST131 UTI Community CTX-M-15 [20]

UTI32 ST131 UTI Hospital CTX-M-15 [20]

UTI226 ST131 UTI Hospital – [20]

UTI570 ST131 UTI Community – [20]

UTI587 ST131 UTI Community CTX-M-15 [20]

UTI396 ST393 UTI – – [20]

UTI501 ST69 UTI – – [20]

UTI89 ST95 Uncomplicated cystitis – – [39]

CFT073 ST73 Acute pyelonephritis – – [40]

P5B ST10 Bacteraemia – – [41]

doi:10.1371/journal.pone.0088374.t001

Figure 1. Heat map showing a comparison of results obtained from testing 25 API biochemical substrates on E. coli ST131 and four
major ExPEC STs representing the whole substrates used in phenotypic profiling assay. Darker shaded areas indicate higher percentage
of strains capable of utilizing the substrate. The inability of ST131 to utilise 5KG, Dulcitol (DUL), DARA, cellobiose and esculin is highlighted by red
circle.
doi:10.1371/journal.pone.0088374.g001

ST131 Biolog comparison
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Biolog Phenotypic Microarray Assay Shows No Significant
Difference in Metabolic Capacity between ST131 and
Other ST Isolates

In light of the contrasting results above with a previous study

showing ST131 enhanced metabolic function, we utilised the

superior discriminatory power of the phenotypic microarray assay

to fully characterise the metabolic capacity of five E. coli ST131

and five non-131 isolates. Figure 2 shows a heat map for all

metabolites tested, with values corresponding to the intensity of

utilisation for the different nutrient sources. There were very few

detectable differences in the metabolic capacity between ST131

and other ST isolates for the majority of tested carbon sources. As

with the commercial test reagents there were some strain-specific

differences in metabolite utilisation but these were not consistent in

either ST131 or non-ST131 groups, and ST131 isolates were not

associated with a specific metabolic profile.

Considering the metabolic activity of CTX-M-15 producing

ST131 isolates, UTI32 showed higher metabolic potential in

comparison to other ST131 isolates as its signal values were the

highest for a range of substrates such as M-inositol, palatinose, D-

tagatose, malonic acid and N-acetyl-L-glutamic acid, L-histidine

and L-phenylalanine and putrescine. In contrast it also showed the

lowest utilisation levels for other substrates including N-acetyl-D-

galactosamine, and signal values for D-raffinose and L-malic acid

were lower than for other ST131 and non-ST131 isolates. UTI587

showed a lower potential for utilising the following substrates:

dulcitol, glycyl-L-glutamic acid, 3-0-b-d-galacto-pyranosyl and

melibionic acid. Additionally, UTI18 had the lowest signal value

for a-Keto-butyric acid substrate among ST131 isolates. The

Figure 2. Cluster heat map showing the signal values of E. coli ST131 and non-ST131 isolates obtained from 190 biochemical tests
using PM assay, with red showing no utilisation through to green showing high levels of utilisation. A UPGMA dendrogram informed by
the metabolic profile is presented above the heatmap. ST131 strains are represented by red blocks, and non-ST131 strains by blue blocks.
doi:10.1371/journal.pone.0088374.g002

ST131 Biolog comparison
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ST131 CTX-M-15 negative isolate, UTI226, had the highest

metabolic activity among ST131 isolates for pyroglutamic acid,

chondroitin sulfate c, b-cyclodextin, amygadin, gentiobiose and D-

lyxose carbon sources. In contrast it also had the lowest ability to

utilise b-hydroxy-butyric acid compared to other ST131 isolates.

Taken together our data suggests that ESBL gene carriage is not

associated with a specific metabolic activity profile within the

ST131 isolates, and that variation is on a more generic strain to

strain level. With respect to the metabolic activity of non-ST131

isolates, UTI89 exhibited an increased ability to metabolise some

carbon sources compared to other isolates, and was the only isolate

capable of utilising carbon sources such as tyramine, gelatin,

xylitol, G-amino-butyric acid and D,L-octopamine. Additionally,

the signal values of UTI89 were higher than that of other isolates

for D-arabitol, L-arabitol and 3-methyl glucose.

In short, although there are some differences in the metabolic

traits between isolates, these differences are very much strain-

specific and are not detected at a sequence type level. The

generation of a UPGMA dendrogram based on utilisation of

metabolites confirmed this, with the ST131 and non-ST131 strains

equally dispersed throughout the dendrogram, suggesting that

ST131 are not a metabolically distinct group of ExPEC strains.

Principal Component Analysis of Phenotypic Microarray
Data Set Confirms the Non-existence of an ST131
Metabolic Cluster

To further confirm that ST131 are not a metabolically distinct

group of ExPEC strains, we performed principal component

analysis on the phenotypic microarray metabolic profile data set.

The PCA1/PCA2 plot (Figure 3) shows clearly that ST131 isolates

are not grouped based on metabolic properties, but rather are

dispersed throughout the PCA plot amongst the non-ST131

isolates. In conjunction with the heat-map based dendrogram our

data suggests that E. coli ST131 are not a metabolically distinct

clade of ExPEC.

Comparative Genomic Analysis Confirms the Absence of
ST131 Associated Metabolic Loci

Given that the vast majority of the strains analysed by

phenotypic microarray in our study have been genome sequenced

[27,28] we sought to further confirm our metabolism observations

by correlating them to gene presence/absence data at a whole

genome level. We adapted an approach recently used to

successfully identify clade specific metabolic functions in Campylo-

bacter [32] by constructing an ST131 core genome and then

comparing this against the CFT073, UTI89, and P5B genomes

(table 1) using ACT [31], concentrating on genes and operons with

predicted or confirmed metabolic functions.

Our data showed that the vast majority of core ST131 specific

genes, and indeed genes not present in all ST131 were phage,

transposon, and IS associated sequences. With respect to

metabolism we found only 3 clear differences in the idn, ydd, and

asc operons, which we have previously reported [27]. These three

operons are involved in utilisation of two of the five metabolites

(5KG and cellobiose) identified as being under-utilised in ST131

strains by API. The idn operon is a subsidiary pathway for the

gntII gluconate metabolism system, and the ydd A and B genes are

transporters for the gntI gluconate system, whilst the asc operon

encodes a combined arbutin/salicin/cellobiose uptake and

metabolism pathway. Figure 4 shows ACT comparisons of the

three loci from CFT073 and the core ST131 genome. Gene

content differences relating to the other three differential

metabolites could not be found. Therefore our data suggests that

presence or absence of loci does not correlate well with metabolic

profile. This indicates that the subtle differences that have been

observed in metabolism of substrates in ST131 compared to other

ExPEC may not be clearly distinguishable at a genome level and

may be down to discreet mutations in other upstream or

downstream metabolic pathways which then impinge on metab-

olism of the identified differential substrate.

Discussion

Metabolism is an important factor in bacterial colonisation of

any given environment, and in particular of animal and human

hosts. It is suggested that bacteria may need an extensive

metabolic repertoire to accommodate changes in pH and nutrient

availability that result from their transition from the environment

to a within-host niche [33]. Several studies have demonstrated the

role of metabolism in enhancing the colonisation and virulence of

E. coli. For example, the increased capability of the E. coli CFT073

strain to catabolise the amino acid D-serine during UTI can lead

to increased levels of colonisation and virulence gene expression

[34]. Similarly a recent study has shown that enterohaemorrhagic

E. coli (EHEC) uses fucose to modulate its virulence and metabolic

genes [35].

A recent study focussed on the metabolic potential of E. coli

ST131, the most commonly isolated cause of extra-intestinal E. coli

infections world-wide and a recently emerged clone of ExPEC

associated with multi-drug resistance [26]. The study examined

the ability of ST131 drug resistant and sensitive isolates to utilise

47 biochemical substrates in comparison to non-ST131 ExPEC

strains, using the Vitek2 Advanced Expert System for metabolic

profiling. In total 300 UPEC isolates were compared, with the

study concluding that ST131 isolates have higher metabolic

potential in comparison to other ST isolates on the basis of their

ability to utilise more of the substrates than non-ST131 isolates.

The study showed a significant association between ST131 isolates

and utilisation of eight biochemical tests including those for

peptidase, decarboxylase, and alkalinisation activity. Additionally

the study also described a correlation between metabolic activity

and antibiotic susceptibility profiles, with ESBL carrying, multi-

drug resistant isolates showing the highest metabolic potential

[26].

In the study we report here, we tested and compared the

metabolic activity of a collection of extra-intestinal pathogenic E.

coli isolates including ST131 and non-ST131 isolates, employing

another commonly used commercial metabolic profiling system

(Biomerieux, UK). Our data agrees with that of Gibreel et al in

that analysis of a limited number of metabolites can produce

differential profiles for different sequence types. Our study showed

reduced metabolic capacity of ST69 to utilise ODC, and of ST95

to utilise SAC. With respect to ST131 our data showed lower

metabolic activity for five substrates, namely 5-keto-D-gluconate

(5KG), D-ARAbinose (DARA), esculin, cellobiose and dulcitol in

comparison to other major ExPEC STs. Some of these findings

are in direct agreement with the Gibreel study which also

demonstrated a significant negative association between ST69 and

ODC, between ST95 and SAC, and between ST131 and 5KG

[26]. However the major discussion point of the Gibreel study,

that ST131 are more metabolically flexible and ‘‘fit’’ is in

disagreement with the data produced using API biochemical tests.

Of the Vitek positive association tests which also feature in the API

test panel (ODC, bGUR and SAC) none showed higher levels of

metabolism in ST131 isolates compared to non-ST131 ExPEC.

The most likely explanation for this is due to differences in the way

substrate utilisation is measured between the fully automated Vitek

ST131 Biolog comparison
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system and the API test strip method. The validity of this as a

potential explanation for the discrepancy is highlighted by

comparison of our results for dulcitol utilisation in ST131 when

measured by API and by phenotypic microarray. Our phenotypic

microarray data showed very little difference in dulcitol utilisation

between ST131 and other ST isolates, in complete contrast to the

API data. This is almost certainly due to the fact that the PM

plates are used to measure carbon source oxidation and not sugar

fermentation as in the API test [36]. Therefore we suggest that

different utilisation capabilities between strains could be observed

depending on the principle of assay used to determine the

metabolic activity.

Using a total of forty seven biochemical tests on three hundred

isolates the Gibreel study concluded ST131 strains are metabol-

ically more flexible. However our data of one hundred twenty

biochemical tests on fifty isolates is suggestive of ST131 strains

having slightly reduced metabolic potential. In an attempt to

further determine the metabolic profile of ST131 E. coli in

comparison to other ExPEC, we compared ten isolates using

Biolog phenotypic microarray technology, five ST131 and five

non-ST131 ExPEC. Phenotypic microarrays have been utilised to

study the metabolic flexibility of various bacterial species [37] and

provides the highest level of resolution currently available for the

metabolic capacity of cells. Heat map visualisation of our data

indicates there is no distinct metabolic signature for E. coli ST131

and that any differences in metabolic repertoire are at an

individual strain level rather than by sequence type grouping.

This is further supported by a principal component analysis of the

microarray data, showing there is no clustering of ST131 based on

metabolic repertoire. An obvious caveat to our findings is the

limited number of strains examined. However our comparison is

of five ST131 strains, all of which have previously been shown to

Figure 3. Principal component analysis for metabolic profiles obtained from an analysis of the phenotypic microarray data set.
ST131 strains are denoted by red blocks, and non-ST131 strains by blue blocks.
doi:10.1371/journal.pone.0088374.g003

ST131 Biolog comparison
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be genetically homogeneous and phylogenetically clustered with

the EC985 and NA114 genome sequenced strains [27,28].

Therefore if ST131 were a metabolically distinct clade of ExPEC

with enhanced metabolic potential we would expect to see some

form of clustering of our 5 isolates by principal component analysis

of the phenotypic microarray data.

Given that the genome sequences of almost all of the strains

subjected to phenotypic microarray are available we sought to

contextualise our metabolism findings at a whole genome level.

We created an ST131 core genome as previously described by our

group [28] the rationale being that any ST131-discriminating

metabolic repertoire would have an accompanying genetic

signature associated with the ST131 clade. This was then

compared to the genomes of CFT073, UTI89, and P5B. Our

data failed to uncover any substantial differences in the metabolic

gene repertoire of ST131 compared to the three other ExPEC

genomes. However, when we focussed on operons responsible for

the 5 discriminatory tests identified by API (5-keto-D-gluconate

(5KG), D-ARAbinose (DARA), esculin, cellobiose and dulcitol) we

could find genetic deletions that would account for only two of

those phenotypes, in the idn and ydd operons involved in 5KG

metabolism and the asc operon involved in cellobiose uptake. Our

data appears to suggest that differences in metabolic repertoire

between bacteria cannot simply be mapped to genome data and

gene presence or absence. It is likely that small mutations in

pathways complexly linked to the metabolic function observed

could result in knock on effects which would be extremely difficult

to pinpoint and associate with the phenotype under investigation.

In conclusion, it is our opinion that the previous study of E. coli

ST131 metabolism performed by Gibreel et al [26] excellently

identifies metabolic markers which could have enormous impor-

tance in rapid identification or selection of ST131 isolates in

human samples. In our study, we concurred that the use of a

limited number of biochemical tests can produce differential

profiles for different sequence types. Our phenotypic profiling data

supports this as we found clear differences in the metabolic activity

between ST131 and non-ST131 strains for 5 of 120 biochemical

substrates. However, when we comprehensively tested the global

metabolic repertoire of a limited number of E. coli strains using the

phenotypic microarray system, we found no difference in the

overall metabolic fitness between ST131 and non-ST131 isolates.

In addition, comparison of genomic data also suggested very little

difference in the repertoire of metabolic gene loci between ExPEC

sequence types.

The current ST131 literature seems highly confused with

respect to the reasons behind the success of the E. coli ST131

clone. Early PCR based studies attributed this to the combination

of phylogenetic group B2 and the presence of specific virulence

factors such as pathogenicity island marker (malX), outer mem-

brane protein (ompT) and uro-pathogenic specific protein (usp)

being more common among ST131 than in other CTX-M

producing E. coli strains, and suggested that these factors might

play a major role in the worldwide dissemination of ST131 [13].

Another study suggested that the rapid global spread of the CTX-

M-15 producing E. coli might be due to the acquisition of the

IncFII plasmids which are associated with harbouring many

antimicrobial resistance genes [38]. Johnson and colleagues have

Figure 4. ACT comparisons of the (A) idn (B) ydd and (C) asc loci from CFT073 (upper genome) and the core ST131 genome (lower
genome).
doi:10.1371/journal.pone.0088374.g004

ST131 Biolog comparison

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88374



demonstrated that undefined phylogenetic group B2-associated

factors may provide a fitness advantage to ST131 [19], whilst the

recent paper on which our work was based suggested ST131

strains were more metabolically active [26].

Our previous work describing the genetic homogeneity of

ST131 [27] combined with the data presented here provide yet

another confounding hypothesis that E. coli ST131 do not display

altered metabolic fitness to other closely related ExPEC from a

global metabolic and genomic perspective. An obvious caveat to

both our findings and those of Gibreel et al is that different strain

sets have been compared using different methodologies, and

indeed this may be applicable to many of the dichotomous results

in the literature regarding ST131. We propose that a co-ordinated

international effort to fully understand the evolutionary mecha-

nisms behind the emergence of E. coli ST131 is now imperative in

order to combat this most serious of bacterial pandemics, and of

future episodes of novel E. coli lineage emergence.
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