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Abstract
Organoids are a novel three-dimensional stem cells’ culture system that allows the in vitro recapitulation of organs/tissues 
structure complexity. Pluripotent and adult stem cells are included in a peculiar microenvironment consisting of a supporting 
structure (an extracellular matrix (ECM)-like component) and a cocktail of soluble bioactive molecules that, together, mimic 
the stem cell niche organization. It is noteworthy that the balance of all microenvironmental components is the most critical 
step for obtaining the successful development of an accurate organoid instead of an organoid with heterogeneous morphology, 
size, and cellular composition. Within this system, mechanical forces exerted on stem cells are collected by cellular proteins 
and transduced via mechanosensing—mechanotransduction mechanisms in biochemical signaling that dictate the stem cell 
specification process toward the formation of organoids. This review discusses the role of the environment in organoids 
formation and focuses on the effect of physical components on the developmental system. The work starts with a biological 
description of organoids and continues with the relevance of physical forces in the organoid environment formation. In this 
context, the methods used to generate organoids and some relevant published reports are discussed as examples showing the 
key role of mechanosensing–mechanotransduction mechanisms in stem cell-derived organoids.

Keywords Mechanotransduction · Mechanosensing · Pluripotent stem cells · Adult stem cells · Stem cells specification

Organoids

In recent decades, there has been significant advancement 
of three-dimensional (3D)-cell culture systems to address 
the limitations of two-dimensional (2D) culture systems and 
to better mimic tissue structure and functionality. It is now 
commonly recognized that cells grown in 3D environments 
develop more specific biological multicellular structures 
than cells in 2D cultures, which typically acquire a mon-
olayer morphology (Argentati et al. 2020a). In this context, 
stem cells, due to the staminal properties of self-renewal and 
differentiation toward cell types from multiple lineages, have 
been considered as useful tool for the building of faithful 
3D models. When cultured in an appropriate environment, 
stem cells accomplish their intrinsic developmental pro-
grams, which result in self-organization and generation of 
biologically relevant 3D structures that recapitulate in vitro 
several features of tissues and organs and are therefore called 
“organoids” (Brassard and Lutolf 2019) (Figs. 1, 2).

Organoids technology takes advantage of the different 
characteristics of pluripotent stem cells (PSCs, both Embry-
onic Stem Cells and induced Pluripotent Stem Cells) and 
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multipotent stem cells (Adult Stem Cells, AdSCs) to create 
3D structures that could serve as in vitro models of different 
organs; therefore, offering the opportunity to observe impor-
tant biological phenomena such as embryonic development 
and tissue regeneration and to develop personalized disease 
models through the building of patient-derived organoids 
(Lancaster and Huch 2019; Takahashi 2019; Schutgens and 
Clevers 2020; Zheng and Fu 2021).

On one hand, PSCs can differentiate toward all three germ 
layers (Endoderm, Ectoderm, Mesoderm) and are used for 
building more complex organoids useful for studying the 
embryonic development and are needed when the organ that 
has to be modeled is not easily accessible (e.g., the brain) 
(Brassard and Lutolf 2019; Liu et al. 2021; Yu et al. 2021). 
On the other hand, AdSCs, due to the more limited differ-
entiation capability, are mostly used to generate organoids 
of their tissue of origin. AdSCs also offer the advantage of 
being isolated directly from patient’s biopsies thus making 
them a valuable tool for disease modeling and personalized 
medicine purposes. While the building of PSCs-derived 
organoids requires the reprogramming of somatic differen-
tiated cells isolated from patients followed by expansion and 
differentiation, the use of AdSCs permits the production of 

healthy and diseased tissues in a shorter time: as a result, 
the latter allows a more manageable expansion of models 
from patients, potentially facilitating personalized medicine 
(Rossi et al. 2018; Lancaster and Huch 2019; Schutgens and 
Clevers 2020).

The generation of organoids requires also the addition of 
specific growth factors into the stem cell culture medium 
in the appropriate amount and spatiotemporal way. For 
instance, the step of germ-layer specification for PSCs is 
obtained through Activin A (Endoderm), Activin A and 
Bone Morphogenetic Protein 4 (BMP4, Mesoderm) and 
WNT + PBM4 (Ectoderm), which is then followed by a 
step in which tissue-specific growth factor cocktails and 
molecules activate particular signaling pathways, such as 
WNT and Fibroblast Growth Factors (FGF) (Yin et al. 2016; 
Lancaster and Huch 2019; Kim et al. 2020)(Figs. 1a, 2). The 
latter step allows the induction and maturation of organoids 
and is common also to the AdSCs-derived organoids matura-
tion process (Figs. 1b, 2).

All steps of differentiation protocols aim at supplying 
stem cells with a range of biochemical and biophysical 
signals that mimic the in vivo stem cell niche, which is 
essential to create a good organoid model (Figs. 1, 2). This 

Fig. 1  Schematic of organoids developmental process. a Pluripotent 
stem cells (PSCs) require a first step of induction toward a specific 
germ-layer (Activin-A and BMP4 for Mesoderm, Wnt and BMP4 for 
ectoderm and Activin A for Endoderm). Germ-layer specification is 
then followed by organoids maturation that occurs as a result of self-
organization and tissue-specific growth factors leading to mature 
organoids: blood vessel and kidney (mesoderm), brain (ectoderm), 

liver, thyroid, intestine, stomach, lung (endoderm). b Adult stem cells 
(AdSCs) are tissue-specific therefore organoids specification and 
maturation is obtained through tissue-specific growth factors and self-
organization (e.g. pancreas, endometrium, liver, prostate, stomach, 
intestine, lung). Bone morphogenetic protein 4 (BMP4); wingless-
related integration site (Wnt)
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correlates with the concept that tissue and organ develop-
ment, including cell specification, differentiation, survival, 
and proliferation, is heavily reliant on complex networks 
and coordination of cell-to-cell, and cell-Extracellular 
Matrix (ECM) interactions, as cooperative cell activity 
differs significantly from individual cell behavior (Dahl-
Jensen and Grapin-Botton 2017).

The strict dependence of organoids formation and bio-
chemical and biophysical environmental conditions is 
a crucial aspect that contributes deeply to the success-
ful development of accurate models but also inevitably 
introduces a certain grade of randomness into organoids 
formation, resulting in heterogeneous morphology, size, 
and cellular composition (Hofer and Lutolf 2021). The 
concept of reproducibility in organoids research is one of 
the major obstacles for their scalability and full use in pre-
clinical applications, hence fine-tuning the culture micro-
environment is unquestionably essential for the advance-
ment of this technology (Rossi et al. 2018; Lehmann et al. 
2019; Brassard and Lutolf 2019; Hofer and Lutolf 2021). 
Indeed, there are hurdles that still need to be fully man-
aged as low-maturation level, small size (not more than a 
few millimeters), morphological variability and lack of 
fundamental biological components like vascularization 
and immune system (Lancaster and Knoblich 2014; Shen 

2018; Holloway et al. 2019; Brassard and Lutolf 2019; 
Zahmatkesh et al. 2021).

The delicate balance required to maintain homogeneous 
organoids cultures highlights the role of the environment in 
controlling the cellular polarization in a context-dependent 
manner (Brassard and Lutolf 2019). Thus, is now widely 
recognized that organoids formation is deeply influenced 
by small changes in the culture condition (Hofer and Lutolf 
2021). Therefore, all methods used for organoids generation 
consist in the inclusion of stem cells in an environment char-
acterized by specific biophysical and biochemical compo-
nents (Fig. 3). These elements mimic the role of the structure 
as a well as of soluble biomolecules in the in vivo stem cell 
niche, allowing for better regulation of cellular growth and 
differentiation and, as a result, more physiological applicable 
model systems that can be translated into clinical practice 
(Hofer and Lutolf 2021).

The commonest method currently used for the generation 
of organoids is the ECM-scaffold based (Shah and Singh 
2017; Velasco et al. 2020). In this technique, organoids are 
generated by including stem cells in an environment consist-
ing of a biophysical component, generally natural (Matrigel, 
Collagen, Alginate, Fibrin, Laminin) or synthetic (e.g., Poly-
ethylene Glycol, PEG) hydrogels, and biochemical compo-
nent, such as different types of soluble bioactive chemical/

Fig. 2  Origin and tissue-specific 
growth factors for the gen-
eration of human organoids. 
Pluripotent Stem Cells (PSCs) 
and adult stem cells (AdSCs) 
are guided toward the matura-
tion of a specific organoid by 
the introduction in culture of 
specific growth factors that 
activate (arrow up ↑, green) 
or repress (arrow down ↓, red) 
particular signaling path-
ways (Kim et al. 2020). Bone 
morphogenetic protein (BMP); 
epidermal growth factor (EGF); 
fibroblast growth factors (FGF); 
hepatocyte growth factor 
(HGF); insulin-like growth 
factor (IGF); microtubule asso-
ciated protein kinase (MAPK); 
RHO-associated protein kinase 
(ROCK); transforming growth 
factor (TGF); vascular endothe-
lial growth factor (VEGF); 
wingless-related integration site 
(Wnt)
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biological molecules (Sato et al. 2009; Kurmann et al. 2015; 
Workman et al. 2017; McCracken et al. 2017; Hohwieler 
et al. 2017; Shah and Singh 2017; Chen et al. 2017; Camp 
et al. 2017; Yan et al. 2018). Alternatively, organoids can be 
generated with the (i) suspension culture procedure accom-
panied by the use of spinner flasks or rotating bioreactors, 
which can be described as rotating cell culture systems 
(Nakano et al. 2012; Qian et al. 2018; Hoarau-Véchot et al. 
2018; Przepiorski et al. 2018; Capowski et al. 2019; Velasco 
et al. 2020; Sander et al. 2020); (ii) Air–liquid interface 

(ALI), where stem cells are exposed to culture medium on 
one side and to air on the other for maximizing the oxy-
gen and nutrient supply (Takasato et al. 2015; Neal et al. 
2018; Choi et al. 2020; Lo et al. 2020; Esser et al. 2020; 
Gunti et al. 2021); (iii) Magnetic levitation, which poses 
its bases in tagging cells with magnetic nanoparticles and 
then exposing them to a magnetic field that levitates them 
to the liquid–air interface where they aggregate and gener-
ate ECM components (Desai et al. 2017; Tseng et al. 2018; 
Ferreira et al. 2019; Velasco et al. 2020); (iv) 3D bioprinting, 

Fig. 3  Conventional methods for organoids generation. Schematiza-
tion of the main steps required in the techniques most frequently used 
for organoids generation: ECM-scaffold-based, suspension culture, 
air–liquid interface, magnetic levitation and 3D bioprinting (grey 
column) with related examples of produced organoids (Blue column, 

references in the text). Schematic representation of method used for 
organoids generation: biological elements (cells) and microenviron-
ment required for organoids maturation (biophysics and biochemical 
components). Pluripotent stem cells (PSCs); adult stem cells (AdSCs)
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which could allow controlling the spatial positioning of cells 
and other biological components such as growth factors and 
ECM structural components (Fig. 3)(Duelen et al. 2019; 
Reid et al. 2019; Sun et al. 2020; Kupfer et al. 2020; Rawal 
et al. 2021; Yang et al. 2021).

Organoids and mechanobiology

Mechanical forces and spatiotemporally coordinated cel-
lular signaling patterning are now recognized as essential 
factors in tissues organization and acquisition of their func-
tional adult state in vivo (Jansen et al. 2015; Weaver 2017; 
Mohammed et al. 2019; Argentati et al. 2019; Kim et al. 
2021). The mechanical forces that regulate and act on the 3D 
adult tissue organization, are transmitted within the tissue 
by individual cells that are confined in the ECM (Humphrey 
et al. 2014; Stanton et al. 2019; Argentati et al. 2019; Kim 
et al. 2021). In this section, we will discuss the relevance of 
mechanobiology in organoids development. To be clear, the 
section starts with some notes on mechanobiology.

Pills of mechanobiology

Over the last two decades, evidence has accumulated demon-
strating how the physico-chemical properties of the cellular 
microenvironment, as well as the physical forces exerted 
by cells and tissues, are critical in the regulation of physi-
ological conditions (such as tissue development, repair, and 
homeostasis, cell motility, proliferation, metabolism and 
differentiation) (Mammoto and Ingber 2010; Morena et al. 
2017, 2020; Argentati et al. 2018, 2019; Wolfenson et al. 
2019) but also pathological states (Jansen et al. 2015; Jensen 
et al. 2015; Alcaraz et al. 2018; Kim et al. 2019; Lee et al. 
2019; Argentati et al. 2019, 2020b; Hall et al. 2020). In both 
contexts, cells must adapt their behavior using their capabil-
ity to sense the external physical forces—mechanosensing—
and to transduce these forces into biochemical signals—
mechanotransduction (Trubelja and Bao 2018; Martino 
et al. 2018; Argentati et al. 2019). Both mechanisms collect 
the activity of several intracellular and extracellular compo-
nents (Table 1) that, working together in a spatial–temporal 
manner, transmit the signaling to the cell DNA and change 
the cell gene expression (Trubelja and Bao 2018; Martino 
et al. 2018; Argentati et al. 2019; Janota et al. 2020). The 
most known pathways include (i) integrins—ECM—Focal 
adhesion (FAs) complexes—cytoskeleton—nucleoskeleton 
proteins (Weinberg et al. 2017; Jansen et al. 2017; Morena 
et al. 2017; Martino et al. 2018; Luzi et al. 2020; Argentati 
et al. 2021); (ii) Adherens Junctions (AJs) complexes for 
cell–cell interaction—cytoskeleton—nucleoskeleton pro-
teins (Morena et al. 2017; Martino et al. 2018; Yap et al. 
2018; Liebman et al. 2020). The overall interconnection also 

influences the behavior of neighboring cells and can remodel 
constantly the ECM environment through synthesis, deg-
radation, and chemical modification processes (Humphrey 
et al. 2014; Stanton et al. 2019; Argentati et al. 2019).

In addition, several studies have identified molecular 
components involved in the mechano-sensing and—trans-
duction processes, which respond to various mechanical 
forces such as compression (cells contract as a result of 
compressive forces applied from the outside to the center 
of cells)(Takemoto et al. 2015; Vining and Mooney 2017; 
Argentati et al. 2019), tension (external stimuli that stretch 
cells in opposite directions, resulting in cell elongation)
(Spadaro et al. 2017; Martino et al. 2018; Rossy et al. 2018; 
Argentati et al. 2019), hydrostatic pressure (force exercised 
by the surrounding fluid to cells membranes, with non-
directional nature influencing microtubule stability of cell 
cytoskeleton) (Becquart et al. 2016; Hadi et al. 2018; Pat-
tappa et al. 2019), and fluid shear stress (two opposing forces 
applied tangentially to a cell’s surface, causing changes in 
cell morphology and adhesion properties) (Becquart et al. 
2016; Alfieri et al. 2019; Argentati et al. 2019) that in turn 
lead to the deformation and regulation of particular cellular 
environment properties including elasticity (the ability of 
an object to revert to its original shape and size after a force 
has been removed)(Grady et al. 2016; Argentati et al. 2019), 
stiffness (the ability of an object to resist deformation after 
being subjected to a force) (Islam et al. 2017; Argentati et al. 
2019; Janmey et al. 2020) and viscoelasticity (an object’s 
elastic and viscous properties that contrast deformation)
(Wang et al. 2016a; Argentati et al. 2019; Chaudhuri et al. 
2020). (Table 1). These processes are likely activated when 
stem cells generate organoids (Bayir et al. 2019; Hofer and 
Lutolf 2021).

Mechanical forces involved in stem cell‑derived 
organoids formation

The engineering of the organoid microenvironment focuses 
on controlling diverse mechanical properties such as topog-
raphy, porosity, permeability, stiffness, shape, and elasticity 
(Bayir et al. 2019). The combination of all these properties 
creates a specific microenvironment characterized by a par-
ticular set of forces that are exerted on cells indirectly via the 
ECM, allowing them to mechanosense and respond to these 
forces when forming an organoid (Fig. 4) (Dahl-Jensen and 
Grapin-Botton 2017; Park et al. 2019).

The identification of the appropriate pattern of forces 
that have to be present in culture is fundamental for steer-
ing stem cells toward the right differentiation state (Vining 
and Mooney 2017). Performing experiments could fully 
elucidate how mechanics affect particular cells or tissues 
in vivo, in fact several studies clarified how substrates with 
different mechanical properties allowed lineage-specific 
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differentiation of stem cells. For example, matrix elasticity 
regulates the differentiation of Mesenchymal Stem Cells 
(MSCs) with the general concept that rigidity is associ-
ated with chondrogenic/osteogenic lineages and softer 

matrices induce neuronal or fat differentiation (Engler 
et al. 2006; Huebsch et al. 2010; Khetan et al. 2013; Vin-
ing and Mooney 2017; Romani et al. 2021).

Table 1  Cellular components involved in mechano-sensing and mechano-transduction processes and forces to which they respond

Location Proteins Mechanical forces to which proteins 
respond

References

ECM (Extracellular Matrix) Collagens Compression
Elasticity
Hydrostatic pressure

Tension
Viscoelasticity

(Saini and Kumar 2015; Chooi and Chan 2016; Argentati 
et al. 2019)

Elastin Compression
Elasticity

Tension
Viscoelasticity

(Andrikakou et al. 2016; Cocciolone et al. 2018; Argentati 
et al. 2019)

Fibrillin Elasticity Tension (Schrenk et al. 2018; Argentati et al. 2019)
Fibulin Stiffness Tension (Nakasaki et al. 2015; Argentati et al. 2019)
Fibronectin Elasticity

Stiffness
Tension (Wang et al. 2016b; Martino et al. 2018; Argentati et al. 

2019)
Laminin Shear stress (Di Russo et al. 2017)
Tenascin Elasticity Tension (Imanaka-Yoshida and Aoki 2014; Argentati et al. 2019)

Cell Membrane Integrins Elasticity
Hydrostatic pressure
Shear Stress

Stiffness
Tension

(Jang and Beningo 2019; Kechagia et al. 2019; Argentati 
et al. 2019)

FAs (Focal adhesion complex) Tensin Tension (Argentati et al. 2019)
Vinculin Stiffness Tension (Atherton et al. 2016; Omachi et al. 2017; LaCroix et al. 

2018)
Paxillin Stiffness Tension (Zhou et al. 2017; Argentati et al. 2019)
Talin Stiffness Tension (Kumar et al. 2016)
FAK Elasticity

Stiffness
Tension (Bell and Terentjev 2017; Argentati et al. 2019)

AJs (Adherens Juctions) βCatenin Compression Shear stress (Sheng et al. 2018; Argentati et al. 2019)
αCatenin Tension (Sarpal et al. 2019)
Cadherins Tension (Pannekoek et al. 2019; Argentati et al. 2019)
ZO-1 Shear stress

Stiffness
Tension (Demaio et al. 2001; Haas et al. 2020)

ICAM1 Viscoelasticity (Wiesolek et al. 2020)
Cytoskeleton F-actin Compression

Elasticity
Hydrostatic pressure
Shear stress

Stiffness
Tension
Viscoelasticity

(Galkin et al. 2012; Fan et al. 2019; Argentati et al. 2019; 
Wei et al. 2020)

Microtubule Tension
Stiffness

Elasticity (Brouhard and Rice 2018; Argentati et al. 2019; Hamant 
et al. 2019)

Vimentin Compression
Stiffness

Viscoelasticity (Charrier and Janmey 2016; Argentati et al. 2019)

Titin Elasticity (Herrero-Galán et al. 2019; Argentati et al. 2019)
Myosin II Compression

Elasticity
Tension (Argentati et al. 2019; Fujita et al. 2019; Lou et al. 2021)

Filamin Stiffness (Mezawa et al. 2016; Zhou et al. 2017; Martino et al. 
2018; Argentati et al. 2019; Janmey et al. 2020)

α-Actinin Stiffness (Meacci et al. 2016; Argentati et al. 2019)
Arp2/3 Tension (Argentati et al. 2019)
Formin Tension (Zimmermann and Kovar 2019)
Cofilin Compression Tension (Gupta et al. 2016; Ikawa and Sugimura 2018)

Nucleoskeleton Lamin A/C Stiffness Tension (Chen et al. 2018; Argentati et al. 2019; Koushki et al. 
2020)

Emerin Stiffness (Willer and Carroll 2017; Fernandez et al. 2021)
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Indeed, stiffness is a decisive parameter for mimick-
ing the stem cells’ niche and it can be tuned using syn-
thetic matrices which, in this way, offer the possibility of 
investigating its effect on organoids formation (Gjorevski 
et al. 2016). About this, new mechanical refined materials 
such as complex hydrogels with tunable architecture and 

composition that offer the possibility of precisely control 
the orientation of functional groups showed that the regu-
lation of matrix viscoelasticity and gel degradability is 
of particular importance for a successful organoid forma-
tion and culture (Cruz-Acuña et al. 2017; Chaudhuri et al. 
2020).

Fig. 4  Mechanical forces and 
organoids formation. Schematic 
representation of the involve-
ment of different mechanical 
and physical forces (shear 
stress, tension, compression, 
hydrostatic pressure) and envi-
ronmental properties (stiffness 
and elasticity) in the main steps 
of organoids formation: a Stem 
cells are included in an environ-
ment characterized by specific 
chemical and structural com-
ponents; b Different mechani-
cal forces and environmental 
properties influence stem 
cells specification and c 3D 
self-organization; d All these 
forces and properties guide the 
maturation of organoids and e 
lead to the formation of specific 
organoids type
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As far as understanding the sensing of mechanical stimuli 
by organoids is concerned, the clarification of how forces 
exactly influence organoids formation is even more difficult 
because they are a more complex model (compared to 2D 
cultures)(Chan et al. 2017) in which cells establish interac-
tions among them and the external ECM; however, several 
studies explored this issue (Park et al. 2019; Bayir et al. 
2019).

In this regard, in a recent study, the laboratory of H. Clev-
ers investigated the role of matrix stiffness on the behavior 
of Intestinal Stem Cells (ISCs). In this work, they evidenced 
how Intestinal Stem Cells cultured on a stiff matrix under-
went expansion enhancement, but when grown on a soft 
matrix differentiated and formed organoids (Gjorevski et al. 
2016). In particular, first, they cultured ISCs in PEG hydro-
gels functionalized with the RGD (Arg-Gly-Asp) peptide 
and observed that ISCs expanded on the matrix with inter-
mediate stiffness and did not on softer ones (1.3 vs 300 Pa), 
and afterward they used hybrid PEG hydrogels constituted 
by a mechanically static and a mechanically dynamic PEG 
to control over time the gel’s stiffness: when functionalized 
with RGD and laminin-111, organoids were generated only 
when gel stiffness was about 190 Pa and Yes-associated pro-
tein (YAP) activation was greater in these softening matri-
ces. This study, therefore, shed light on the mechanistic role 
of the 3D microenvironment (Gjorevski et al. 2016).

Acknowledged the importance of mechanical forces in 
embryogenesis and organogenesis, the control of the bio-
physical microenvironment answer to the need of enhanc-
ing the reliability of organoid models. For this reason, it 
is now becoming clear that it is necessary to build culture 
systems in which is possible to produce biomechanical cues 
that are as physiological as possible. Recent advancement 
in this field is the synergic combination of organoids and 
organ-on-a-chip (OOC) technology: while organoids have 
the advantage of following self-organization, OOC offers the 
possibility of precisely regulate the cellular microenviron-
ment to replicate the physiological environmental conditions 
(Park et al. 2019; Zheng et al. 2021). There are several OOC 
available on the market that employ dynamic biomechani-
cal stimulation and that can be used to develop complex 
3D tissues like spheroids, organoids, and tissues interfaces 
(Thompson et al. 2020).

For example, Lee et al. implemented peristaltic fluid flow 
in human stomach organoids; therefore, introducing con-
traction and stretching to mimic gastric contractions, which 
enabled the construction of a more solid and physiologi-
cally relevant model amenable for disease modeling and 
drug screening (Lee et al. 2018). To do so, human gastric 
organoids (GOs) generated from hPSCs were cultured in a 
3D-printed device equipped with micropipettes connected to 
a peristaltic pump filled with FITC-dextran: following the 
fluorescent fluid flow, they observed a regular distribution 

of luminal fluid overtime and demonstrated the feasibility 
of GOs long-term culturing associated to nutrient and thera-
peutic agents delivery (Lee et al. 2018).

Berger et al. enhanced the vitality and differentiation of 
Midbrain organoids using a fluidic system that generated 
continuous laminar fluid flow (Berger et al. 2018). They 
compared a new milli-fluidic culture technique with the 
orbital shaker (commonly used for brain organoids genera-
tion) and observed that it allowed a better differentiation 
of Neuroepithelial Stem Cells to midbrain Dopaminergic 
neurons and a reduction of the inner area of cell death: inter-
estingly, this work highlighted that different fluid dynamics 
have distinct effects on organoids development suggesting 
that the resulting diverse mechanical stimuli are involved in 
their homeostasis (Berger et al. 2018).

Another promising result was obtained by Tao et al. that 
generated iPSCs-derived Pancreas organoids in a microflu-
idic system that improved their viability and organ-specific 
functionality, like insulin secretion stimulated by glucose 
and higher  Ca2+ flux (Tao et al. 2019). In accordance with 
the study previously proposed, this work showed that the 
culture of organoids under perfused conditions highlights 
the role of biomimetic mechanical signals in improving the 
functionality and maturation of islet organoids (Tao et al. 
2019).

In another study, Homan et al. exploited shear stress 
generated with a milli-fluidic system and co-culture with 
endothelial cells to greatly improve the maturation of Kid-
ney organoids managing to enhance vasculature and their 
tubular and glomerular compartments (Homan et al. 2019). 
In particular, they determined the effect of fluidic shear 
stress by culturing hPSCs in a chip with controlled fluid 
flow and observed that the vascular network formation was 
greatly improved under high fluidic shear stress condition 
compared to low, in the order of fivefold increase, indicating 
that shear stress is a significant cue for the vascularization 
of kidney organoids in vitro as it is associated to the endog-
enous upregulation of the vascular endothelial growth factor 
(Homan et al. 2019).

Conclusion

In this mini review, we have discussed recent key findings 
on the development of organoid technology (Fig. 3). In par-
ticular, we have highlighted the relevance of the environ-
ment as an active counterpart on inducing stem cells toward 
the generation of a specific organoid, describing the role 
of exogenous soluble bioactive molecules and foremost 
the role of the environmental physical components, and 
the way in which both mimic the structure and function of 
the stem cell niche. The role of mechanical forces has been 
demonstrated to significantly orchestrate the interaction of 
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the cells with the ECM or with neighboring cells and how 
these interconnections are fundamental for cell functions. 
These roles have been confirmed also in organoids forma-
tion. Of note, to date, there are different medical applica-
tions of organoid mechanobiology-based technology such 
as novel drug screening, regenerative medicine application, 
molecular research (Fig. 5).

In this regard, many studies focused on organoids mecha-
nobiology are ongoing and will help to elucidate the mecha-
nism behind the biophysical aspects of organoid cultures. 
For instance, the European Project “Mechanoids” (Grant 
agreement ID: 797,621, H2020-EU.1.3.2.) aims at manipu-
lating the mechanobiology of healthy Gut and Colorectal 
Cancer organoids to assess their role in disease and develop-
ment processes (HORIZON 2020a) The characterization of 
organoids mechanobiology will be useful also for disease 
modeling, as planned in the project “ROMB” (Grant agree-
ment ID: 850,691, H2020-EU.1.1.) where Retina organoids 
mechanobiology will be investigated to model Alzheimer’s 
Disease and will shed light on mechanically related neuronal 
diseases (HORIZON 2020b). In conclusion, despite the chal-
lenges that must be addressed, considering the advantages 
of ongoing technology development, organoid technology 
holds great promise in research and in the developing clini-
cal translational strategies.
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