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Abstract

Parkinson’s disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent
worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here,
we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked
alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA
methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor
behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE
network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters,
enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes.
Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with
the epigenetic etiology of PD.

Introduction
Alpha-synuclein (aSyn) plays crucial roles in neurodeve-
lopment, neuronal health, and synaptic transmission (1).
Mutations, multiplications, and single nucleotide poly-
morphisms (SNPs) in SNCA, the gene encoding aSyn,
are associated with Parkinson’s disease (PD), an age-
associated, and therefore increasingly prevalent, neuro-
logical disorder (2,3). SNCA variants have also been linked
to several other neurodegenerative conditions, includ-
ing Lewy body dementia (LBD), multiple system atrophy
(MSA), and Alzheimer’s disease (4,5). The full range of
functions of aSyn are still unclear, as a number of differ-
ent cellular roles have been reported, including SNARE
complex assembly, regulation of neuronal differentia-
tion, glucose level, and dopamine biosynthesis, as well

as modulation of calmodulin activity/G protein-coupled
receptor kinase activity (1). aSyn point mutations can
impair one or several of these processes, and thus disrupt
neuronal health. Interestingly, we recently reported that
nuclear localization and phosphorylation modulate the
pathological effects of aSyn (6). However, the molecular
mechanisms leading to PD may differ according to the
variant. For example, the A30P mutation occurs in the
membrane binding domain of aSyn, which may affect
its ability to act as a presynaptic chaperone and inter-
act with membrane-bound receptors (7). Although A30P
aSyn appears less likely to aggregate than wild-type (WT)
aSyn, this mutation can still result in PD, possibly due
to a loss of aSyn function (7). Conversely, multiplications
of the SNCA gene can lead to excess protein production,
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promoting aggregations and fibrils that impair synaptic
function and can lead to neuronal death (8). Duplications
and triplications of SNCA have been reported in patients
with familial PD, LBD, and MSA (2,4).

Despite progress in the understanding the relations
between aSyn dysfunction and PD, much remains
to be elucidated. For example, although aSyn- and
PD-associated transcriptional deregulation have been
demonstrated in cell culture, animal models, and
human patients, the mechanisms underlying these
transcriptional changes are not yet fully understood
(9–16). As different aSyn mutations can lead to PD
through different mechanisms, it is also important to
understand which aspects of these variants are unique
and which are shared. Studies by our group and others
have shown that expression of WT or A30P mutant
aSyn in human neurons is associated with DNA damage
and transcriptional dysregulation of genes involved in
cell survival and DNA repair, which may be mediated
by altered histone H3 acetylation (9,10). In addition,
altered DNA methylation (DNAm) patterns have been
observed in both the SNCA gene itself and genome-wide
in blood, saliva, and brain of PD patients (17–21). Taken
together, these observations suggest that genome-wide
transcriptional and epigenetic dysregulation may be con-
sequences of aSyn overexpression and could potentially
be involved in PD susceptibility and pathogenesis.

Epigenetic studies of PD provide the opportunity to
assess genetic and environmental influences on disease
risk concurrently (22–28). DNA methylation (DNAm),
which refers to the attachment of a methyl group to DNA
on the 5′ carbon of cytosine, frequently in the context of
cytosine-guanine (CpG) dinucleotides, is a well-studied
epigenetic mark that changes during development and
is influenced by genes and environment (22–25,29,30).
Although DNAm patterns can be unrelated to mRNA
expression patterns or laid down as a consequence of
gene expression, in some cases DNAm can also impact
transcription by altering the ability of transcription
factors to bind to gene regulatory regions, changing
chromosomal interactions, and influencing splicing
(22,29–31). This can alter the regulation of pathways
involved in disease susceptibility (32–34). In addition,
DNAm patterns can be useful as biomarkers of aging,
disease states, or exposures regardless of association
with transcription (35–41).

Although DNAm is influenced by a myriad of factors
that differ between individuals, the existing litera-
ture on DNAm in PD has primarily adopted a case–
control approach (17–21). In addition, the role of DNA
hydroxymethylation (DNAhm), which accounts for up to
40% of all modified cytosines in brain tissue, remains
unclear (42). DNAhm is an oxidized form of DNAm,
and an intermediate of the DNA demethylation process;
however, DNAhm has also been suggested to be a
stable, independent epigenetic mark in the brain (43).
The stability of DNAhm and its ability to influence
transcription by eliminating DNAm–protein interactions,
introducing DNAhm–protein interactions, altering

chromatin state, and altering splicing suggest that it
could impact the etiology of neurological diseases (44,45).
It is important to distinguish DNAhm from DNAm, as
conventional bisulfite conversion techniques measure
both DNAhm and DNAm in one compound signal,
which may bias interpretations (46). DNAhm is stable
in postmortem formalin-fixed tissue, and some initial
studies characterized DNAhm patterns in the brains
of deceased PD patients (47). Bulk DNAhm levels are
unchanged in the cortex, substantia nigra, and brainstem
of PD patients, while DNAhm levels and expression of
TET2, the enzyme that forms this mark, are elevated in
neurons of the prefrontal cortex of PD patients (48,49).
Importantly, DNAm and DNAhm patterns can be influ-
enced by genetics, and genetic alterations at loci, such as
SNCA, influence PD susceptibility, suggesting that it will
be important to incorporate genetic considerations into
future epigenetic studies of PD (50–52). To date, only a few
studies have assessed the impact of genetic background
on DNAm patterns in PD (53–55).

Accounting for the range of genetic, environmental,
and lifestyle factors that can influence DNAm and
DNAhm are major challenges in human epigenetic
studies of PD (22,23,29,50). Furthermore, the use of
postmortem tissue to study PD also typically limits the
analysis to cases of advanced disease. Model systems,
such as rodents or cell culture, can help to address these
issues, providing contexts in which both genetics and
environment can be tightly controlled, and allowing the
examination of early impacts of neurological disease in
the brain.

In this study, we characterized the influence of two
molecularly distinct aSyn variants, WT and A30P aSyn,
on the DNA methylome and hydroxymethylome of
human dopaminergic neurons. We profiled genome-wide
DNAm and DNAhm patterns in three groups of Lund
human mesencephalic (LUHMES) cells differentiated
into dopaminergic neurons: control LUHMES cells,
LUHMES cells overexpressing WT aSyn at levels similar
to those seen in SNCA multiplication carriers (WT aSyn
cells), and LUHMES cells overexpressing A30P aSyn
(A30P aSyn cells). In addition, we integrated our DNAm
and DNAhm data with transcriptomic data from the
same cells, incorporating H3K4me1 ChIP-seq to score
DNA(h)m changes across gene regulatory features (9).
WT and A30P aSyn expression were associated with
thousands of DNA(h)m changes, particularly affecting
genes that regulate locomotor behavior and glutamate
signaling pathways. These observations suggested that
familial PD-associated aSyn mutations have widespread
epigenomic effects, and may contribute to molecular
and transcriptional dysregulation associated with the
etiology and heterogeneity of PD.

Results
aSyn overexpression altered genome-wide
DNAm patterns in dopaminergic neurons
We used differentiated LUHMES cells as a model system
in which to evaluate the epigenome-wide impacts of
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Figure 1. aSyn overexpression was associated with decreased DNAm at the SNCA 5′ UTR. (A) Gene-level SNCA mRNA expression in nRPKM. p-values:
DESeq2 Wald test with Benjamini–Hochberg adjustment. WT aSyn vs. control and A30P aSyn vs. control padj < 2.2 × 10−308. (B) Transcript-level SNCA
mRNA expression in TPM. See Supplementary Material, Table S1 for statistics. (C) Top: hg19 coordinates are shown for the SNCA gene, with Ensembl
transcripts below. Boxes represent exons, lines represent introns. Bottom: DNAm beta values are shown for each sample, colored by genotype. Only EPIC
probes specific to endogenous SNCA are shown. Control cells: n = 7 biological replicates; WT aSyn cells: n = 8; A30P aSyn cells: n = 8. (D) hg19 coordinates,
DNAm beta values, and transcription factor binding sites for the SNCA 5′ UTR/intron 1/TSS upstream region. p-values: limma empirical Bayes moderated
t test with Benjamini–Hochberg adjustment. Bottom: ENCODE transcription factor ChIP-seq clusters.

aSyn expression in dopaminergic neurons. Genome-wide
DNAm and DNAhm were analyzed in the same cells as
used in a previously published transcriptomic analysis by
our group (GSE89115, GSE181126) (9). Previously, we veri-
fied dopaminergic neuronal differentiation in these cells
by immunostaining, which demonstrated the presence
of tyrosine hydroxylase (TH)-positive axonal and den-
dritic networks, as well as endogenous aSyn expression
(Supplementary Material, Fig. S1). Proliferating LUHMES
cells were infected with lentiviral constructs contain-
ing IRES-GFP, WT aSyn-IRES-GFP, or A30P aSyn-IRES-GFP,
and positive clones were selected by fluorescence acti-
vated cell sorting (FACS). As expected, the levels of SNCA
mRNA and aSyn protein expression were higher in WT
aSyn cells and A30P aSyn cells than in control cells, as
determined by RNA-seq (approximately 4-fold in both
genotypes) (Fig. 1A, B, Supplementary Material, Table S1)
and immunoblotting (approximately 6-fold in both geno-
types, see ref. 9). Elevated SNCA mRNA expression was
primarily driven by three transcripts in WT and A30P
aSyn cells (Fig. 1B, Supplementary Material, Table S1).

To investigate the impact of WT and A30P aSyn
expression on genome-wide DNAm patterns, we assessed
DNAm differences between control, WT aSyn, and
A30P aSyn cells at 813589 EPIC probes. An effect size
threshold of |delta beta| ≥ 0.05 was selected to be well
above technical noise (maximum 2.2% RMSE between
technical replicates), and probes were considered to

be statistically significant at a Benjamini–Hochberg
adjusted p (padj) ≤ 0.05, corrected for multiple compar-
isons. First, we examined whether overexpression of aSyn
was associated with reduced DNAm at the first intron
of SNCA, as reported previously in PD patients (20,21).
We expected DNAm to be lower at this region in aSyn-
expressing LUHMES cells as intron 1 has been established
as a putative promoter for SNCA containing GATA
binding sites, and enzymatic removal of DNAm in this
region is associated with increased levels of SNCA mRNA
and protein expression (56,57). In addition, to specifically
examine DNAm levels at the endogenous gene without
confounding by CpGs also located on the transgene, we
removed five CpGs mapping to the cDNA sequence used
in the aSyn constructs (NM_000345) and the remaining
35 SNCA CpGs are shown in Fig. 1C, D. As expected, both
aSyn genotypes had significantly lower levels of DNAm
at several CpGs in the region corresponding to intron 1
for the majority of SNCA transcripts, and upstream of the
transcription start site (TSS) for several other transcripts
(Fig. 1C, D). This region covered binding sites for GATA1,
EZH2, TAL1, and EGR1 (Fig. 1D).

We next assessed genome-wide DNAm changes
induced by overexpression of each aSyn variant. First,
we used a site-specific approach, with linear modeling
applied to all CpGs passing quality control (QC) filters
(Fig. 2, Table 1). In comparison to controls, WT aSyn
cells had 18 521 sites with decreased DNAm and 10 812
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Figure 2. Overexpression of WT and A30P mutant aSyn altered the DNA methylome of dopaminergic neurons. (A) Volcano plots comparing DNAm
patterns between control (n = 7 biological replicates) and WT aSyn (n = 8) LUHMES cells, control and A30P aSyn (n = 8) LUHMES cells, and WT aSyn and
A30P aSyn LUHMES cells. Colored points passed thresholds of delta beta ≥0.05 and padj ≤ 0.05 (limma empirical Bayes moderated t test with Benjamini–
Hochberg adjustment). (B) Number of differentially methylated probes unique to each comparison and probes shared between comparisons (padj < 0.001,
10 000 permutations). (C) Relative enrichment/depletion of differentially methylated sites across genomic contexts, permuted against array background
(10 000 iterations). (D) Relative enrichment/depletion of differentially methylated sites by relation to CpG island, permuted against array background
(10 000 iterations).

sites with increased DNAm (padj ≤ 0.05) (Fig. 2A, Table 1,
Supplementary Material, Table S2). In A30P aSyn cells,
3091 probes had decreased DNAm and 3438 probes
had increased DNAm compared to control cells (Fig. 2A,
Table 1, Supplementary Material, Table S3). In compari-
son to WT aSyn cells, A30P aSyn cells had 3014 sites with
decreased DNAm and 6666 sites with increased DNAm
(Fig. 2A, Supplementary Material, Table S4). DNAm
changes in all comparisons were significantly skewed
in one direction, and the bias in effect direction was seen
across all genomic features (p < 2.2e−16) (Supplementary
Material, Table S5). To confirm an example from our
findings by pyrosequencing, we selected a region of
the TUBA8 gene that included the top two probes with
the greatest changes in DNAm across both genotypes;
differential DNAm at these two positions, one additional
position on the array, and four positions not on the array
were all confirmed (Table 1, Supplementary Material,
Fig. S2, Supplementary Material, Table S5).

The proportion of differentially methylated probes
shared across all comparisons and any two of three

comparisons was greater than expected by chance, and
in most cases, the differences from controls were more
pronounced for WT aSyn cells than for A30P aSyn cells
(padj < 0.001, 10 000 permutations) (Fig. 2B, Table 1). Inter-
estingly, WT and A30P aSyn overexpression primarily
affected CpGs outside of genes and enhancers as defined
by H3K4me1 ChIP-seq (Fig. 2C). However, differentially
methylated probes were enriched in TSS1500 regions
for both genotypes (statistically significant in WT only),
and trends for differentially methylated probe feature
enrichment differed between genotypes for 3′ UTRs and
CpG North Shores (Fig. 2C, D).

Following the investigation of differential DNAm
patterns at individual CpG sites, we additionally exam-
ined genotype-dependent DNAm differences at co-
methylated regions (CMRs) (Supplementary Material,
Fig. S3). CMRs are defined as regions with correlated
DNAm across individuals, and such regional patterns
of DNAm are more likely to be biologically meaningful
than DNAm at single CpGs (58). We defined 57 941
custom DNAm CMRs in LUHMES neurons and applied
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Table 1. Top 5 unique and shared differentially methylated probes for each comparison, ranked by delta beta

Control vs. WT aSyn unique

Chr chr5 chr4 chr7 chr4 chr1

Pos 42 994 123 151 462 241 44 614 305 151 503 546 57 884 286
Probe ID cg14979301 cg09064570 cg05758978 cg22265605 cg01074356
WT aSyn adjusted p-value 2.54e−06 5.36e−07 0.000236254 4.86e−07 0.000191117
WT aSyn delta beta −0.1995039 0.19595166 −0.186602 0.1851907 0.18111904
A30P aSyn adjusted p-value 0.09078044 0.12926655 0.05169001 0.25104086 0.12524333
A30P aSyn delta beta −0.0646483 0.0490894 −0.1084993 0.03763804 0.06857821
Gene LRBA DDX56 LRBA DAB1
Genomic context Body TSS200 Body 5′ UTR
Relation to CpG island N_Shore OpenSea S_Shore N_Shore N_Shelf

Control vs. A30P aSyn unique

Chr chr10 chr22 chr21 chr14 chr1

Pos 131 694 689 45 809 619 44 915 811 65 006 281 245 755 356
Probe ID cg26275858 cg05072848 cg14177086 cg21035222 cg18199753
WT aSyn adjusted p-value 0.914887877 0.006470176 0.265419174 0.008640058 0.065585536
WT aSyn delta beta 0.00315511 0.04852953 −0.0369103 0.04451941 −0.0481363
A30P aSyn adjusted p-value 7.93e−05 1.91e−05 0.002633198 2.86e−07 0.000666635
A30P aSyn delta beta −0.1182818 0.11255114 −0.1123709 0.10928006 −0.1059641
Gene EBF3 SMC1B HSPA2 KIF26B
Genomic context Body TSS200 TSS1500 Body
Relation to CpG island Island Island OpenSea N_Shore S_Shore

Control vs. WT aSyn and Control vs. A30P aSyn shared

Chr chr22 chr22 chr10 chr12 chr22

Pos 18 593 586 18 593 441 94 455 710 12 849 159 18 593 609
Probe ID cg27391512 cg25835669 cg07856667 cg13417420 cg08715837
WT aSyn adjusted p-value 1.69e−08 1.38e−09 2.08e−09 1.17e−07 2.38e−08

WT aSyn delta beta 0.30304448 0.23725831 0.23219774 0.25294376 0.2215025
A30P aSyn adjusted p-value 4.62e−06 1.44e−07 7.46e−07 0.0005165 1.06e−05

A30P aSyn delta beta 0.21622949 0.18841661 0.16977899 0.13573927 0.1532297
Average delta beta 0.25963699 0.21283746 0.20098836 0.19434151 0.1873661
Gene TUBA8 TUBA8 GPR19 TUBA8
Genomic context 5′ UTR TSS200 TSS200 5′ UTR
Relation to CpG island Island Island Island Island Island

linear modeling to the composite beta values calculated
for each CMR, representing a weighted average of
CMR probe DNAm levels. Similar trends were seen in
CMR analysis and site-specific analysis; the number
of DNAm changes was greater in WT aSyn cells vs.
control (3755 CMRs with padj ≤ 0.05 and |delta com-
posite beta| ≥ 0.05) than in either A30P aSyn cells vs.
control (548 CMRs) or A30P aSyn cells vs. WT aSyn
cells (765 CMRs) (Supplementary Material, Fig. S3A, B).
Approximately 40% of the total differentially methylated
probes discovered with the site-specific approach
mapped to CMRs in any comparison, and overlaps
between differentially methylated CMRs and individ-
ual CpGs were more likely than expected by chance
(padj < 0.001, 10 000 permutations) (Supplementary
Material, Fig. S3A). Trends for differential CMR methy-
lation across gene features were also similar to the site-
specific approach (Supplementary Material, Fig. S3C, D).
A CMR covering the SNCA first intron region was included
among the differentially methylated CMRs in the control
vs. WT aSyn and control vs. A30P aSyn comparisons,
passing the composite delta beta cutoff only in WT aSyn
neurons (chr4: 90757139–90 757 814; control vs. WT aSyn

padj = 9.96e−10, delta composite beta = −0.083; control vs.
A30P aSyn padj = 0.0029, delta composite beta = −0.032).

aSyn overexpression altered genome-wide
DNAhm patterns to a lesser extent than DNAm
patterns
After assessing genome-wide DNAm alterations, we
examined differential DNAhm at 233440 sites that
passed our detection threshold of 3.6% (calculated
according to the 95% quantile of negative hydroxymethy-
lation (hmC) values after subtraction; see Methods).
Fewer changes were observed in DNAhm for each
comparison compared to DNAm, most of which were
increases; these increases in DNAhm were significant
when tested for skewness (p < 2.2e−16) (Fig. 3, Table 2,
Supplementary Material, Tables S6, S7). Only one probe
was differentially hydroxymethylated in comparison
between WT aSyn and A30P aSyn cells (cg11833293
in the SHANK2 3′ UTR, padj = 0.045, delta beta = 0.089)
(Fig. 3A, B). The overlaps of 16 CpG sites between control
vs. WT aSyn and control vs. A30P aSyn were not greater
than expected by chance (Fig. 3B, padj > 0.05, 10 000
permutations). Both genotypes also had fewer differen-
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Figure 3. WT and A30P aSyn overexpression were correlated with increased DNAhm levels in dopaminergic neurons. (A) Volcano plots comparing
DNAhm patterns between control (n = 7 biological replicates) and WT aSyn (n = 8) LUHMES cells, control and A30P aSyn (n = 8) LUHMES cells, and
WT aSyn and A30P aSyn LUHMES cells. Colored points passed thresholds of delta beta ≥0.05 and padj ≤ 0.05 (limma empirical Bayes moderated t test
with Benjamini–Hochberg adjustment). (B) Number of differentially hydroxymethylated probes unique to each comparison and probes shared between
comparisons. All padj = 1 (10 000 permutations). (C) Relative enrichment/depletion of differentially hydroxymethylated sites across genomic contexts,
permuted against array background (10 000 iterations). (D) Relative enrichment/depletion of differentially hydroxymethylated sites by relation to CpG
island, permuted against array background (10 000 iterations).

tially hydroxymethylated probes in the first exon than
expected by chance (Fig. 3C).

When defining CMRs in the DNAhm data and applying
linear modeling, we also found greater increases in CMR
DNAhm in control vs. WT aSyn and control vs. A30P aSyn
comparisons (Supplementary Material, Fig. S4). Although
fewer CMRs were found in DNAhm data overall, differ-
entially hydroxymethylated CMRs were also more likely
to overlap with differentially hydroxymethylated CpGs
from site-specific analysis than expected by chance (Sup-
plementary Material, Fig. S4A).

WT and A30P aSyn altered DNAm at locomotor
and glutamate signaling pathway genes
To identify possible functional consequences associated
with the DNAm and DNAhm changes in each genotype,
we performed Gene Ontology (GO) enrichment analysis
on all differentially methylated or hydroxymethylated
genes within each comparison using over-representation
analysis in ermineR (59). Thirty-four GO biological

processes were enriched in differentially methylated
sites shared between the control vs. WT aSyn and control
vs. A30P aSyn comparisons (Fig. 4A, padj < 0.05). A total
of 442 CpG sites were annotated to the top GO term,
‘locomotory behavior,’ and differentially methylated in at
least one genotype (420 sites in WT aSyn cells and 89 sites
in A30P aSyn cells) (Fig. 4B–E). A total of 129 differentially
methylated sites were annotated to the second highest
ranking GO term, ‘glutamate receptor signaling pathway’
(127 sites in WT aSyn cells and 18 sites in A30P aSyn
cells) (Supplementary Material, Fig. S5). No significant
multifunctionality-corrected enrichments were observed
for differentially methylated or hydroxymethylated sites
in any of the other groups.

A subset of WT aSyn-induced DNAm and
DNAhm changes were also observed in WT aSyn
transgenic mice
To assess the relevance of our findings in vivo, the
differential DNA(h)m results from control vs. WT aSyn
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Table 2. Top 5 unique and shared differentially hydroxymethylated probes for each comparison, ranked by delta beta

Control vs. WT aSyn unique

Chr chr11 chr1 chr11 chr5 chr15

Pos 11 959 869 157 010 623 119 191 624 134 825 791 99 329 769
Probe ID cg21029705 cg11184358 cg12762029 cg01889143 cg08307952
WT aSyn adjusted p-value 3.71e−02 1.80e−02 0.009721248 4.94e−02 0.034644699
WT aSyn delta beta −0.100144845 −0.098018504 0.0944902 0.094449407 0.09426821
A30P aSyn adjusted p-value 0.8044695 0.2341719 0.2673974 0.2917405 0.6017781
A30P aSyn delta beta −0.0315162 −0.06167421 0.03536456 0.0533201 0.02102634
Gene USP47 ARHGEF11 MCAM IGF1R
Genomic context Body Body 3′ UTR 5′ UTR
Relation to CpG island OpenSea OpenSea Island Island OpenSea

Control vs. A30P aSyn unique

Chr chr3 chr19 chr6 chr21 chr2

Pos 173 001 443 54 720 832 20 697 104 33 267 395 192 759 994
Probe ID cg03417233 cg12555719 cg25475839 cg04815049 cg14971567
WT aSyn adjusted p-value 0.538342 0.2605252 0.1508893 0.16631 0.4370172
WT aSyn delta beta 0.0383568 0.03308958 0.0366181 0.0432397 0.01959213
A30P aSyn adjusted p-value 4.75e−02 2.44e−02 0.018507248 4.64e−02 0.024865866
A30P aSyn delta beta 0.105273858 0.092858583 0.084182475 0.080982712 0.078224072
Gene RP11-324C10.1 LILRB3 CDKAL1 HUNK AC098617.2
Genomic context 5′ UTR 3′ UTR Body Body 5′ UTR
Relation to CpG island OpenSea OpenSea OpenSea OpenSea OpenSea

Control vs. WT aSyn and Control vs. A30P aSyn shared

Chr chr12 chr16 chr7 chr8 chr7

Pos 56 121 485 24 834 981 1 281 200 108 510 324 158 863 255
Probe ID cg22249612 cg14908168 cg02471897 cg16318522 cg00128168
WT aSyn adjusted p-value 2.23e−02 9.93e−03 1.76e−02 3.76e−02 3.98e−02

WT aSyn delta beta 0.080308633 0.078234846 0.059501066 0.053512554 0.054876613
A30P aSyn adjusted p-value 3.19e−02 3.88e−02 2.32e−02 0.02916036 3.19e−02

A30P aSyn delta beta 0.083408157 0.059676009 0.064654602 0.067996928 0.066623524
Average delta beta 0.08185839 0.06895543 0.06207783 0.06075474 0.06075007
Gene CD63 TNRC6A ANGPT1 VIPR2
Genomic context Body Body TSS200 Body
Relation to CpG island N_Shore OpenSea Island OpenSea OpenSea

LUHMES cells were compared to those in the hippocam-
pus of 12-month-old mice with high-level (sixfold over
normal) expression of WT human aSyn from a BAC con-
struct (14). Hippocampal DNAm and DNAhm levels were
profiled by reduced representation bisulfite sequencing
(RRBS) with the same paired bisulfite and oxidative
bisulfite conversion approach as used for LUHMES cells
(Schaffner et al., manuscript in preparation). At the
DNAm level, 4037 of 8391 differentially methylated genes
in WT aSyn LUHMES cells were also covered in the mouse
RRBS data. Of these, 44 genes were differentially methy-
lated in control vs. WT aSyn mice (padj ≤ 0.05 and |delta
beta| ≥ 0.1, chosen to match the minimum 10× read
coverage filter applied during RRBS QC). The number
of genes differentially methylated within this subset
of 4037 in mice was greater than expected by chance
(padj < 0.001, 10 000 permutations). These included Grm3,
encoding a metabotropic glutamate receptor, as well as
several genes encoding transcriptional regulators, cell
adhesion proteins, glucose and ion transporters, and cell
signaling proteins (Supplementary Material, Table S8). At
the DNAhm level, 50 of 136 differentially methylated
LUHMES cell genes were covered by RRBS, with 9

being differentially hydroxymethylated (greater than
expected by chance, padj < 0.001, 10 000 permutations).
Differentially hydroxymethylated genes in WT aSyn mice
and LUHMES cells had similar functions to differentially
methylated genes, including transcription regulation,
cell adhesion and signaling, as well as a folate transporter
(Slc19a1) and vacuolar ATPase (Atp6v0a1; Supplementary
Material, Table S9).

aSyn impacted epigenetic and transcriptional
regulation of glutamate, NOTCH, insulin, PDGF,
and SHH signaling network genes
We next queried genes and pathways associated with
changes in both the epigenome and the transcriptome
in WT and A30P aSyn LUHMES neurons. These loci rep-
resent candidates where DNAm and/or DNAhm may be
involved in regulation of gene expression, and their iden-
tification is important to understand the molecular eti-
ology of PD. First, we identified CpG sites with alterations
in both DNAm and DNAhm; in both genotypes, there
were more CpGs with changes to both modifications
than expected by chance (109 CpGs in WT aSyn cells, 34
CpGs in A30P aSyn cells, padj < 0.001, 1000 permutations)

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
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Figure 4. Differentially methylated genes in both genotypes were enriched for locomotor behavior and glutamate signaling functions. (A) GO biological
process terms enriched at multifunctionality-corrected, multiple test-corrected hypergeometric p-value (CorrectedMFPvalue) < 0.05 in genes shared
between control (n = 7 biological replicates) vs. WT aSyn (n = 8) and control vs. A30P aSyn (n = 8) DNAm analyses. (B) Heat map showing beta values for all
probes annotated to the ‘locomotory behavior’ pathway and differentially methylated in at least one comparison. Row labels (left to right): probes that
passed significance thresholds (absolute delta beta ≥0.05 and padj ≤ 0.05, limma empirical Bayes moderated t test with Benjamini–Hochberg adjustment)
in control vs. WT aSyn comparison, probes that passed significance thresholds in control vs. A30P aSyn comparison. (C) Representative examples of 353
total locomotory behavior-related CpG sites differentially methylated only in WT aSyn cells (DAB1 padj = 1.91e−4, CRH padj = 9.34e−5). (D) Representative
examples of 22 total locomotory behavior-related CpG sites differentially methylated only in A30P aSyn cells (CYTH2 padj = 1e−5, FXYD1 padj = 0.028). (E)
Representative examples of 67 total locomotory behavior-related CpG sites differentially methylated in both genotypes (PCDH15 WT aSyn padj = 7.8e−6,
PCDH15 A30P aSyn padj = 8.61e−5, PAPP2 WT aSyn padj = 1.68e−9, PAPP2 A30P aSyn padj = 3.55e−7). p-values: limma empirical Bayes moderated t test with
Benjamini–Hochberg adjustment.

(Supplementary Material, Fig. S6). This was likely to be
a biological effect, as DNAhm can be an intermediate
of DNA demethylation; thus, CpG sites with increased
DNAhm are likely to have decreased DNAm (60). Indeed,
all of the CpGs with changes to both DNAm and DNAhm

had opposite effect directions for each modification (Sup-
plementary Material, Fig. S6).

Next, we compared the DNAm and DNAhm hits iden-
tified in this analysis against our previously published
differential expression results from the same cells (863

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
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differentially expressed genes in WT aSyn cells and 1315
genes in A30P aSyn cells, |log2FC| > 0.5 and padj < 0.01;
validated by qPCR, see ref. 9). Of 10 798 genes with
data for all three modifications in WT aSyn cells, seven
showed differential DNAm, DNAhm, and expression,
including an ionotropic glutamate receptor (GRIK2)
(Supplementary Material, Table S10). In A30P cells,
two of 10 831 genes had concurrent changes to these
modifications: TSPEAR (cg04837104 and cg11631644 with
altered DNAm, delta beta = 0.07 and 0.06, padj = 0.006 and
0.003; cg12061357 with altered DNAhm, delta beta = 0.06,
padj = 0.0003; mRNA log2FC = −1.21, padj < 1e−4) and
SGPP2 (cg27350348 with altered DNAm and DNAhm,
DNAm delta beta = −0.06, DNAm padj = 0.02, DNAhm
delta beta = 0.07, DNAhm padj = 0.05; mRNA log2FC = 0.76,
padj < 1e−4). The relations between DNAm, DNAhm, and
expression varied according to the gene and the CpG
site in question (Supplementary Material, Table S10).
For both WT and A30P aSyn LUHMES cells, the overlap
between differentially methylated, hydroxymethylated,
and expressed genes was not greater than expected
by chance (WT padj = 0.431, A30P padj = 0.171, 10 000
permutations).

We additionally employed SMITE, which captures
modules of functionally related genes with changes to
at least one of DNAm, DNAhm, or gene expression in
each comparison (61). We included H3K4me1 ChIP-seq
data from the same LUHMES cells used for DNA(h)m and
mRNA analyses in our SMITE workflow, allowing us to
consider DNAm and DNAhm changes at enhancers in
addition to the default promoter and gene body regions,
and weighted the importance of each modification
(expression: 0.4; DNAm: 0.35; DNAhm: 0.25). Eighteen
modules were identified in WT aSyn cells, encompassing
functions including DNA damage repair, cell cycle
control, neuronal differentiation, chaperone activity, and
cell signaling (insulin, glutamate, and PPAR) (Fig. 5A,
Supplementary Material, Fig. S7). Twenty-four modules
were identified in A30P aSyn cells, which had similar
functions to the WT modules as well as some additional
modules related to the urea cycle, sumoylation, PDGF
signaling, and K+ channel transport (Fig. 5B, Supplemen-
tary Material, Fig. S8). Modules from both comparisons
were primarily driven by gene expression, with some
contributions from DNAm and/or DNAhm (Fig. 5). This
effect was consistent even when DNAm or DNAhm was
weighted higher in the SMITE model (Supplementary
Material, Tables S11, S12).

Glutamate receptor signaling modules discovered
using SMITE had more concurrent changes to DNAm,
DNAhm, and transcription in both genotypes. Two
modules centered around GRIK2 were each significantly
altered in WT and A30P cells, consistent with the
direct comparison of differentially (hydroxy)methylated
versus differentially expressed genes. GRIK2 promoter
DNAm and mRNA levels were negatively correlated in
both genotypes (Fig. 6). Several differentially methylated
GRIK2 promoter CpGs in both genotypes also belonged

to a CMR (chr6: 101846707–101 846 916), which contained
five individually significant CpGs from the control vs.
WT aSyn comparison and one individually significant
CpG from the control vs. A30P aSyn comparison.

Discussion
It is important to elucidate the mechanisms underly-
ing the development and progression of PD in different
individuals to develop preventative strategies and treat-
ments. Here, we explored whether DNAm and DNAhm
contributed to interindividual differences in PD etiol-
ogy among carriers of aSyn variants. We assessed the
impacts of overexpressing WT or A30P aSyn on genome-
wide DNAm and DNAhm patterns in dopaminergic neu-
rons, the primary cell type affected in PD. Our results
showed that overexpressing either aSyn variant induced
thousands of DNAm changes and hundreds of DNAhm
changes in pathways related to PD and neurodegenera-
tion, and that WT aSyn particularly impacted glutamate
receptor signaling genes at both epigenetic and transcrip-
tional levels. The distinct characteristics of each aSyn
protein may explain why both similar and unique effects
on DNA(h)m were observed. This study enhances our
understanding of the wide-ranging genomic impacts of
different aSyn forms and provides further insights into
the possible molecular mechanisms of PD.

The association of aSyn expression with differential
DNAm of genes associated with locomotor behavior
observed here was consistent with previous reports
that aSyn plays a role in dopamine biosynthesis and
that dopaminergic neuron activity has impacts on
locomotor phenotypes (62,63). The altered DNAm,
DNAhm, and expression of neuronal differentiation
genes in both genotypes also agreed with previous
work in SNCA triplication PD patient-derived induced
pluripotent stem cells (iPSCs), which indicated reduced
expression of genes involved in neuronal differentiation
and impaired differentiation capacity associated with
aSyn overexpression (64). Several genes identified in
our SMITE network analysis have altered epigenetic
regulation in the brains of PD patients, including DLG4
(differentially methylated in PD cingulate gyrus) and
MAGI2 (differentially methylated in the frontal cortex
and blood of PD patients, and shows increased H3K27ac
in the prefrontal cortex of PD patients) (13,15,17).
Glutamate signaling pathway genes have also been
implicated in PD, primarily through excessive gluta-
matergic transmission associated with excitotoxicity
in dopaminergic neurons (65). Consistent with these
observations, one of the differentially methylated genes
shared between WT aSyn-expressing LUHMES neurons
and mouse hippocampus was a metabotropic glutamate
receptor, and differentially methylated and hydrox-
ymethylated genes in WT aSyn-expressing mice had
similar functions to genes with differential methylation,
hydroxymethylation, and/or expression in our SMITE
analysis. These observations suggested that although

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
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Figure 5. Modules from SMITE analysis were driven by gene expression, with contributions from DNAm and/or DNAhm. (A) Top: Names and ranks of
18 SMITE modules in control vs. WT aSyn LUHMES cells. Bottom: Distribution of significant (p ≤ 0.05) and non-significant (p > 0.05) SMITE combined
p-values (Fisher’s method) for each score category, across 136 genes with at least one significant category in control vs. WT aSyn analysis. (B) Top: Names
and ranks of 24 SMITE modules in control vs. A30P aSyn LUHMES cells. Bottom: Distribution of significant (p ≤ 0.05) and non-significant (p > 0.05) SMITE
combined p-values (Fisher’s method) for each score category, across 225 genes with at least one significant category in control vs. A30P aSyn analysis.
DNA(h)m data: n = 7 control LUHMES cells and n = 8 WT aSyn and A30P aSyn LUHMES cells, expression data: n = 3/group (9), H3K4me1 ChIP-seq data:
n = 3/group. All samples are distinct biological replicates.

DNAm and DNAhm patterns are highly cell type-specific
and can change with age and environment, some of the
major signaling, transcriptional, and metabolic pathways
altered by aSyn expression in this model are more likely
to have functional relevance across different physiologi-
cal contexts, possibly including the human brain. In addi-
tion, many of the CpGs identified in site-specific differ-
ential (hydroxy)methylation analyses belonged to CMRs,
including SNCA and GRIK2, suggesting that these CpGs
are likely to impact regulation of glutamate receptor
genes and other pathways affected by aSyn as a unit (58).

Ionotropic and metabotropic glutamate receptor
expression are at least in part epigenetically controlled,
as transcription of both receptor types is modulated by
H3K4 methylation across the human lifespan (66). Signal-
ing cascades activated as a result of glutamate receptor
stimulation can also result in gene expression changes,
possibly including expression of glutamate receptor
genes themselves (67). Therefore, it is possible that
aSyn-induced changes in DNAm of the promoters of
glutamate receptor genes may be one mechanism

underlying the regulation of their expression and subse-
quent glutamate release, thus facilitating excitotoxicity.
It is also possible that existing high levels of glutamate
release in the context of aSyn expression resulted in
activation of signaling cascades in this study, which
altered glutamate receptor expression, and DNAm
changes occurred after this expression change. Although
it is not possible to determine which of these scenarios
is true based on our data, this study provided reason-
able support for a role of aSyn-mediated epigenetic
deregulation of glutamate receptor expression, with
potential downstream impacts on synaptic activity
and excitotoxicity. Indeed, preclinical studies have
highlighted glutamate receptors as therapeutic targets
for PD, and regulation of glutamate signaling genes
may be influenced by lifestyle factors, such as dietary
exposure to neurotoxins or tea polyphenols (26,68–70).
Consistent with our findings, aSyn overexpression was
also recently shown to induce glutamate release from
mouse neurons and astrocytes in vitro and in vivo and
to activate glutamate receptors (71). While we did not
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Figure 6. GRIK2 was differentially methylated, hydroxymethylated, and expressed in LUHMES cells overexpressing either WT or A30P aSyn. (A) GRIK2
protein–protein interaction network showing differential DNAm, DNAhm, and expression in control vs. WT aSyn cells for the underlying genes. (B)
GRIK2:DLG3 protein–protein interaction network showing differential DNAm, DNAhm, and expression in control vs. A30P cells for the underlying genes.
(C) Relative expression of GRIK2 mRNA in each genotype, normalized relative to control cells (9). WT aSyn padj = 1.46e−6, A30P aSyn padj = 2.71e−15

(DESeq2 Wald test with Benjamini–Hochberg adjustment). Error bars: SE. (D) Top: UCSC hg19 coordinates are shown, with GRIK2 transcripts below.
Middle: LUHMES cell H3K4me1 consensus peaks are shown in blue. Bottom: DNAm beta values are shown for each sample, colored by genotype. (E)
DNAm at the GRIK2 TSS200 region. (F) DNAhm levels for EPIC array probes across the GRIK2 gene. p-values: limma empirical Bayes moderated t test
with Benjamini–Hochberg adjustment. DNA(h)m data: n = 7 control LUHMES cells and n = 8 WT aSyn and A30P aSyn LUHMES cells, expression data:
n = 3/group (9), H3K4me1 ChIP-seq data: n = 3/group. All samples are distinct biological replicates.

directly examine glutamatergic transmission in this
study, our results provide evidence from an epigenetic
perspective to expand existing research on the role

of glutamate signaling in the etiology and prevention
of PD, and support a potential role for aSyn in this
pathway.
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In addition to these core similarities in the pathways
affected by each aSyn variant, WT and A30P aSyn also
had unique effects on the DNA methylome and hydrox-
ymethylome. Broadly, many more DNAm and DNAhm
changes were seen in WT aSyn cells than in A30P cells in
comparison with controls. This was somewhat surprising
in light of our previous work, which showed greater
effects at the transcriptional level in A30P cells (9). These
differences were unlikely to be related to aSyn protein
levels, as both WT and A30P LUHMES neurons expressed
similar levels of aSyn (9). It was also unexpected that
there were almost no changes to non-CpG methylation
with aSyn overexpression (one differentially methylated
CH probe in WT vs. A30P aSyn cells) (Supplementary
Material, Table S3) despite known enrichment of non-
CpG methylation in neurons (72,73).

Several mechanisms may explain the greater number
of DNAm changes observed in WT aSyn cells than in
A30P aSyn cells. First, DNA damage occurs to a greater
extent in WT aSyn LUHMES neurons than in A30P aSyn
LUHMES neurons, and it is possible that some DNAm
changes in WT aSyn cells are a reflection of this damage
and/or subsequent repair attempts (9,74). Following
DNA damage, protective mechanisms in areas of active
transcription maintain DNA repair and restore epigenetic
modifications, which may also explain why we observed
more DNAm changes in intergenic regions but fewer
in intragenic regions than expected by chance in both
genotypes (74,75). Second, differences in characteristics
of each protein could also explain the greater number of
DNAm alterations in WT cells. WT aSyn could influence
DNAm through various mechanisms, including binding
to membrane-bound G protein-coupled receptors and
initiation of signaling cascades; facilitation of SNARE
complex assembly at presynaptic membranes, which
could allow neurotransmitters to activate signaling
cascades at postsynaptic neurons; and binding to DNA
(6,8,76). The A30P mutation prevents aSyn from binding
to membranes, thus removing some of these avenues of
influence (7). Finally, WT aSyn can sequester Dnmt1 from
the nucleus in mice, resulting in global loss of DNAm
in the brain (77). Differences in DNMT1 sequestration
between aSyn variants could reduce the capacity for
maintenance of DNAm in a nonspecific manner. aSyn
aggregation, which is more likely with the WT protein,
has also been shown to increase this sequestration (77).
Although A30P aSyn is more likely to be localized to
the nucleus than WT aSyn, the ability of A30P aSyn
to sequester Dnmt1 has not been assessed (76–78). In
addition to influencing DNAm loss in WT aSyn cells
and gain in A30P aSyn cells, this potential difference
in nuclear aSyn may also affect the amount of DNAm at
transcription-associated regions due to its ability to bind
DNA (6,76–79).

In contrast to DNAm, the patterns of differential
hydroxymethylation were similar between aSyn geno-
types, and fewer DNAhm changes were seen at our
statistical thresholds. This was expected due to the

fetal origin of the LUHMES cell line (43,80). Some of
these DNAhm patterns in differentiated LUHMES cells
may still be informative for later life stages as certain
genes, particularly cell type-specific genes, retain similar
brain DNAhm signatures through early development
into adulthood (72). The overall increase in DNAhm
with aSyn overexpression observed here was consistent
with previous reports showing that DNAhm levels
are increased in neurons and cerebellar white matter
from PD patients (48,49). The opposite direction of
change for DNAm and DNAhm at the same loci was
also expected, as DNAm must be oxidized for the
formation of DNAhm (60). From the results of this study,
it is not possible to determine whether this DNAhm
was a transient intermediate or represented a stable
epigenetic mark; however, correlating DNAhm patterns
with gene expression levels has been shown to provide
some insight regarding loci where it is associated with
transcription (43).

It is important to understand the interplay between
DNAm, DNAhm, and gene expression to gain insight into
the molecular etiology of PD, and cell culture models,
such as LUHMES cells, provide appropriate platforms for
concurrent multi-omics profiling. The relatively weak
correlations between DNA(h)m changes and expression
changes in this study (< 0.1% of genes in either genotype)
were expected and were consistent with the literature,
where correlations with expression at only 0.6%–15% of
CpG sites in blood and up to 0.3% of CpG sites in brain
have been reported (81–85). Therefore, it was also unsur-
prising that there was no significant enrichment for the
overlap between differentially methylated, differentially
hydroxymethylated, and differentially expressed genes.
However, the few loci where transcriptional changes
were correlated with DNA(h)m changes may still have
either functional relevance for PD or represent potential
biomarkers of neurodegeneration-relevant pathways. For
the subset of genes with changes to both DNAm and
mRNA expression, DNAm changes may have occurred
first, thus impacting expression of disease-relevant
genes, or the reverse may be true, i.e. DNAm changes
may reflect alterations in gene expression (81).

When changes in DNAm precede changes in transcrip-
tion, DNAm may represent a target for modulation of
gene expression to prevent, for example, upregulation
of glutamate signaling genes in individuals with aSyn
multiplications. Indeed, an epigenetic editing approach
using site-directed DNAm via a dCas9-DNMT3A fusion
construct was reported previously to successfully
reduce aSyn levels in SNCA-triplication patient-derived
iPSC dopaminergic neurons, demonstrating therapeutic
possibilities for manipulation of DNAm in modulating
aberrant transcription (86). Conversely, when DNAm
changes follow transcriptional changes, DNAm is more
likely to represent a biomarker of expression.

Finally, DNAm alterations that did not affect gene
expression at this cross-sectional time point may
have an impact on expression at later times or upon

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac104#supplementary-data
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exposure to particular stimuli (87). Further studies
involving exposure of aSyn-expressing neurons to
substances and stimuli relevant to PD risk and/or
neuroprotection may be useful to examine whether
the role of DNA(h)m in the toxicity of aSyn is related
to an influence on the ability of the cell to respond
appropriately to either risk or protective factors for PD.

The assessment of whether changes in DNA(h)m
associated with aSyn overexpression are correlated
with transcriptional changes will provide insights
regarding whether the roles of cytosine modifications
in the toxicity of aSyn are mediated by effects on
gene expression. However, it should be noted that this
study was not designed to elucidate the mechanisms
underlying differential methylation in certain loci in
our aSyn-expressing LUHMES neurons. In the general
context of the complex and multi-layered regulation of
chromatin biology, and given the specific limitations of
existing epigenome-wide association study approaches,
it is only possible to speculate about the pathways and
signals targeting specific CpG loci across the human
genome, including the observed alterations in DNAm
levels at the endogenous SNCA gene itself (33).

This study provided novel insights into the epigenomic
impact of aSyn overexpression and set the stage for
future studies in samples derived from PD patients.
Nevertheless, it should be taken into consideration
that integration of the SNCA transgene occurred at
random positions in the genome in our cells, which
could affect DNAm levels surrounding the integration
positions. To minimize this variability and represent a
range of integration positions, we used eight replicates
of each LUHMES cell genotype and seven replicates
of control LUHMES cells for EPIC array profiling, with
each replicate consisting of a pool of thousands of cells.
Cell culture has also been shown to influence DNAm
(88–90). We reduced the effects of such variability by
using replicates obtained from a range of passages and
culture dishes, and regressed out the effects of passage
before analysis of differential DNA(h)m. In addition, as
expected, determination of DNAhm using a combination
of oxidative bisulfite- and bisulfite-converted samples
introduced technical noise, which prompted us to reduce
the number of sites for DNAhm analysis (91). Finally, the
LUHMES cells used in this study are an approximation
of dopaminergic neurons in the brains of PD patients,
but are subject to the inherent limitations of any in vitro
cellular model. However, LUHMES cells and other tissue
culture models of aSyn overexpression (primarily iPSCs
and neuroblastoma lines) have been used successfully
in previous studies to uncover biochemical mechanisms
of PD, including mitochondrial dysfunction, increased
H3 acetylation, and cell–cell transfer of aSyn protein
(9,92,93). LUHMES cells provide a useful platform in
which to study the biology of aSyn and possibly gain
insight into preclinical stages of PD, prior to aSyn
aggregation and neurotoxicity on a large scale. As aSyn
overexpression has been shown previously to affect

cellular physiology even at the neural precursor stage,
such studies are still valuable (94). In addition, our
LUHMES cells have an advantage over iPSC studies in that
the cells are of neural origin, reducing the potential for
epigenetic changes associated with iPSC reprogramming
(89,90).

Overall, this study demonstrated that WT and A30P
aSyn overexpression each had significant impacts on the
DNA methylome of human dopaminergic neurons, and
that only a small proportion of these DNAm changes
occur concomitantly with DNAhm and changes in
expression of neurodegeneration-related genes. This
study contributes to our understanding of the molecular
genetic etiology of PD and lays groundwork for future
studies to investigate whether epigenetic and transcrip-
tional changes associated with increased expression or
mutations in aSyn may be reversible by modification of
environmental and/or lifestyle factors.

Materials and Methods
Cell culture
LUHMES cells were a kind gift from Prof. Marcel Leist and
were cultured and differentiated as described previously
(9,80,95); the methods below are reproduced from (9)
with permission. Briefly, proliferating cells were cultured
in Advanced Dulbecco’s modified Eagle’s medium/F12
(DMEM/F12, Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with N2 (Gibco), 2 mM l-
glutamine (Gibco), and 40 ng/mL recombinant basic
fibroblast growth factor (bFGF, R&D Systems Inc.,
Minneapolis, MN, USA), in pre-coated flasks (Corning
Inc., Corning, NY, USA) with 50 μg/mL PLO (Sigma-
Aldrich, St. Louis, MO, USA), at 37◦C in a humidified
5% CO2 atmosphere. Differentiation was achieved by
replacing the proliferating medium with DMEM/F12
supplemented with N2 (Gibco), 2 mM l-glutamine
(Gibco), 1 μg/mL tetracycline (Sigma-Aldrich), 1 mM
dibutyryl cAMP (cAMP; Sigma-Aldrich), and 2 ng/mL
recombinant human GDNF (R&D Systems). After 2 days
in culture (pre-differentiation), cells were trypsinized
and seeded into plates pre-coated with 50 μg/mL PLO
and 1 μg/mL fibronectin (Sigma-Aldrich). On day 5 of
differentiation, one third of the culture medium was
replaced with fresh medium. Cells were harvested after
8 days of differentiation.

Generation of aSyn-expressing LUHMES cells
Expression of aSyn in LUHMES cells was achieved
as described previously (9,95); the methods below
are reproduced from (9) with permission. Full-length
human aSyn c-DNA (SNCA, NM_000345) and A30P aSyn
were subcloned into the second-generation bicistronic
lentiviral vector, pWPI (Tronolab, Lausanne, Switzerland),
under the control of the chicken β-actin (CBA) promoter.
All cloned sequences were verified by direct sequencing
(StarSeq, Mainz, Germany). The pWPI lentiviral vector
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containing only the internal ribosomal entry site (IRES)-
green fluorescent protein (GFP) cassette was used as
a positive control for infection in all experiments.
Second-generation lentiviral particles were generated
as described previously (96). Briefly, 293 T cells were
transiently co-transfected with the modified transfer
vector plasmids and second-generation packing sys-
tem (Tronolab). Supernatant was collected 48-h post-
transfection, concentrated by PEG-it Virus Precipitation
Solution (System Biosciences, Palo Alto, CA, USA), and
resuspended in Panserin 402 (Pan-Biotech, Aidenbach,
Germany). Lentiviral vector titers were measured quan-
titatively by qPCR using primer sequences specific
for the woodchuck hepatitis virus post-transcriptional
regulatory element (WPRE), as described previously (97).
To generate cells expressing aSyn, proliferating LUHMES
cells were infected with equimolar amounts of IRES-
GFP and WT aSyn-IRES-GFP or A30P aSyn-IRES-GFP
lentivirus. Cells positive for green fluorescence were
selected by FACS (FACSCalibur; BD Biosciences, Franklin
Lakes, NJ, USA).

Immunocytochemistry
Immunocytochemistry was performed as described pre-
viously (9,95); the methods below are reproduced from
(9) with permission. Cells were grown on coverslips and
fixed at different time points of differentiation with 4%
paraformaldehyde for 40 min at room temperature (RT).
After washing with 1× phosphate buffered saline (PBS),
the cells were permeabilized with 0.5% Triton/PBS for
15 min, and finally blocked with 1.5% normal goat serum
(NGS)/PBS (blocking buffer) for 1 h at RT. Cells were
incubated with anti-aSyn antibody (mouse, 1:1000; BD
Transduction Laboratories, Franklin Lakes, NJ, USA) and
anti-TH antibody (rabbit, 1:1000; Millipore, Billerica, MA,
USA) for 3 h. The cells were then washed with 1× PBS
and probed for 2 h at RT with secondary antibodies
(rabbit or mouse, 1:1000 Alexa 488 and 1:1000 Alexa 555;
Life Technologies, Carlsbad, CA, USA) diluted in blocking
buffer. Finally, the nuclei were stained with DAPI and
mounted with Mowiol (Sigma-Aldrich). The images were
acquired on a Leica 6000B microscope (Leica Microsys-
tems, Wetzlar, Germany).

DNA extraction and bisulfite conversion
Cell pellets were thawed on dry ice and homogenized
with a 20G needle in Qiagen Buffer RLT Plus (Qiagen,
Valencia, CA, USA) with β-mercaptoethanol. DNA extrac-
tions were performed with a Qiagen AllPrep DNA/RNA
Mini Kit in accordance with the manufacturer’s instruc-
tions. DNA quantity and purity were assessed by spec-
trophotometry.

DNA samples of 1.5 μg were split into two equal
aliquots of 750 ng for sodium bisulfite (BS) conversion
or oxidative bisulfite (oxBS) conversion using the NuGEN
TrueMethyl oxBS Module (NuGEN Technologies, San
Carlos, CA, USA). One aliquot per sample was treated
with the oxidation protocol, while the second aliquot

was subjected to mock oxidation. All samples were
then sodium bisulfite converted according to the
manufacturer’s instructions.

DNA methylation and DNA hydroxymethylation
analysis
Aliquots of 750 ng per sample of BS- or oxBS-converted
DNA were run on Infinium HumanMethylationEPIC
(EPIC) BeadChips (Illumina, San Diego, CA, USA) accord-
ing to the manufacturer’s instructions, producing data
for 853 307 CpG and 2880 CNG sites (where N represents
any other nucleotide) (data available at https://www.
ncbi.nlm.nih.gov/geo/ with accession No. GSE181126).
Beta values were generated from raw intensity signals
using GenomeStudio software (Illumina) and exported
into R ver. 3.6 (R Foundation for Statistical Computing,
Vienna, Austria) for data analysis. Filtering was per-
formed to remove 59 internal SNP control probes and
43 254 cross-hybridizing probes (98). The pfilter function
in the wateRmelon package was additionally used to
remove sites with a detection p > 0.05 in 1% of samples
(7685) and sites with a bead count < 3 in 5% of samples
(1626) (98). This left 813 589 EPIC probes in the final
dataset. The dasen function in wateRmelon was used
to normalize the oxBS and BS data separately (99). Batch
effects from chip, position, and passage were removed
using the ComBat function in the SVA package (100).
The hmC values were calculated by subtracting the
normalized oxBS beta values from the normalized BS
beta values. A threshold for hmC detectability (3.6%)
was calculated using the 95% quantile of negative hmC
values generated after subtraction; all probes with a
mean hmC level below this threshold were discarded
(91).

Differential methylation between control (n = 7), WT
aSyn (n = 8), and A30P aSyn (n = 8) cells was calculated
by linear regression using limma with the model
DNA(h)m ∼ Genotype (101). Individual sites were con-
sidered significant at FDR ≤ 0.05 and |delta beta| ≥ 0.05
(calculated by subtracting the mean beta value across
all replicates of the group in question from the reference
group, e.g. WT aSyn beta − Control beta). The skew-
ness.norm.test function from the normtest R package
was used to assess delta beta skewness, with 1000
Monte Carlo simulations (https://cran.r-project.org/web/
packages/normtest/normtest.pdf).

CMRs were defined separately in pre-processed DNAm
and DNAhm data from LUHMES neurons using the
cmr function from the CoMeBack R package with
a maximum distance of 1 kb, minimum Pearson’s
correlation coefficient of 0.4, and minimum of two
CpGs per CMR (58). Composite betas were calculated
with the cmr_comp function, using the default method
(weighted average of the first principal component of
CMR probe DNA(h)m levels). As in site-specific analysis,
linear modeling with limma was applied to the DNAm
and DNAhm composite betas, with one composite beta
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value and one CpG probe ID representing each CMR.
The overlap in differentially (hydroxy)methylated probes
from the CMR and site-specific analyses was permuted
10 000 times by randomly sampling a set of CpG probes
from the preprocessed EPIC DNAm or DNAhm data the
same size as the number of significant site-specific
probes, randomly sampling a set of representative CMR
probes from the DNAm or DNAhm CMRs the same size
as the number of significant CMRs, and calculating how
many iterations had greater or smaller overlap than the
real value.

All code is publicly available at github.com/samschaf/
LUHMES.

Pyrosequencing
1 μL of BS or oxBS-converted DNA per 30-μL reaction was
used to perform PCR with HotStarTaq DNA Polymerase
(Qiagen) for 45 cycles with an annealing temperature of
58◦C. PCR samples were visualized on a 1% agarose gel
post-amplification to ensure integrity.

Pyrosequencing assays were designed with PyroMark®

Assay Design 2.0 software (Qiagen) (Supplementary
Material, Table S5). 10 μL of PCR reaction mixture, 70 μL
of binding buffer, and 12 μL of sequencing reaction
mix per sample were prepared with PyroMark® Gold
Q96 Reagents (Qiagen) according to the manufacturer’s
instructions. Sequencing was performed with the
PyroMark® Q96 ID (Qiagen). Differential DNAm/DNAhm
between groups was assessed by Welch’s two-sample t
test (two-tailed), using the t.test() function in R.

Generation of aSyn-expressing mice and
genome-wide DNAm/DNAhm profiling
Generation of WT aSyn-expressing mice and DNA extrac-
tion were performed as described previously (14). Hip-
pocampal DNA from four WT and four transgenic mice
raised under standard housing conditions to the age of
12 months was profiled by RRBS for genome-wide DNAm
and DNAhm. RRBS libraries were prepared following the
protocol of Gu et al. (102), using 400 ng of genomic DNA
per sample. 0.4 ng of unmethylated phage lambda DNA
per sample was added during the MspI digestion step
as a control for bisulfite conversion efficiency, and MspI
reactions were performed with incubation at 37◦C for
16 h. Digested DNA was end-repaired, and then purified
using AMPure XP magnetic beads (Beckman Coulter Life
Sciences, Fullerton, CA, USA) at 2× concentration, and
0.1 μM methylated adapters (IDT, Coralville, IA, USA)
were used in ligation reactions. Ligated DNA was purified
with 1.5× magnetic beads and quantified using a Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific). Eight
samples per lane were pooled in equimolar fashion, and
each pool was split into two aliquots for oxBS and BS
conversion using the NuGEN TrueMethyl oxBS Module
(NuGEN Technologies). One aliquot was subjected to
oxidation, while the second aliquot was subjected to
mock oxidation; the bisulfite conversion protocol was

then applied to both. Libraries were then amplified by
PCR with Pfu Turbo Cx HotStart DNA polymerase for
14 cycles (Agilent Technologies, Santa Clara, CA, USA).
Size selection (200–550 bp) was performed using a 0.55×
AMPure beads wash (Agencourt Bioscience, Beverly,
MA, USA) followed by two 1.2× washes for cleanup.
The final libraries were eluted in 25 μL of Qiagen EB
Buffer (Qiagen), and quality was assessed by PCR, spec-
trophotometry, fluorometry, and DNA high-sensitivity
chip (Agilent Technologies). 75 bp paired-end sequenc-
ing was conducted with Illumina HiSeq 2500 by the
Michael Smith Genome Sciences Centre (Vancouver, bc,
Canada).

BSMAP was used to align reads to the mm10 and phage
lambda genomes and to calculate methylation ratios
(103). Sequence data was assessed for quality before
and after alignment using FastQC software (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Methylation ratio data was then read into R ver. 3.6.3
and filtered for: a minimum read depth of 10×; a
maximum read depth of the 99.9% quantile of coverage;
and sites covered in all samples. oxBS beta values were
used to represent DNAm, while BS − oxBS values were
used to represent DNAhm, with the 95% quantile of
negative hmC values generated after subtraction used as
a detectability threshold (91). We removed cytosines with
≤ 10% variability between groups to reduce the multiple
testing burden for differential DNA(h)m analysis.

Differential DNA(h)m analysis was conducted with
the betaRegression function from the BiSeq R package,
using beta-binomial regression with the Wald test for
significance (104). The p-values were adjusted for multi-
ple comparisons using the Benjamini–Hochberg method.
Cytosines were considered differentially methylated at
padj ≤ 0.05 and |delta beta| ≥ 0.1.

To determine whether more genes differentially
methylated in WT aSyn-expressing LUHMES neu-
rons were also differentially methylated in mice than
expected by chance, we first subset the RRBS data to
genes differentially methylated in LUHMES cells. We
considered the ‘hit list’ of differentially methylated
cytosines in mice as the number of cytosines within this
subset passing padj ≤ 0.05 and |delta beta| ≥ 0.1. Next,
we randomly selected a set of cytosines the same size
as this ‘hit list’ from the subsetted RRBS background,
and determined the genes to which they mapped. The
number of differentially methylated genes in the random
selection was compared to the number of differentially
methylated genes in the ‘hit list.’ This process was
repeated 10 000 times in each of the DNAm and DNAhm
datasets. Enrichment and depletion p-values were
calculated by dividing the number of iterations with
more or fewer differentially methylated genes than the
real number by the number of permutations.

Gene ontology enrichment
Genes were assigned to CpGs if they belonged to the
longest UCSC RefGene transcript annotated to each
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site, resulting in 30 325 unique coding and non-coding
gene annotations for the DNAm dataset and 23 190
unique gene annotations for the DNAhm dataset. Gene
Ontology enrichment analysis was performed with the
over-representation (ORA) method in ermineR 1.0.1.9,
using differentially methylated genes identified with the
effect size and significance thresholds described above
as input (59). Genes that were differentially methylated
or hydroxymethylated in both WT aSyn and A30P aSyn
cells in either direction were removed from the input list
and analyzed separately. All code is publicly available at
github.com/samschaf/LUHMES.

RNA sequencing and differential expression
analysis
RNA-seq of LUHMES cells used for multi-omic integra-
tion analysis in this study was described previously
(9,95) (data available at https://www.ncbi.nlm.nih.gov/
geo/ with accession No. GSE89115); the methods below
are reproduced from (9) with permission. Total RNA from
differentiated LUHMES cells was extracted and purified
using an RNeasy mini kit (Qiagen) in accordance with the
manufacturer’s instructions. Three biological replicates
were used for RNA-seq experiments. Sequencing and
RNA quality analyses were performed as described
previously (105). Briefly, RNA quality was assessed using
RNA 6000 Nano chips run on a 2100 Bioanalyzer (Agilent
Technologies). Libraries were prepared using a TruSeq
RNA Sample Preparation v2 kit (Illumina). The library
quality was checked using High-Sensitivity DNA chips
on a Bioanalyzer (Agilent Technologies). The sample
concentration was measured with a Qubit dsDNA HS
Assay Kit and adjusted to 2 nM before sequencing
(50 bp) on a HiSeq 2000 sequencing system (Illumina)
in accordance with the manufacturer’s instructions.

Differential gene expression analysis was performed
as described previously (105). Briefly, RNA-seq data were
aligned to the genome using STAR with the default
options, which generated mapping files (BAM format).
Differential expression read counts were generated
using featureCounts, and samples were compared for
differential expression using DESeq2 (106,107). Genes
with p ≤ 0.05 and mean read count ≥10 were considered
to be differentially expressed.

Transcript-level analysis of SNCA mRNA was per-
formed with Salmon v1.6.0 and the hsapiens gentrome
(genome + transcriptome) derived from Gencode v39
using the following parameters: —numGibbsSamples
20 —seqBias —gcBias —validateMappings (108). Scaling
abundances to final values was done in R with tximeta
v1.10.0 (109). Differential expression of transcripts was
calculated with the fishpond R package (110).

Chromatin immunoprecipitation sequencing
(ChIP-seq)
Chromatin and DNA were cross-linked by adding
formaldehyde to the culture dish to a final concentration
of 1% and incubating for 10 min at 25◦C. The cross-linking

reaction was quenched with glycine at a final concentra-
tion of 0.125 M at 25◦C. Cells were then collected, washed
with cold PBS, and pelleted by centrifugation at 900 rcf
for 5 min at 4◦C. Cell pellets were resuspended in RIPA
SDS buffer (140 mM NaCl, 1 mM EDTA at pH 8.0, 1%
Triton X-100, 0.1% sodium deoxycholate, 10 mM Tris-Cl
at pH 8.0, 1% SDS) supplemented with Roche complete
protease inhibitors, incubated at 4◦C for 10 min, and then
used for shearing in Covaris® instrument. The sheared
chromatin was cleared by centrifugation at 16000 rcf
for 5 min and an aliquot was used to check DNA size
on an Agilent 2100 Bioanalyzer (Agilent Technologies).
Immunoprecipitation was performed when DNA was
sheared to fragments of 150–300 bp.

For chromatin immunoprecipitation (ChIP), samples
were diluted 10× in IP buffer (150 mM NaCl, 1% NP-
40, 0.5% sodium deoxycholate, 50 mM Tris–HCl, pH 8.0,
2 mM EDTA) supplemented with Roche complete pro-
tease inhibitors (Roche, Basel, Switzerland), pre-cleared
with protein A magnetic beads (Dynabeads; Invitrogen,
Carlsbad, CA, USA) for 1 h at 4◦C, and then used for
immunoprecipitation with histone modification-specific
ChIP-grade antibody (anti H3 monomethyl K4 antibody,
ab8895; Abcam, Cambridge, UK). After overnight incuba-
tion at 4◦C, protein A magnetic beads were added and
incubated for 2 h at 4◦C. Beads were then washed twice
with cold IP buffer with 0.1% SDS and protease inhibitors,
3× with wash buffer (100 mM Tris–HCl, pH 8.0, 500 mM
LiCl, 1% v/v NP-40, 1% w/v sodium deoxycholate, 2 mM
EDTA), and 2× with TE. After the last wash, supernatant
was removed and beads were resuspended in 1 mM Tris
(pH 8.0) and RNase A (0.1 μg/μL), and incubated 30 min at
37◦C. To reverse the cross-linking, beads were incubated
overnight at 65◦C in 100 mM Tris–HCl (pH 8.0), 20 mM
EDTA, 2% SDS, and proteinase K (0.5 μg/μL). The DNA was
purified with SureClean (Bioline, Taunton, MA, USA) and
DNA concentration was measured with a Qubit dsDNA
HS Assay Kit (Thermo Fisher Scientific).

Libraries were generated with 3 ng of ChIPed DNA
using a NEBNext Ultra II DNA Library Prep Kit for
Illumina (New England Biolabs, Ipswich, MA, USA), size
was determined with Agilent Bioanalyzer DNA high-
sensitivity (Agilent Technologies), and sequencing was
performed on an Illumina NovaSeq 6000 instrument
(Illumina) according to the manufacturer’s instructions.
Read quality of ChIP-seq data was assessed using FastQC
(v0.11.5) and reads were aligned to the human genome
version 38 using Bowtie2 (v2.0.2) (https://www.bioin
formatics.babraham.ac.uk/projects/fastqc/, 111). MACS2
(v2.1.2) was used to call broad peaks from BAM
files (112).

Multi-omic integration
The overlap between differentially methylated, hydrox-
ymethylated, and expressed genes in each comparison
was permuted 10 000 times to test whether it was greater
or smaller than expected by chance. For this purpose,
a set of EPIC probes from the preprocessed DNAm data
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the same size as the number of differentially methylated
probes was randomly selected, a set of EPIC probes from
the preprocessed DNAhm data the same size as the
number of differentially hydroxymethylated probes was
randomly selected, and a set of genes from the RNA-
seq data the same size as the number of differentially
expressed genes was randomly selected. The gene-level
overlap between randomly sampled DNAm, DNAhm, and
RNA-seq data was then calculated, and this number was
compared to the real number to calculate enrichment
and depletion p-values.

DNAm, DNAhm, and RNA-seq data were also inte-
grated using SMITE in R ver. 3.6, with adjusted p-values
as significance input, delta betas as effect size input
for DNAm and DNAhm, and log2FC values as effect
size input for RNA-seq (62). Genomic regions were
split into enhancers (± 5000 bp from H3K4me1 ChIP-
seq peaks), promoters (± 1000 bp from TSS), and gene
bodies (remaining regions). DNAm and DNAhm p-values
were weighted across genomic regions according to
their significance using Stouffer’s method, creating a
combined p-value for each region. The p-values from all
modifications were then used to create weighted gene-
level scores, with application of the following weights:
expression, 0.4; enhancer DNAm, 0.125; promoter
DNAm, 0.125; body DNAm, 0.1; enhancer DNAhm,
0.125; promoter DNAhm, 0.125; body DNAhm, 0.1.
Weights were chosen to return modules likely to contain
differentially expressed genes, with equal probability of
contribution from differential DNAm and/or differential
DNAhm (total weight of 0.25 for each methylation
type). Enhancers and promoters were weighted slightly
higher than gene bodies due to the higher likelihood
that DNAm at these regions would influence gene
expression. Alternative SMITE models with equal weights
for each modification, DNAm weighted highest, DNAhm
weighted highest, or DNAm and expression weighted
higher than DNAhm were also tested, and produced
overall similar results (Supplementary Material, Tables
S11, S12). Scores were annotated to a REACTOME protein–
protein interaction network, and a spin-glass algorithm
was used to identify modules that had altered DNAm,
DNAhm, and expression for each comparison. All code is
publicly available at github.com/samschaf/LUHMES.

Supplementary Material
Supplementary Material is available at HMG online.
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