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ABSTRACT
Background  In spirometry, the area under expiratory 
flow-volume curve (AEX-FV) was found to perform well 
in diagnosing and stratifying physiologic impairments, 
potentially lessening the need for complex lung volume 
testing. Expanding on prior work, this study assesses the 
accuracy and the utility of several models of estimating 
AEX-FV based on forced vital capacity (FVC) and several 
instantaneous flows. These models could be incorporated 
in regular spirometry reports, especially when actual AEX-
FV measurements are not available.
Methods  We analysed 4845 normal spirometry tests, 
performed on 3634 non-smoking subjects without known 
respiratory disease or complaints. Estimated AEX-FV was 
computed based on FVC and several flows: peak expiratory 
flow, isovolumic forced expiratory flow at 25%, 50% and 
75% of FVC (FEF25, FEF50 and FEF75, respectively). The 
estimations were based on simple regression with and 
without interactions, by optimised regression models and 
by a deep learning algorithm that predicted the response 
surface of AEX-FV without interference from any predictor 
collinearities or normality assumption violations.
Results  Median/IQR of actual square root of AEX-FV was 
3.8/3.1–4.5 L2/s. The per cent of variance (R2) explained by 
the models selected was very high (>0.990), the effect of 
collinearities was negligible and the use of deep learning 
algorithms likely unnecessary for regular or routine 
pulmonary function testing laboratory usage.
Conclusions  In the absence of actual AEX-FV, a simple 
regression model without interactions between predictors 
or use of optimisation techniques can provide a reasonable 
estimation for clinical practice, thus making AEX-FV an 
easily available additional tool for interpreting spirometry.

INTRODUCTION
Interpretation of spirometry relies on visual 
pattern recognition and on quantitative 
comparisons between measured flows and 
volumes versus predicted reference values 
derived in healthy subjects from similar popu-
lations.1–3 Previous studies described the diag-
nostic utility of a global spirometric param-
eter called area under expiratory flow-volume 
curve (AEX or AEX-FV)4–9 for characterising 

pulmonary function test (PFT) impairments, 
potentially lessening the need to perform 
lung volume testing by body plethysmog-
raphy or other complex methods. The meas-
urement was found to be particularly useful 
in separating traditional patterns of normal 
function, obstruction, restriction, mixed 
ventilatory defects and small airway disease, 
in further refining the response to broncho-
dilators, as well as in stratifying the severity of 

Key messages

What is the key question?
►► Area under expiratory flow-volume loop (AEX or 
AEX-FV) is a spirometric measurement that could 
differentiate between functional impairments and 
patterns. How can we derive AEX-FV based on avail-
able volumes and flows and make it widely available 
for clinical practice?

Why read on?
►► Different AEX approximations can be derived using 
the trapezoid-and-triangle segmentation method, 
and based on forced vital capacity (FVC), peak ex-
piratory flow (PEF) and several instantaneous isovo-
lumic flows. One estimation is based on FVC, PEF, 
forced expiratory flow at 25% (FEF

25), FEF50, FEF75 
and forced expiratory volume at PEF (FEVPEF) (the 
latter not often reported or used in spirometry). We 
developed here several predictive models for AEX-FV 
based only on FVC, PEF, FEF

25, FEF50 and FEF75.

What is the bottom line?
►► Whenever actual AEX-FV is not available, estimated 
AEX-FV could be computed easily and included in 
the standard spirometry reports, providing addition-
al value for diagnosis and severity stratification of 
functional impairments. A simple linear regression 
model for estimating AEX-FV that does not include 
FEV

PEF was found to be highly performing and ade-
quate for clinical practice. Due to their higher preci-
sion, deep learning models could be used in more 
advanced epidemiological or research studies.
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these impairments, including the possibility to use it as a 
surrogate marker and severity grading system for airway 
hyperinflation.4–9

While AEX-FV represents the integral function of 
airflow by expired volume (an easily available measure-
ment in digital spirometry), it is currently made available 
in the interpretative reports by only one PFT equipment 
vendor. To overcome this limitation, in previous work 
we approximated the AEX-FV from forced vital capacity 
(FVC), peak expiratory flow (PEF), forced expiratory 
volume at PEF (FEVPEF) and several instantaneous isovo-
lumic flows, that is, forced expiratory flows at 25%, 50% 
and 75% of FVC (FEF25, FEF50 and FEF75, respectively).10 
However, the triangle-and-trapezoid segmentation 
method for approximating AEX-FV could lead to either 
overestimation (one example in figure 1A) or underesti-
mation (eg, figure 1B) of the actual measurement, which 
may affect its diagnostic and prognostic value. Further, 
the FEVPEF is rarely included in the standard spirometry 
reports, hence not easily available in simple equations 
such as the ones used for AEX1-4 (the AEX-FV approxi-
mations based on 1–4 flows, that is, PEF, FEF25, FEF50 and 
FEF75).11

In the current study, we aim to compute the AEX-FV by 
using various predictive models that consider only widely 
available parameters such as FVC, PEF, FEF25, FEF50 and 
FEF75, effectively searching for an optimised combination 
of coefficients for the predictive variables, so that AEX 
can become a standard reported parameter in spirometry.

METHODS
Analyses were performed on a dataset of 4980 normal 
spirometry tests including AEX-FV values, done in the 
Cleveland Clinic PFT Laboratories between 2 April 2019 
and 17 August 2020. The spirometry tests were performed 
on 3634 distinct, consecutive adult non-smoking subjects 

without any known lung disease or reported respiratory 
symptoms. In 135 of these ‘normal’ tests, the best FVC, 
FEV in 1 s (FEV1), FEV1/FVC or ‘distal’ flow FEF75 were 
below the lower limits of normal, as defined by Global 
Lung Initiative (GLI) equations,2 12 so they were excluded 
from further analyses even if they represented normal, 
isolated or ‘non-specific’ reductions in one of these func-
tional parameters13; this exclusion led to a total number 
of normal spirometry tests analysed of 4845.

Spirometry was performed and interpreted according to 
the current American Thoracic Society/European Respi-
ratory Society standards and recommendations.1 14–16 
The tests were performed using Jaeger Master Lab Pro 
systems (Wurzberg, Germany). The most recent, compre-
hensive and applicable reference values, as published by 
the GLI were used for spirometry interpretation.2 12

Statistical analyses were done in JMP Pro V.15 (SAS Insti-
tute). Descriptive statistical analysis of available variables 
was performed. Categorical variables were presented as 
frequencies or group percentages. Continuous variables 
were characterised as mean±SD (for normally distrib-
uted variables) or as median and 25–75th IQR (for non-
normal distributions, as determined by the Shapiro-Wilk 
or Anderson-Darling test). Student’s t test and analysis 
of variance were used to compare mean values, while 
categorical variables were compared using variations of 
the χ2 test. The Tukey-Kramer honest significant differ-
ences method was used to compare means among pairs 
when the variances were similar, while the Wilcoxon or 
Kruskal-Wallis rank sum tests were performed as non-
parametric methods when variances were unequal, as 
appropriate.

In a prior publication,10 we defined AEX-FV4 (also 
called AEX4) by the triangle-and-trapezoid method of 
segmentation of AEX-FV, and we used for computations 
the following formula:

Figure 1  Two examples of how AEX-FV4 reconstruction or approximation by the triangle-and-trapezoid method using PEF, 
FEF25, FEF50 and FEF75 could overestimate (A) or underestimate (B) the actual AEX-FV. AEX-FV, area under expiratory flow-
volume curve; FVC, forced vital capacity; FEF25, FEF50 and FEF75, forced expiratory flows at 25%, 50% and 75%; PEF, peak 
expiratory flow.
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AEX-FV4 = 0.5·FEVPEF·PEF + 0.5·(PEF + FEF25)·(¼·FVC 
- FEVPEF) + 0.5·(FEF25 + FEF50)·¼·FVC + 0.5·(FEF50 + 
FEF75)·¼·FVC + 0.5·FEF75·¼·FVC

In the current investigation, instead of using the 
above coefficients (1 or 0.5), we aimed: (1) to identify a 
combination of coefficients which ‘smooth’ (reduce or 
augment) the contributions of various flows, and (2) not 
to rely on FEVPEF, a spirometric variable not often used or 
included in the standard PFT reports.

The simple linear and generalised (optimised) regres-
sion models used the following pool of variables: FEV, 
PEF, forced expiratory time (FET), FEF25, FEF50 and 
FEF75 to predict square root of AEX-FV (Sqrt AEX-FV, a 
transformation that lead to a near-normal distribution, 
figure  2).17 18 Generalised regression was performed 
using optimisation techniques such as ridge regression, 
lasso, elastic net and double lasso, with and without adap-
tive features. The variables that contributed by <10% to 
a model (eg, FET) were pruned out from the models; 
for this, we used k nearest neighbours’ method of depen-
dent variables resampling in JMP. Similarly, interactions 
that contributed by <5% of the model’s variance were 
not included in the linear regression models, even if 
statistically significant (ie, a false discovery rate or FDR 
<0.001). A random 70/30 partition was generated for 

cross-validation of all the models. Statistical significance 
was defined as p<0.001.

Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of our 
research.

Patient and public involvement statement: patients and 
public were not involved in the design, conduct or anal-
yses of the study results.

RESULTS
From the total of 4845 normal, best-value spirometry sets 
performed on 3634 distinct participants (83% men), 
2475 (51%) were coded as ‘single’ tests, 1250 (26%) as 
pre-bronchodilator and 1120 (23%) as postbronchodi-
lator tests. In order to avoid weighing due to multiple 
tests performed in the same subjects, and to assess the 
potential impact of bronchodilator administration, 
we used for models’ development and validation one 
random spirometry set from each of the 3634 tested 
subjects. Approximately 71% of the tested individuals 
were self-identified as white, 17% as black, 0.6% North-
East Asians, 0.4% South-East Asians and 11% as other or 
multiracial. The median age (IQR) was 60 (47–70) years. 
Median (IQR) height, weight and body mass index were 

Figure 2  Distribution of the variable square root of AEX-FV (Sqrt AEX-FV) illustrated as a shadowgram and main quantiles; 
estimates of the distribution and dispersion, and the PP plot for a normal distribution fit. Which shows the relationship 
between the empirical cumulative distribution function (CDF) and the fitted CDF obtained using the estimated parameters. 
AEX-FV, area under expiratory flow-volume curve; PP plot, percentile-percentile plot.
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1.74 (1.68–1.80) m, 88 (77–102) kg and 29 (26–34) m/
kg2, respectively. All tests had available, actual AEX-FV 
measurements, as provided by the spirometry testing 
equipment vendor. Mean (µ) Sqrt AEX-FV was 3.81 (95% 
CI or CI 3.78 to 3.84), and the standard deviation (σ) was 
0.97 (95% CI 0.95 to 0.97) L2/s. Median/IQR of actual 
Sqrt AEX-FV was 3.79/3.12–4.49 L2/s. Mean (µ, 95% CI)/
SD (σ, 95% CI) of Sqrt AEX-FV was 3.89 (3.85–3.92)/0.90 
(0.88–0.90) in ‘single’ tests, 3.64 (3.57–3.72)/1.01 (0.96–
1.02) and 3.84 (3.74–3.93)/1.06 (1.00–1.07) L2/s, in 
prebronchodilator and postbronchodilator tests, respec-
tively. By gender, mean (µ, 95% CI)/SD (σ, 95% CI) Sqrt 
AEX-FV was 2.76 (2.72–2.80)/0.65 (0.61–0.65) in women 
and 4.09 (4.06–4.11)/0.85 (0.83–0.85) L2/s in men.

Table  1 and online supplemental figure S1 show the 
linear regression model that predicts Sqrt AEX-FV 
using FVC, PEF, FEF25, FEF50 and FEF75 and assuming 

no interactions between the X factors. All five variables 
performed well in univariate and multivariate models 
with significance levels<0.0001, and contributed between 
16% and 24% in predicting the Y variable Sqrt AEX. 
While the variance inflation factor was generally lower 
than 10, one of the assumptions of the regression model 
was violated, that is, that of normal distribution of the 
predictors, and their distribution did not ‘normalise’ 
with any of the usual transformations. In both testing 
and validation sets, the percentage of variance explained 
by the model (R2) was very high, 0.993. While some of 
the interactions between these factors were statistically 
significant (table  2), their main effects were very small 
and the overall R2 remained <0.995, pointing towards 
the fact that more complex models that include inter-
actions are not necessary (despite collinearities), as the 

Table 1  Simple linear regression model without interactions for predicting square root AEX-FV

Term Estimate SE T ratio Prob >|T| VIF Main effect R2 RASE

Intercept −0.070 0.007 −10.027 <0.0001 – – T: 0.993  �
T: 0.078FVC 0.501 0.002 218.464 <0.0001 2.48 0.24

PEF 0.062 0.002 37.790 <0.0001 5.24 0.21

FEF25 0.097 0.002 51.527 <0.0001 5.88 0.20 V: 0.993 V: 0.077

FEF50 0.118 0.002 47.515 <0.0001 4.98 0.19

FEF75 0.168 0.005 35.138 <0.0001 3.19 0.16

In both training (T, n=2577) and validation (V, n=1057) sets, model’s R2 was 0.993 and RASE was 0.078–0.077.
AEX-FV, area under expiratory flow-volume curve; FEF25, forced expiratory flow at 25%; FVC, forced vital capacity; PEF, peak expiratory flow; 
RASE, root average square error; VIF, variance inflation factor.

Table 2  Linear regression model with interactions for predicting square root AEX-FV

Term Estimate Std error T ratio Prob >|T| VIF Main effect R2 RASE

Intercept −0.084 0.007 −11.598 <0.0001 – – T: 0.994 T: 0.074

FVC 0.497 0.002 220.145 <0.0001 2.63 0.24

PEF 0.065 0.002 37.790 <0.0001 6.33 0.20

FEF25 0.096 0.002 47.751 <0.0001 7.41 0.20

FEF50 0.118 0.003 45.661 <0.0001 5.90 0.19

FEF75 0.182 0.005 33.196 <0.0001 4.57 0.16

(PEF-8.75238)·(FEF25-7.10942) −0.003 0.001 −5.385 <0.0001 5.40

(PEF-8.75238)·(FVC-4.11503) −0.002 0.002 −1.448 0.1476 6.74 V: 0.994 V: 0.075

(PEF-8.75238)·(FEF50-3.71047) −0.006 0.002 −2.660 0.0079 22.28

(PEF-8.75238)·(FEF75-1.0233) 0.014 0.005 2.870 0.0041 17.35

(FEF25-7.10942)·(FVC-4.11503) 0.012 0.002 5.441 <0.0001 12.33

(FEF25-7.10942)·(FEF50-3.71047) 0.002 0.002 1.148 0.2510 16.86

(FEF25-7.10942)·(FEF75-1.0233) −0.004 0.005 −0.754 0.4506 20.73

(FVC-4.11503)·(FEF50-3.71047) 0.014 0.003 4.513 <0.0001 11.07

(FVC-4.11503)·(FEF75-1.0233) −0.021 0.005 −3.875 0.0001 6.57

(FEF50-3.71047)·(FEF75-1.0233) −0.019 0.003 −6.096 <0.0001 5.39

In both training (T, n=2577) and validation (V, n=1057) sets, model’s R2 was ~0.994 and RASE was 0.074–0.075.
AEX-FV, area under expiratory flow-volume curve; FEF25, forced expiratory flow at 25%; FVC, forced vital capacity; PEF, peak expiratory flow; 
RASE, root average square error; VIF, variance inflation factor.

https://dx.doi.org/10.1136/bmjresp-2021-000925
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model’s performance remains high (similar dispersion as 
expressed by the root average square error between 0.074 
and 0.075).

Further attempts to improve the models’ performance 
by using various response variable distributions (eg, 
gamma or lognormal transformations) and using optimi-
sation (generalised regression) techniques such as ridge 
regression, elastic net, lasso and double lasso, with or 
without adaptive features, did not lead to major improve-
ments in generalised R2 of the validation set (table 3).

To counteract the issue of non-normal distributions 
and collinearities between variables (assumed by default 
in regression to be completely independent), we also 

developed a neural network model using the same vari-
ables (figure 3A–C). We ran several neural network archi-
tectures, and the optimised, fastest models were based on 
a deep learning architecture with one output (Sqrt AEX-
FV, maintained as transformed for purpose of compa-
rability with the other models), same five inputs (PEF, 
FVC, FEF25, FEF50 and FEF75) and two hidden layers, 
each with three sigmoid [(e2x-1)/(e2x+1)], 3 gaussian 
(1/ex·x) and three linear activation function nodes. We 
used transformed covariates (with either Johnson Su or 
Johnson Sb distributions), a robust fit method that uses 
absolute deviations instead of least squares (in order 
to minimise the effects of outliers), 10 additional tours 

Table 3  Model Comparisons between linear regression (standard least squares) and various techniques of optimisation 
(generalised regression) for predicting square root AEX-FV

Response 
distribution Estimation method AICc BIC

Generalised 
R2 (T)

Generalised 
R2 (V)

RASE 
(T)

RASE 
(V)

Lambda 
(penalty, 
T)

Normal Standard Least 
Squares

−5843.0 −5802.1 0.993 0.993 0.078 0.077 –

Normal Ridge −5843.0 −5802.1 0.993 0.993 0.078 0.077 0.000

Normal Lasso −5841.8 −5800.9 0.993 0.993 0.078 0.077 0.071

Normal Adaptive Lasso −5843.0 −5802.1 0.993 0.993 0.078 0.077 0.000

Normal Elastic Net −5842.2 −5801.3 0.993 0.993 0.078 0.077 0.050

Normal Adaptive Elastic Net −5843.0 −5802.1 0.993 0.993 0.078 0.077 0.000

Normal Double Lasso −5841.8 −5800.9 0.993 0.993 0.078 0.077 0.071

Normal Adaptive Double 
Lasso

−5843.0 −5802.1 0.993 0.993 0.078 0.077 0.000

Gamma Maximum 
Likelihood

−1812.5 −1771.5 0.969 0.968 – – –

Gamma Ridge −1793.6 −1752.7 0.969 0.969 – – 10.708

Gamma Lasso −1808.3 −1767.4 0.969 0.968 – – 38.550

Gamma Adaptive Lasso −1812.5 −1771.5 0.969 0.968 – – 0.000

Gamma Elastic Net −1807.2 −1766.3 0.969 0.968 – – 42.452

Gamma Adaptive Elastic Net −1812.5 −1771.5 0.969 0.968 – – 0.000

Gamma Double Lasso −1808.3 −1767.4 0.969 0.968 – – 38.550

Gamma Adaptive Double 
Lasso

−1812.5 −1771.5 0.969 0.968 – – 0.000

LogNormal Maximum 
Likelihood

−1355.9 −1315.0 0.965 0.966 – – –

LogNormal Ridge −1339.8 −1298.9 0.965 0.966 – – 8.279

LogNormal Lasso −1353.4 −1312.5 0.965 0.966 – – 26.082

LogNormal Adaptive Lasso −1355.9 −1315.0 0.965 0.966 – – 0.000

LogNormal Elastic Net −1352.4 −1311.5 0.965 0.966 – – 30.105

LogNormal Adaptive Elastic Net −1355.9 −1315.0 0.965 0.966 – – 0.000

LogNormal Double Lasso −1353.4 −1312.5 0.965 0.966 – – 26.082

LogNormal Adaptive Double 
Lasso

−1355.9 −1315.0 0.965 0.966 – – 0.000

In both training (T, n=2577) and validation (V, n=1057) sets, the models’ R2 was between 0.993 and 0.965 and RASE between 0.078 and 
0.077. The lambda penalty coefficient was included, where appropriate.
AEX-FV, area under expiratory flow-volume curve; AICc, Akaike Information Criterion; BIC, Bayesian Information Criterion; RASE, root 
average square error.
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for the fitting process, and a squared penalty function 
to avoid overfitting (the latter being preferred when all 
X variables are expected to contribute to the predictive 
ability of the model). Generalised R2 in this instance 
simplifies the traditional R2 for continuous normal 
responses in the standard least squares setting, and is 
also known as the Nagelkerke or Craig-Uhler R2, which 
is a normalised version of Cox and Snell’s pseudo R2.19 
The root mean square error (RMSE) is equivalent to 
the SD, while Mean Absolute Deviance is represented 
by the average of the absolute differences between the 
predicted response and the actual Y variable (figure 3A). 
The SSE (figure 3A) represents the sum of squares error, 
while the main effects of the variables is based on the 
k nearest neighbours’ method of resampling dependent 
variables. Overall, the R2 was very high (0.995 in both 
the training and the validation set), while the RMSE was 
even further reduced to 0.070 (figure 3A). The predic-
tion profiler in figure 3B shows the non-linear relation-
ship between Sqrt AEX-FV and the X variables, while the 
contour profilers show the response surfaces for various 
combination of variables versus Sqrt AEX-FV (figure 3B). 
Another illustration of the neural network model’s 
performance is shown in figure 3C, which showcases the 
high correlations between Sqrt AEX-FV observed and 
predicted values, and the residual values plotted against 
the predicted Sqrt AEX-FV in the training and validation 
sets, respectively. The figure 3C also shows that the resid-
uals do not increase at higher response variable values 
(visual inspection confirming that the homoscedasticity 
condition is met).

The models performed well in both prebronchodilator 
and postbronchodilator studies, their residuals being 
very low (~0.001 in regression and ~−0.007 in neural 
networks) and similar in the two groups. Further, for 
all predictive models tried, the performance was almost 
identical in prebronchodilator versus postbronchodilator 
spirometry tests (data not shown). When we assessed the 
coefficients of variation for AEX-FV, we found it to be very 
low: 5 (2–6)% in prebronchodilator tests and 6 (4-12)% 
in postbronchodilator spirometries, making the promise 
of a reliable, reproducible functional parameter, that is, 
with low intraindividual variability.

DISCUSSION
The AEX-FV has emerged as a useful spirometric tool, 
able to separate traditional patterns of normal function, 
obstruction, restriction, mixed ventilatory defects and 
small airway disease, to characterise the response to bron-
chodilators, to stratify the severity of these impairments, 
and to assess airway hyperinflation, without employing 
more advanced, expensive and laborious lung volume 
testing.4–9

In a previous study, we have shown that computing 
AEX-FV4 (or AEX4) using the trapezoid-and-triangle 
method of approximation, and based on PEF, FVC, FEF25, 
FEF50, FEF75 and FEVPEF represents a reasonable approxi-
mation of the AEX-FV.10 The main finding of this article 
is that a simple linear regression model using only PEF, 
FVC, FEF25, FEF50 and FEF75 as predictors for Sqrt AEX-FV 
(table 1) is likely sufficient to estimate the AEX-FV when 

Figure 3  (A) Neural network architecture, model performance and variable importance. The average of the absolute values 
of the differences between the response and the predicted response. (B) Prediction and contour profilers for the neural 
network model. (C) Actual and residual Sqrt AEX values versus predicted Sqrt AEX. AEX-FV, area under expiratory flow-
volume curve; FVC, forced vital capacity; FEF25, FEF50 and FEF75, forced expiratory flows at 25%, 50% and 75%; mean abs 
dev, mean absolute deviance; PEF, peak expiratory flow; RMSE, root mean square error; SSE, sum of squares error.
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the actual measurement is not available. As such, the 
dependence on spirometric variables that are either not 
reported (FEVPEF) or not made available by the digital 
spirometry platform (AEX-FV or FEVPEF) is easily avoided. 
Furthermore, especially when advanced computational 
capabilities are not available, more complex regression 
or neural network models are likely non-essential for the 
purpose of this endeavour.

Our previous work showed that AEX compared favour-
ably with several traditional spirometric measurements 
and parameters in diagnosing physiologic derangement 
and in estimating the severity of respiratory impairments. 
The actual AEX was able to predict with reasonable accu-
racy inspiratory capacity, inspiratory capacity/total lung 
capacity and residual volume/total lung capacity ratios, 
thus potentially obviating the need for complex lung 
volume testing.4 5 The current investigation extends the 
value of the AEX-FV concept by showing that it can be easily 
estimated using widely available spirometric volumes and 
instantaneous flows. This becomes important especially 
when existing PFT software does not compute or report 
the actual AEX values. Further, we recently developed 
methodologies for predicting AEX-FV values, which 
allows the clinician to derive the percent predicted values 
and to further characterise physiological impairment.20

The current work also extends prior evaluations of 
AEX, which have tested the use of this spirometric func-
tional measurement either in paediatric populations, 
or for assessing bronchoconstriction or bronchodila-
tion responses.21–24 In a more recent article, the authors 
constructed predicted AEX4 (called ‘reference flow-
volume loop’) and compared it against actual AEX, thus 
assessing the degree of airway hyperinflation in adult 
chronic obstructive pulmonary disease patients.25

For any new functional measurement to be used in 
clinical practice, it is important to establish not only its 
performance, but also its test-to-test, inherent variability. 
As such, in a separate sub-analysis of valid and acceptable 
spirometry tests represented by 93 prebronchodilator 
and 122 post-bronchodilator trials, with a median of 3 
and 5 trials per subject, respectively, we evaluated the 
inter-test variability of the AEX-FV. The average (range) 
for the coefficient of variation, defined as SD·100/mean 
of AEX-FV was overall low, that is, 6 (1%–11%) in pre-
bronchodilator tests and 7 (1%–20%) in postbroncho-
dilator assessments, respectively. Their ranges, defined 
as mean differences between the best (largest) and the 
worst (smallest) AEX-FV values, were 3.5 (95% CI 3.2 to 
3.7) and 2.9 (95% CI 2.8 to 3.2) L2/s in prebronchodi-
lator and postbronchodilator repeat trials, respectively. 
The predicted AEX-FV by various models were highly 
correlated with the actual AEX-FV variable, thus the vari-
ability of the predicted AEX-FV was, unsurprisingly, very 
similar. Given that the relative differences (range·100/
mean) could be considerable (22% and 21% in prebron-
chodilator and postbronchodilator tests, respectively), 
perhaps an expression of the inherent variability of the 
lung volumes and instantaneous flows that determine 

AEX-FV, it is likely best to consider for reporting and anal-
ysis purposes the best (largest) obtained values, similar to 
the rules applied to FEV1, FVC and their ratio.

One of the strengths of our investigation is represented 
by the large dataset of normal PFTs extracted from a 
laboratory-based population of non-smokers without 
any known respiratory symptoms or pathologies, and for 
which actual AEX-FV were made available by the digital 
spirometry platform. In order to assess more advanced 
modelling capabilities, we employed both regular and 
optimised regression models and several simplified 
models of machine or deep learning. One weakness of 
this investigation is the single-centre collection of PFTs; 
as such, these findings will need to be validated externally 
in other populations. Additionally, some PFT laboratory-
based ‘normal’ populations may include various uncap-
tured, relevant pathologies or could hide early functional 
impairments, while still above the lower limit of normal 
cut-offs. This may affect the population-level estimations 
or normality. Further, some demographic groups are 
under-represented in our cohort; as such, our models 
require further evaluation using broader populations and 
the models may require further refinement by including 
gender, race or ethnicity predictor factors.

CONCLUSION
This study analyses the performance of several models of 
estimating the AEX-FV, based on FVC, PEF and several 
isovolumic flows, that is, FEF25, FEF50 and FEF75. We found 
that AEX-FV estimated by a simple regression model 
without interactions performs with acceptable accuracy 
as a surrogate marker of actual AEX, which makes it 
potentially useful in diagnosing physiologic derangement 
of pulmonary function and in stratifying the severity of 
such impairment in clinical practice. In more advanced 
epidemiological or research settings, the use of a neural 
networks or deep learning models may be preferred due 
to their higher precision.
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