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Function-specific and Enhanced 
Brain Structural Connectivity 
Mapping via Joint Modeling of 
Diffusion and Functional MRI
Shu-Hsien Chu   1, Keshab K. Parhi   1 & Christophe Lenglet 2

A joint structural-functional brain network model is presented, which enables the discovery of function-
specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI 
(dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain 
circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation 
maps to extract the white matter pathways of interest. The proposed method jointly analyzes 
whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural 
networks instead of interactively investigating the connectivity of individual cortical/sub-cortical 
areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous 
pathways. The proposed framework explicitly models the interactions between structural and 
functional connectivity measures thereby improving anatomical circuit estimation. Results on Human 
Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying 
function-specific anatomical circuits, such as the language and resting-state networks. In contrast to 
correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed 
anatomical connectivity patterns are revealed for each functional module. Results on a phantom 
(Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive 
connections with insufficient support from fMRI, and enhancing under-estimated connectivity with 
strong functional correlation.

The brain can be modeled as a network where nodes represent cortical or sub-cortical gray matter areas, and 
edges model relationships (connectivity) between nodes1–3, as shown in Fig. 1. Gray matter areas are responsible 
for information (e.g., motor, visual, auditory, language) processing and are physically interconnected via axonal 
pathways in the white matter, thereby producing functional networks of cortical/sub-cortical areas associated to 
specific tasks. A network with edges characterized by properties related to white matter pathways is defined as a 
structural network. On the other hand, if the edges are characterized by statistical relationships from functional 
signals such as fMRI, electro-encephalogram (EEG) or magneto-encephalogram (MEG), the network is generally 
referred to as a functional network. By analogy with an electrical circuit that incorporates wiring, components 
and functionalities, a brain circuit is defined by the anatomical (sub-)network that is associated with a specific 
function. The mapping of brain functions using either functional or structural networks has been widely inves-
tigated1,2,4–8. Recently, an increasing number of multimodal explorations, especially combining fMRI and dMRI 
data, has been conducted to improve our understanding of brain mechanisms, and interactions between func-
tional and structural networks9–21.

Significant advances in multimodal imaging techniques, analysis, and modeling have been made to inves-
tigate brain changes or group differences23,24. In most brain networks studies, the edges’ weights are defined 
based on either structural or functional connectivity information. However, structural connectivity estimation 
can be especially challenging in white matter areas with complex fiber orientations (e.g., fiber crossings)25. As a 
result, tractography is prone to false-negative and false-positive results, either under-estimating or generating 
spurious connections. It is particularly susceptible to missing “weak” long-range connections26,27. Conversely, 
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functional connectivity may exist between nodes that are directly or indirectly connected. This can happen 
when synchronous activity arises between anatomically distinct regions, possibly driven by common sources28. 
Therefore, multimodal approaches may improve the estimation of brain connectivity by combining the strengths 
of each individual modality (dMRI and fMRI)10. We distinguish here three categories of multimodal methods: (i) 
Integrative methods, which use results from one modality to guide connectivity mapping with the other modality, 
(ii) Joint analysis methods, which merge information from independently estimated functional and structural 
connectivity networks, and (iii) Joint modeling methods, which simultaneously model fMRI and dMRI data and 
estimate either a single combined brain network describing both anatomical and functional connectivity patterns, 
or separately improved functional and anatomical networks.

In integrative approaches, to assist tractography reconstruction, fMRI is utilized to identify seed regions and 
refine anatomical parcellation29–34. Functional activation maps can be integrated with tractography in order to 
group and validate estimated white matter pathways35–38. Conversely, anatomical connectivity can be employed 
to predict and penalize the estimation of functional connectivity. Brain activity indeed is intricately linked to its 
structural connectivity patterns, and functional connectivity is significantly shaped by structural patterns13–16. 
As a result, brain regions with high structural connectivity tend to exhibit high functional connectivity23 (but 
the converse is not necessarily true). Thus, dMRI can be used to support functional connectivity estimation39,40. 
For instance, by considering functional networks as Gaussian graphical models, covariance weighting factors 
can be defined based on the associated structural connectivity weights17,18. Additionally, new metrics such as 
anatomical-weighted functional connectivity (awFC)41 and track-weighted functional connectivity (TW-FC)42 
were proposed to enhance functional and structural connectivity mapping. Tractography-driven functional 
connectivity mapping has also been proposed to explore subject-specific interactions between structure and 
function43.

In joint analysis methods, structural and functional results are produced independently and subsequently 
merged to perform population studies, regression analysis, correlation or multivariate analysis of variance. For 
example, mean anisotropy (MA) and functional connectivity (from correlation) can be first independently com-
puted from dMRI and fMRI, and then compared19. At the network level, joint independent component analysis 
(ICA) of mixed data from fMRI and dMRI was introduced to explore the connections between white matter 
microstructure and the default mode network44. In addition, theoretical network analysis and dependence stud-
ies between functional and structural data were conducted to investigate structural-functional relationships14,20. 
Functional connectivity has also been modeled as a linear by-product of anatomical connectivity21.

Unlike joint analysis, a joint modeling approach (as introduced here) simultaneously model fMRI and dMRI 
data to generate a more complete description of a brain network. We show that this leads to improved estimation 
of individual networks, and to a novel type of integrated network. In a previous study45, structural and functional 
connectivity parameters were modeled as joint random variables of a Gaussian Mixture Model (GMM). The 
expectation-maximization (EM) algorithm was employed to recover the underlying probability parameters from 
the independently generated networks. However, limited spatial continuity (because of independently formulated 
GMMs across connections), and relatively simple distribution assumptions for anatomical connectivity estima-
tion (e.g., non-Gaussian error caused by fiber crossing) may have restricted the effectiveness of this approach to 
enhance connectivity mapping results.

In this paper, a novel structural-functional brain network model is presented to extract function-specific 
brain circuits, as illustrated in Fig. 2, and improve anatomical connectivity mapping, by considering system-wide 
neural communication as a routing problem46. The network edges represent white matter pathways carrying 
electro-chemical signals between nodes (cortical/sub-cortical areas), which we call information flow. Edges trans-
mit the information shared among nodes. The nodal activities, corresponding to the received/sent information, 
are modeled using fMRI activation maps47. Therefore, the causal relationship between structural and functional 
connectivity patterns can be characterized: The absence of anatomical connection suggests the possible absence of 
functional connectivity, while the presence of a functional connection supports the existence of anatomical path-
ways, which might consist of several segments (edges)14. None of the prior work has modeled the neural commu-
nication system as a routing problem from an engineering perspective. Routing problems can be formulated using 

Figure 1.  A brain network characterizes the connectivity of regions of interest (Panel (a)) by measuring, for 
example, the number of tractography streamlines between a pair of regions, or the correlation coefficients 
between fMRI signals at these locations (Panel (b)). The cortical parcellation (Panel (a)) was generated from a 
representative HCP dataset using FreeSurfer [http://surfer.nmr.mgh.harvard.edu/]. In this work, all network 
representations, such as shown in Panel (b), are generated using BrainNet22.

http://surfer.nmr.mgh.harvard.edu/
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different methods ranging from mixed integer nonlinear programming (MINLP), which are generally NP-Hard, 
to linear programming (LP) which can be solved efficiently even for problems with millions of variables. Our 
proposed model is deliberately formulated using LP to ensure it can be solved and scaled to denser networks. 
The structural-functional brain network model is formulated and solved for each individual brain dataset, unlike 
prior approaches which generally estimate general mappings between functional and structural connectivity 
through population analysis. Furthermore, solutions of LP problems implicitly include combinatorial results of 
the constraints status (active and inactive)48, which cannot be characterized by any of the previously proposed 
models.

The overall brain network estimation is formulated as a network flow problem49–52. The capability of conveying 
information (called capacity) is defined by the anatomical strength of pathways, while neural activity at nodes is 
assumed to be proportional to fMRI activation maps. These maps can be obtained from independent compo-
nent analysis (ICA), for resting-state fMRI53,54, or from statistical activation maps produced via general linear 
modeling (GLM), for task fMRI55. A cost function, minimizing the information delivery cost while enhancing 
the capacity of links most likely to exist, is introduced to define the optimality conditions. With the proposed 
constraints and cost function, the solution of the network optimization problem defines function-specific circuits 
using the flow distribution, and improves anatomical connectivity mapping. Our proposed framework focuses on 
subject-specific brain networks, but the model can readily be utilized in population studies.

In Section 2, after detailing the mathematical formulation of the brain network model (Section 2.1), results 
from brain and phantom datasets are described in Section 2.2 and Section 2.3. Language processing circuits are 
first identified using dMRI and task-fMRI data from the Human Connectome Project (HCP)56,57, and the results 
are compared with conventional GLM and correlation-based functional networks analysis. Next, results using 
resting-state fMRI data are presented. Using a diffusion phantom58–60, in combination with simulated resting-state 
fMRI data, a significant improvement in anatomical connectivity mapping is shown. As briefly discussed in 
Section 3, our results indicate that the proposed model outperforms the GMM method45 in finding the maximum 
number of true connections, with fewer false positives. They also demonstrate the possibility to reliably identify 
brain circuits associated with specific brain functions. Section 4 provides details about the datasets used in this 
paper, and the pre-processing steps.

Results
Joint structural-functional brain network model.  For a network with N nodes, L = (N2 − N)/2 poten-
tial undirected connections exist. Each connection l can also be represented as a pair of nodes (i, j) in order to 
emphasize the two end points, i and j. The nodes and edges determine the basic network topology. The notation 
is summarized in Table 1 and the complete model is presented in Eq. (5) below.

Two fundamental properties can be assigned to the network. For each node i, the average functional activation 
Ri

m is obtained from the result of fMRI analysis. The average functional activation approximates the amplitude of 
local neuronal activity for a specific function (task or resting-state mode). For each link, the capacity Dl is defined 
by the normalized streamlines count to estimate the strength of the fiber pathway, which models the capability for 
delivering information. The average functional activation and the capacity associated, respectively, with nodes 
(cortical/sub-cortical areas) and links (axonal pathways) are the input to the network model.

Figure 2.  The fMRI signal can be decomposed and represented using basis functions (e.g., ICA components, or 
“modes”) such as the red and blue signals in panel (a). As shown in panel (b), since regions involved in the same 
brain function display similar fMRI time courses (blue or red), strong correlations will identify function-specific 
circuits. Panel (c) shows an example of possible underlying structural network which can support both red and 
blue “functions”. The proposed joint model combines information from functional and structural connectivity, 
and can extract the full anatomical sub-networks associated with each function (Panels (d) and (e)).



www.nature.com/scientificreports/

4SCientifiC Reports |  (2018) 8:4741  | DOI:10.1038/s41598-018-23051-9

The network problem consists of two groups of unknown variables: flow variable, fl
m, for extracting 

function-specific circuits and capacity adjustment variable, Pl, for recovering under-estimated structural connec-
tions. The flow variable characterizes the amount of information shared on a link l for a given functional mode m. 
The capacity adjustment enables the model to correct for under-estimated structural pathways, and can be added 
to fulfill the structural-functional constraint. Both variables are unknown a priori and estimated during the 
model optimization.

In addition to the input data and unknowns, three constraints are proposed to specify and enforce the rela-
tionships between the input data and the unknowns. These include: (i) link capacity constraint, (ii) the node 
demand constraint, and (iii) the feasibility constraint. These are illustrated in Fig. 3, and further described next.

Constraint 1: First, the link capacity constraint is formulated as

∑ α≤ + ∀ = … .
=

f D P l L( ), 1, 2,
(1)m

M

l
m

l l
1

This defines an upper bound on the amount of information which can be carried by a particular connection l. In 
the constraint, the right hand side, Dl + Pl, is the total capacity from estimated number of streamlines, and the 
adjustment for possible under-estimation, while the term ∑ = fm

M
l
m

1  is the overall amount of information for all 
functional modes. This constraint restricts the aggregated flow on link l, which cannot exceed its total capacity Dl 
+ Pl.

Constraint 2: Next, since the signal shared through white matter pathways triggers activity in the associated 
cortical/sub-cortical areas, the node demand constraint is defined as:

Symbol Description Type

i Node index: cortical/sub-cortical area Notation

l = (i, j) Edge index: pathway connecting node i and j Notation

m Functional mode index Notation

N(i) Collection of edges connecting to/from node i Notation

Ri
m Functional activation on node i associated with functional mode-m Input

Dl Link capacity defined by anatomical connectivity of edge l Input

fl
m Amount of information flow sharing on edge l for function m Output

Pl Correction for under-estimated structural connectivity of link l Output

α Unit conversion from capacity to flow Parameter

β Unit conversion from fMRI activation to flow Parameter

γ Combined unit conversion γ = α
β

 from capacity to fMRI Parameter

ρ Control favoring/restricting correction for under-estimated connectivity Parameter

Table 1.  Definition of Symbols.

Figure 3.  Illustration of constraints enforcing specific relationships between the input data and the 
unknowns: Panel (a) illustrates the link capacity constraint, formulated in Eq. (1). It indicates that the amount 
of information which can be delivered through a connection l is limited by its anatomical strength (i.e., the 
connection at the top can deliver more information between ROI1 and ROI2). Panel (b) illustrates the node 
demand constraint, formulated in Eq. (2). It states that the fMRI signal is the origin/consequence of sufficient 
amount of information sent/received at a node through all its associated connections. Panel (c) illustrates the 
feasibility constraint, formulated in Eq. (3). It ensures that information flow is delivered among nodes with 
sufficient functional activation (i.e., the flow between ROI1 and ROI2 can not exceed the blue functional 
activation).
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∑ β≥ ∀ = … = … .
∈

f R m M i N1, 2 , 1, 2,
(2)l N i

l
m

i
m

( )

The constraint ensures that the information flow gathered at each node for each individual brain function (e.g., 
resting-state network) is sufficient to support the brain activity at this node (obtained from fMRI analysis)47. In 
Eq. (2), N(i) is the collection of all edges connected to node i, ∑ ∈ fl N i l

m
( )  is the information flow gathered at node 

i, and Ri
m is the average functional activation at this node. Combined with the link capacity constraint, the node 

demand constraint defines the integration of structural and functional connectivity via the concept of informa-
tion flow, which unifies brain activity with the underlying structural constraints.

Constraint 3: Finally, since the information flow is shared between brain areas, the feasibility constraint is defined 
for any pair of nodes i and j as

β≤ = ∀ = … .f R R l i j l Lmax { , }where ( , ), 1, 2, (3)l
m

i
m

j
m

The constraint guarantees that the flow for a particular connection l does not exceed the maximal functional 
activation R Rmax { , }i

m
j
m  at its two end points i and j. This additional constraint is needed to make sure that infor-

mation is delivered and shared between two nodes with at least one node showing an appropriate amount of 
functional activation. In other words, the constraint prevents arbitrary information sharing between inactive 
regions.

Finally, we introduce the cost function in Eq. (4). It contains two terms: The first term (left) minimizes the 
information (flow) delivery cost27,61–64. The unit information delivery cost is defined by the reciprocal of the 
capacity. In other words, connections with high structural connectivity (defined from dMRI data) are associated 
to lower cost, and preferred by the optimization procedure to transmit information. The second term (right) is 
used to enhance under-estimated structural connectivity if needed. Since the number of tractography streamlines 
Dl is related to the probability of existence of a specific white matter pathway, its reciprocal is used as a proba-
bilistic prior in this second term. A constant bias and this probabilistic prior (1/Dl) are combined to prevent the 
unnecessary increase of Pl, especially for links with small Dl values.

∑ ∑ ∑ρ=










+













+











= = =

C f P
D

f
D

PCost Function ( , ) 1 1 1

(4)
l
m

l
l

L

l m

M

l
m

l

L

l
l

1 1 1

After summarizing all the constraints, cost function, input data and variables, combining the unit conversion 
parameters to be γ = α

β
, and incorporating β into the definition of fl

m (from now on β=f original f( )/l
m

l
m ), the 

overall network optimization problem is summarized as:
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In practice, the true value of the unit conversion parameter γ is not known, but it is an important parameter 
which determines the feasibility of the problem. A too small γ may eliminate all the possible solutions and lead 
to an empty feasible set. On the other hand, a too large γ may introduce many arbitrary solutions. Therefore, to 
ensure feasibility, γ was determined as the largest ratio (over all nodes) between the total functional activation and 
total structural connectivity, as defined below

γ = ∑
∑ ∈

R
D

max
i

m i
m

l N i l( )

The proposed joint structural-functional network model is a linear programming problem. This can be done 
efficiently for even millions of variables with the interior point method65. In this paper, a general linear program-
ming solver, available in the IBM ILOG CPLEX Optimization Studio [https://www-01.ibm.com/software/com-
merce/optimization/cplex-optimizer/], is utilized.

Next, results from brain (HCP) and phantom (Fibercup) datasets are presented to demonstrate the capabil-
ity of the proposed method to identify function-specific brain circuits, and to enhance structural connectivity 
estimation. In particular, we focus on the HCP task fMRI data targeting language processing areas (e.g., infe-
rior frontal, superior temporal, anterior cingulate cortex) through the auditory presentation of mathematical 
problems and comprehension questions from stories66. We also use the HCP resting-state data, and compare all 
our results to the literature and existing neuroanatomical knowledge. Additionally, we use the realistic Fibercup 
diffusion phantom, combined with synthesized resting-state fMRI signal, to illustrate how the proposed model 
can recover missing or under-estimated connections. Because ground truth structural connectivity is available 

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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for the Fibercup phantom, we decide to focus on this dataset to assess the performance of the method to enhance 
structural connectivity mapping. Additionally, we compare our model to existing state-of-the-art methods and 
assess its sensitivity to variations in fMRI data quality.

Discovering function-specific anatomical circuits using the Human Connectome Project data.  
Twenty-five healthy subjects were randomly selected from the HCP ConnectomeDB database [https://db.human-
connectome.org/], to demonstrate the extraction of language processing circuits and resting-state networks67. 
Results for the proposed joint structural-functional connectivity model are presented, and compared with struc-
tural and functional (using Pearson correlation) networks.

Language processing circuits.  Without functional information, whole brain anatomical networks, estimated from 
dMRI using deterministic tractography, are largely dominated by the main white matter pathways (e.g., cor-
pus callosum, superior longitudinal fasciculus). For reference, we illustrate this effect in Fig. S1 (Supplementary 
Material), which shows the consistency (across subjects) of the “strongest” structural connections. It can be noted 
that the top 20 links are consistently located between sub-cortical areas, as well as subcortico-cortical pathways.

Figure 4 shows the consistency (across the twenty-five subjects) of the identified top-ranked connections 
using the structural-functional (flow) brain network model. For comparison, results from the conventional func-
tional connectivity network are also presented in Fig. S2 (Supplementary Material).

The functional connectivity network (Fig. S2, Supplementary Material) is calculated by first running, for each 
subject, a general linear model (GLM) analysis contrasting the comprehension questions and math problems 
with baseline. The maps of regression parameter estimates were combined to identify brain areas activated by 
either one of the tasks. This step localizes language processing areas such as the inferior lateral frontal cortex, and 

Figure 4.  Consistency of the top (strongest) structural-functional connections of the language processing 
areas, estimated using the proposed information flow model is shown in panels a (top 5), b (top 10), c (top 15) 
and d (top 20). The graphs are generated by selecting the top 5, 10, 15 and 20 connections from each individual 
subject. The edges’ width, for each connection, represents the consistency across subjects, i.e., the frequency 
of identification across all subjects for a given threshold (5, 10, 15, 20): The thicker the edge is, the more 
consistently the link is identified as a top-ranked connection across individuals. The nodes color represents the 
anatomical location: red for frontal, orange for parietal, blue for occipital, green for temporal, bright green for 
sub-cortical, yellow for cerebellum and bright blue for brainstem. Abbreviations for region labels are provided 
in Table S1 (Supplementary Material).

https://db.humanconnectome.org/
https://db.humanconnectome.org/
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temporal cortex. We chose to use this approach, rather than contrasting the comprehension questions versus math 
problems66,67, to attempt to recover more areas, involved in arithmetic tasks, which have been shown68 to recruit 
brain networks overlapping with language comprehension areas (e.g., inferior frontal gyrus). Subsequently, for all 
possible pairs of those areas, the Pearson correlation coefficient between their respective fMRI signal is computed. 
It is used to define the weight of the corresponding edge in the (functional) brain network.

In Fig. 4, brain connections which are consistently identified across subjects by the proposed method are 
mostly located in the temporal and pre-frontal cortices, with slightly stronger connectivity or more connections 
identified in the left hemisphere, as expected from known lateralization of the language functions in humans. In 
addition, some connections are also identified with the occipital, parietal cortex, and sub-cortical areas.

In particular, as shown in Fig. 4(a), pathways from/to the superior temporal cortex, bilaterally (rST and lST), 
where the primary auditory cortex is located, are identified as the most consistent across subjects, and most sig-
nificant (ranked as top 5) by the proposed approach. Specifically, we find that these pathways include connections 
between: the superior temporal and middle temporal cortices, the superior temporal cortex and supramarginal 
gyrus (Brodmann area 40, involved in reading), and the superior temporal cortex, transverse temporal cortex, 
insular cortex, pars opercularis (Broadmann area 44, involved in semantic tasks), pars triangularis (Broadmann 
area 45, also involved in semantic tasks), and the precentral gyrus.

Those pathways were reported in prior work on the human language and speech processing pathways69–73 as 
connections between the primary auditory cortex, Wernicke’s area (posterior part of the superior temporal gyrus) 
and Broca’s area (Brodmann areas 44 and 45), and from the primary auditory cortex to the supplementary motor 
areas.

In contrast, the correlation-based functional networks shown in Fig. S2 (Supplementary Material) identify 
a large number of inter-hemispheric connections between language processing areas, as a result of similarity 
between the fMRI time-courses from homologous brain areas. It can be observed that the functional networks 
connect many areas, that are potentially related to the auditory language task. Many of those direct functional 
connections do not necessarily reflect direct structural connectivity (e.g., between the left and right banks of the 
superior temporal sulci, or the left and right transverse temporal cortices) and it is therefore not possible to infer 
information about the underlying structural circuits. We note that our proposed approach identifies circuits with 
patterns which are similar to recent results reported in the literature69. Moreover, our joint structural-functional 
network model identifies connections with greater consistency across subjects (i.e., edge thickness in Figs S1, S2 
and 4), by comparison with the functional or structural networks.

In addition to results on the consistency of connections, networks representing the top 20 or 50 connections, 
with the highest average “strength” (across subjects), are presented in Figs 5, S3 and S4 (Supplementary Material), 
respectively for joint structural-functional (flow), structural, and functional connectivity. In these figures, the 
edges’ thickness is proportional to the average connectivity values. Additionally, the complete lists of connections 
corresponding to the 50 pathways with strongest connectivity values are presented in Supplementary Material 
Tables S2, S3 and S4.

To further characterize the full distribution of connectivity values (over all edges of the network), scatter plots 
of their mean (across subjects) and standard deviation are presented in Fig. S6 (Supplementary Material) for 
structural, functional and joint structural-functional connectivity, respectively. Contrary to Figs 4, 5, S1, S2, S3, 
and S4, the scatter plots in Fig. S6 do not rely on the selection of edges with the highest connectivity (e.g. top 5), 
and therefore provide complementary information about the range of connectivity values, and their variability. 
Each point (blue or red) in the scatter plots represents a connection between a specific pair of brain areas. The 
red points correspond to connections with at least one node in the temporal cortex (language processing areas). 
For example, the cluster of red points with mean value close to 1 and standard deviation close to 0, in the scatter 

Figure 5.  Top 20 (a) and 50 (b) structural-functional connections of the language processing areas, with 
the strongest mean normalized connectivity (across subjects). Networks are estimated using the proposed 
information flow model. Edges’ width is proportional to mean connectivity value across subjects. The color code 
and labels are identical to Fig. 4.
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plot for the joint structural-functional network, corresponds to the connections in Fig. 5 (Panel a) located in the 
temporal and parietal areas.

Summary: Figs 4, 5, S1, S2, S3, S4, and S6 (Supplementary Material), and Tables S2, S3 and S4 (Supplementary 
Material) illustrate some of the advantages of our proposed joint structural-functional (flow) brain network 
model to leverage functional connectivity data in order to identify function-specific brain circuits, and simultane-
ously enhance corresponding pathways. In particular, we show that our approach successfully isolates twenty-four 
pathways specific to language processing functions, all of them having at least one node located in the (left or 
right) temporal lobe (see Fig. 5(b)). Moreover, we find that the vast majority of these connections are located 
within each hemisphere, while few inter-hemispheric pathways were found through the corpus callosum74.

These connections, including pathways between the superior temporal and transverse temporal sulci, trans-
verse temporal sulcus and insula, transverse temporal sulcus and postcentral gyrus, transverse temporal sulcus 
and supramarginal gyrus, banks of the superior temporal sulcus and middle temporal sulcus, precentral gyrus and 
superior temporal sulcus, belong to the language processing circuit69–73. In contrast, the (non function-specific) 
structural network only identified eight connections related to language processing.

For the functional connectivity, nineteen connections associated with areas located in the temporal lobes were 
identified, with the majority (eleven) located between inter-hemispheric locations. These reflect strong func-
tional correlation between cortical areas with similar response to the stimulus used in the task fMRI experiments, 
rather than language processing circuits. Since our proposed method jointly leverages functional and structural 
connectivity information, it exhibits the closest pattern to the known structural connectivity basis of language 
processing69–74.

Resting-state circuits.  In this section, we utilize resting-state fMRI75, in combination with dMRI data, to identify 
brain circuits associated with specific brain functions (e.g., motor, audition, vision). The overall resting-state 
(correlation) functional network and joint structural-functional (flow) network are presented in Fig. 6. In addi-
tion, and as a reference, we show an average resting-state activation map, obtained from the ten most reliable 
components from the 20-dimensional ICA analysis [https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/] of 
the BrainMap database37,76. In this section, functional connectivity is estimated by the Pearson correlation of 
resting-state fMRI time courses between cortical/sub-cortical areas, and the average values of the ICA spatial 
maps within each cortical/sub-cortical area define the Ri

m for the joint structural-functional network model (See 
Section 4).

The networks in Fig. 6(a) and (b) illustrate the frequency of occurrence, across all subjects, of each connection 
(represented as the edges’ width), after selection of the 100 strongest connections for each subject. Both functional 
and joint structural-functional (flow) networks contain nodes with a high number of connections, which are in 
agreement with activations shown on the map in panel (c). However, it can be noted, as for the language process-
ing circuits analysis, that the functional network presents a large number of connections between brain areas 

Figure 6.  Resting-State Circuits estimated from the 25 HCP subjects using correlation-based functional 
connectivity (a) and the proposed joint structural-functional model (b). The structural connectivity 
information depicted in Fig. S1 (Supplementary Material) was used to generate results in panel (b). 
Additionally, an aggregate of the resting-state activation maps, obtained from ICA analysis of data from the 
BrainMap database37, is shown in panel (c) as a reference. In panels (a) and (b), the edges’ width represents the 
frequency of occurrence across subjects, for the 100 strongest connections. In panel (b), the network shown is 
an aggregate of all brain circuits corresponding to the 10 ICA components (i.e., ICA modes) shown in Fig. 7.

https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/
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likely to not be anatomically connected. The proposed joint model generates an overall structural-functional net-
work which is in agreement with recent works on the interaction between structural and functional networks13,77.

Following the naming convention for the ten most reliably identified ICA spatial maps37, we present results 
from the joint structural-functional network model in Fig. 7. We demonstrate the capability of the proposed 
model to identify brain circuits associated with specific brain functions. Each of the ten primary ICA maps cor-
responds to a major brain function, such as the auditory or motor network, and we therefore aim to identify the 
corresponding structural sub-networks. By incorporating functional and structural information, we further aim 
to enhance the identification of those structural connections (as compared to, e.g., pure tractography results with 
initialization in activated areas). Well-known brain circuits13,16,78–80 are consistently identified across subjects, 
using our proposed joint network model. Figure 7 provides a visual overview of the findings, which are summa-
rized next. We recall that, for example, Map 120 denotes spatial component number 1 from the 20-dimensional 

Figure 7.  Resting-state structural-functional networks (e.g., Net 120), for the ten most reliably identified resting-
state spatial maps (e.g., Map 120) using a 20-dimensional ICA decomposition of the BrainMap data37: Each map 
and network correspond to a major brain function (following the naming convention from Smith et al.37). We 
show results for the visual network (Maps and Nets 120, 220 and 320), default mode network (Map and Net 420), 
cerebellum network (Map and Net 520), sensorimotor network (Map and Net 620), auditory network (Map and 
Net 720), executive control network (Map and Net 820) and frontoparietal network (Maps and Nets 920 and 1020). 
All spatial maps (i20) were converted to z statistics using a mixture-model fit and thresholded between Z = 1.5 
and Z = 5, and the structural-functional networks represent the corresponding brain circuits generated by our 
proposed method. The edges’ width represents the frequency of occurrence of the strongest connections across the 
25 subjects.
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ICA decomposition of the BrainMap data37, and Net 120 denotes our corresponding structural-functional net-
work, estimated using the proposed joint (flow) network model for the twenty-five HCP subjects. The ICA modes 
from our analysis of the HCP datasets were identified by matching them to the ten spatial components from the 
BrainMap data, using correlation.

•	 Visual Network (Maps and Nets 120, 220, 320): Homologous areas of the occipital and parietal cortices were 
found to be connected, via the corpus callosum16. In Net 120, the cuneus, pericalcarine cortex, lateral occipital 
cortex and inferior/superior parietal cortices were consistently identified as part of this inter-hemispheric 
circuit, with a certain emphasis on the medial visual areas. In addition, we found the lingual gyrus to be con-
nected with the pericalcarine cortex, within each hemisphere, and so was the isthmus of the cingulate gyrus 
with the lingual gyrus and the precuneus (medial part of Brodmann area 7, involved in vision and proprio-
ception)81. Consistent intra-hemispheric connections between the precuneus and cuneus were also identified. 
Finally, a strong and lateralized connection (left hemisphere only) between the inferior parietal cortex and the 
banks of the superior temporal sulcus82 was found.
In Net 220, greater connectivity with the occipital poles was found. Bilaterally, the lateral occipital pole was 
found to be connected with the fusiform gyrus (involved in visual recognition) and temporal cortex. We 
also identified connections, within each hemisphere, between the superior parietal cortex and thalamus.
In Net 320, similar connectivity patterns were observed with lateral pathways dominating. The superior 
parietal lobule (involved in visuospatial orientation and receiving visual input) was notably connected with 
the thalamus, insula and pallidum.

•	 Default Mode Network (Map and Net 420): Consistent with the literature on cortical/sub-cortical areas 
involved in the default mode network83–86, the joint structural-functional network model identified connec-
tions between the medial parietal cortex, bilateral lateral parietal cortex and frontal cortex. In particular, the 
cingulum tract plays an important role36,84 in the connection of the precuneus and posterior cingulate cortex 
with the medial frontal cortex. Bilateral connections between the cuneus, precuneus, isthmus of the cingulate 
cortex, posterior cingulate cortex, rostral/caudal anterior cingulate cortex and frontal cortex (including the 
rostral frontal cortex, superior frontal cortex, medial orbitofrontal cortex, and pars opercularis/triangularis/
orbitalis) were consistently identified across the twenty-five subjects. In addition, connections between the 
medial parietal cortex and the inferior/superior parietal cortex and supramarginal gyrus were found.

•	 Cerebellum Network (Map and Net 520): Because the cortical/sub-cortical labeling used in this work (see 
Section 4) creates only two labels for the left and right parts of the cerebellum, identification of connections 
between specific lobes or lobules was not possible. Nonetheless, connections between the left and right cere-
bellum were consistently found with the brainstem (as well as with each other), with additional connections 
to the thalamus and frontal/occipital cortex.

•	 Sensorimotor Network (Map and Net 620): We found consistent connections (across subjects), via the corpus 
callosum, between the left and right paracentral lobules (which include the supplementary motor area and 
somatosensory functions). Within each hemisphere, we found the paracentral lobule to be connected to the 
thalamus, via the posterior cingulate cortex, and to the precentral cortex. Consistent connections were also 
found bilaterally between the postcentral cortex, the supramarginal gyrus, banks of the superior temporal 
sulcus and superior temporal cortex.

•	 Auditory Network (Map and Net 720): The resting-state auditory network is known to include the superior 
temporal gyrus, Heschl’s gyrus and the posterior insular cortex. Using the joint structural-functional network 
model, we identified circuits within each hemisphere (no inter-hemispheric connections were found), with 
greater connectivity in the left hemisphere. This increased connectivity may reflect known lateralization of the 
language areas in humans. Bilateral connections between the superior temporal sulcus and several other areas 
were found, which include: the middle temporal gyrus (involved in reading), banks of the superior temporal 
gyrus (involved in voice interpretation) and transverse temporal gyrus (Heschl’s gyrus). The superior tempo-
ral gyrus was also found to be connected to the insula.

•	 Executive Control Network (Map and Net 820): Connections for the executive control network were essen-
tially located within the frontal areas. The rostral anterior cingulate was found to be connected, bilaterally, 
with the superior frontal cortex, caudal anterior cingulate, and nucleus accumbens. The rostral middle frontal 
cortex was also found to be heavily connected to other frontal and sub-cortical areas, including the caudal 
middle frontal cortex, pars orbitalis, caudate nucleus, pallidum, nucleus accumbens, and insula. Interestingly, 
putative connections between the frontal areas and the inferior parietal cortex (via the striatum) were iden-
tified too, and may be part of the frontoparietal system87 which is associated with attention and the detection 
of novel events.

•	 Frontoparietal Network (Maps and Nets 920, 1020): Both networks 920 and 1020 were found to be highly lat-
eralized and mirrored. In network 920, several frontal areas (with the rostral middle frontal cortex and pars 
triangularis playing a central role) were identified as connected to parietal areas via the insula, putamen and 
pallidum. In network 1020, similar frontal areas were identified as connected to parietal and temporal (lan-
guage) areas via the insula, putamen and pallidum.

Those results illustrate the ability of the proposed method to reliably identify function-specific brain cir-
cuits, and better capture the structural connectivity pattern supporting these functions. This opens potential 
new avenues to investigate changes in those networks, for instance in the context of development/aging and 
neurodegeneration.

Enhanced structural connectivity mapping and validation using a phantom dataset.  In 
order to demonstrate the ability of the proposed model to recover structural connections that are typically 
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under-estimated when only using dMRI tractography, we focus next on a phantom dataset [http://www.trac-
tometer.org/original_fibercup/data/] (Fibercup)58–60. These results are presented for validation and performance 
evaluation, which would be difficult to achieve without ground truth information. Despite their relatively simple 
nature, these experiments are meant to confirm the ability of our model to enhance structural connectivity map-
ping and further support results presented in Section 2.2. First, we present results using structural and functional 
connectivity information separately to illustrate the possible shortcomings and limitations of such approaches25. 
Second, the performance of the proposed joint model is examined by comparison with the ground truth connec-
tivity information available for the phantom data. Finally, the performance of our proposed method is compared 
with the closest joint modeling method45 to our work.

Separate structural and functional connectivity analyses.  Here, we describe results for connectivity networks 
using deterministic and probabilistic tractography methods, as well as functional correlation from simulated 
fMRI signals, as shown in Fig. 8. The functional network was obtained from the average (over 100 realizations) 
correlation between fMRI signals simulated at each of the sixteen end-points (P1, …, P16), using the approach 
described in Section 4.

In Fig. 8, panels (c) and (d) highlight some of the typical limitations of deterministic tractography approaches. 
In areas where fibers cross or diverge, streamlines stop or may follow erroneous directions. This results in both 
false-positive (spurious) and false-negative (missed) pathways (e.g., connections P7-P9, P8-P9 and P15-P16). In 
general, deterministic tractography appears to be more prone to false-negative (missing) connections. Conversely, 
probabilistic tractography, because of its ability to explore a larger set of candidates streamlines, can be prone to 
false-positive (spurious) connections. In Fig. 8(e), although few connections are missed, it can be observed that 
several spurious pathways were indeed identified.

Functional MRI data was generated via realistic simulations, using the SimTB Toolbox88, so that nodes 
belonging to the same sub-network share a common activity pattern (see Section 4). Similar to brain data, the 
correlation-based functional network, illustrated in Fig. 8(f), successfully captures the sub-networks (identified 
by the wider edges). However, within a given sub-network, all nodes are strongly connected and it is therefore 
impossible to extract the underlying structural circuits. Moreover, partial correlations across sub-networks (e.g., 
between the red and blue sub-networks) can also make it challenging to identify those circuits.

Figure 8.  Fibercup58–60 structural and simulated functional connectivity: Panel (a) shows the ground truth 
fibers and panel (b) shows the corresponding ground truth structural network, with endpoints (nodes) Px 
sharing the same color if they belong to the same sub-network. Panel (c) illustrates results obtained using 
deterministic tractography and panel (d) shows the corresponding structural network. Panel (e) shows another 
structural network, obtained from probabilistic tractography. Panel (f) shows the functional network, obtained 
from simulated fMRI data (see text and Fig. S5 in Supplementary Material). The edges’ width represents 
streamlines count in panels (d and e), and magnitude of fMRI correlation in panel (f). Panel (a) is adapted from 
Fig. 4 in Fillard et al.58.

http://www.tractometer.org/original_fibercup/data/
http://www.tractometer.org/original_fibercup/data/


www.nature.com/scientificreports/

1 2SCientifiC Reports |  (2018) 8:4741  | DOI:10.1038/s41598-018-23051-9

We now illustrate how the joint modeling of structural and functional connectivity information can help iden-
tify the five (blue, green, orange, cyan, red) “function-specific” circuits, while also improving the reconstruction 
of under-estimated structural pathways.

Joint structural-functional connectivity analysis.  We assessed the robustness of our model to variability and 
imperfections in the fMRI data. 100 random instances of the fMRI signals were created as described in Section 
4, by modulating the noise level and amplitude of the signal at each voxel within the end points (P1, …, P16). 
Figure S5 (Supplementary Material) illustrates how a standard ICA analysis (similar to the results presented in 
Section 2.2) leads to “resting-state” networks which coincide with the five networks shown in Fig. 8(b). We use 
these maps to quantify the functional correlation between nodes. Because of noise, it can be noted that certain 
maps in Fig. S5 (Supplementary Material) (e.g., panels (a), (b), (f) and (g)) include weak functional correlation 
with incorrect modes. In panel (b), for instance, the blue sub-network is clearly identified, as well as moderate 
connectivity with the red network (which should ideally only appear in panel (e)). This is intended and designed 
in the fMRI simulation method to test the robustness of the proposed model to imperfect functional data.

In Fig. 9, we present the results for the proposed joint structural-functional network model, combining struc-
tural connectivity from probabilistic (left) or deterministic (right) tractography with fMRI data. Two representa-
tive but different realizations of the simulated fMRI data were used (fMRI 1 and 2), as illustrated in Fig. S5.

We focus first on the enhancement of structural connectivity (top row) and emphasize that, since structural 
connectivity values are different between deterministic and probabilistic tractography, it is not meaningful to 
directly compare link widths. However, we note that enhancement of (under-estimated) structural connectiv-
ity (i.e., parameter Pl in Table 1) occurs more often in the deterministic tractography case (links P1-P2, P3-P4, 
P8-P10, P15-P16), which is possibly due to the fact that deterministic tractography tends to “miss” more con-
nections. In addition, most links involved in “fiber crossing” configurations, and therefore more susceptible to 
being under-estimated, (e.g., P5-P7, P6-P9, P9-P12, and P11-P15) were enhanced in all cases. Finally, a spurious 
“direct” connection between P11 and P16 is created by the algorithm. We hypothesize that this is a consequence of 
the connection P15-P16 being missed by the deterministic tractography method, which leads to equal probability 
of existence for links P11-P16 and P15-P16. The joint structural-functional connectivity network successfully 
recovers nearly all connections present in the ground truth network.

Additional experiments were performed, for deterministic tractography and with 100 different functional 
connectivity networks, to assess the reproducibility of results from Fig. 9. Figure 10 provides the mean and stand-
ard deviation, for each connection, of the correction parameter Pl for under-estimated structural connectivity. 
This graph demonstrates that the proposed method consistently recovers problematic connections, including 

Figure 9.  Circuits estimated using the proposed joint structural-functional network model with two 
different realizations of the fMRI signal (fMRI 1: top row from Fig. S5; fMRI 2: bottom row from Fig. S5 in 
Supplementary Material). Despite the variation in the fMRI data, results are very similar for each tractography 
method. Networks in the top row illustrate the incremental connectivity for connections that are under-
estimated by tractography analysis only (e.g., P5-P7). Networks in the bottom row demonstrate the joint 
networks obtained from the proposed scheme, that correctly estimates nearly all connections from the ground 
truth data.
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pathways with crossing or bending configuration, such as P5-P7, P6-P9, P8-P10, P9-P12, P11-P15 and P15-P16. 
In particular, P6-P9, P8-P10 and P11-P15 are not well reconstructed by deterministic tractography and therefore 
benefit from this approach. Finally, false-positive connections obtained from tractography, such as P6-P7, P7-P9, 
P8-P9, P9-P10, and P12-P15 are never enhanced (Pl = 0).

Lastly, we compare our proposed method with a recent joint probabilistic framework based on Gaussian 
Mixture Modeling (GMM)45, which is also the closest work to ours. In this approach, structural connectiv-
ity (defined by the mean fractional anisotropy along pathways) and functional connectivity (correlation) are 
assumed to be drawn from one of six joint Gaussian distributions, which model the probability of being anatomi-
cally connected, functionally positively correlated, and functionally negatively correlated. The parameters for the 
joint GMM are learned using the expectation maximization (EM) algorithm, and the maximal posterior estima-
tor is used to determine which of the six categories each link belongs to. The mean FA of the Fibercup phantom is 
shown in Fig. 11(a). The mean FA indicates that the links P1–P2, P4–P5, P5–P6, P6–P9, P7–P9, P8–P9, P8–P10, 
P9–P10, P15–P11, P15–P12, and P13–P14 are connected. Among them, five links correspond to false positives 
and four links are missing. Figure 11(b) shows how frequently each structural connection is identified, over 100 
trials. The model is able to correctly recover the four missing connections P3–P4, P5–P7, P9–P12 and P16–P15. 
However, it also generates several other spurious connections. Results for positively/negatively correlated func-
tional networks are shown in Fig. 11(c) and (d), respectively. In panel (c), we note that the connection between 
nodes P8 and P10 is missing, and that spurious connections between P1, P2, P3, P4, P5 and P7 are generated. 
Based on these results, we conclude that our proposed model produces improved results, as it minimizes the 
number of false positive connections while still recovering most ground truth connections (see Fig. 9 compared 
to Fig. 11(b)).

Discussion
We have introduced a joint structural-functional brain network model using the concept of information flow, 
which integrates diffusion MRI and functional MRI data to enable the identification of function-specific ana-
tomical circuits from whole brain networks. Results from the HCP datasets demonstrate the possibility to reli-
ably identify the language processing circuits, as well as the ten major resting-state circuits. Additionally, in the 
Fibercup phantom validation, we showed that the proposed model can successfully recover connections missed 
by tractography algorithms, and performed better than a recent state-of-the-art joint modeling algorithm45.

We note that the objective function of the network model can have a significant impact on the topology of the 
estimated joint flow network. In this paper, the min-max objective function was chosen to balance the flow in 
accordance with the strength of structural connectivity. Therefore, the final flow network represents the structural 
circuits under the constraints imposed by the functional connectivity data. Other objective functions may lead to 
complementary information and will be investigated in future work.

The proposed approach provides a novel and effective way to estimate function-specific structural connec-
tivity in individual subjects (vs. group analysis). This may be useful in a wide range of neuroscience and clinical 
applications, such as the investigation of patterns of dysfunction in communication disorders (e.g., dyslexia), or 
neurodegeneration (e.g., Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Parkinson’s disease), where 
certain functions (e.g., language, memory, motor) are known to be affected. More specifically, applications of our 
method to clinical studies could lead to improved

•	 Identification of connectivity alterations in brain diseases: Beyond the numerous applications in which either 
functional connectivity patterns, or diffusion properties are compared between healthy controls and patients 
with neurological or psychiatric disorders89–99, the proposed approach uniquely enables the use of a new joint 
structural-functional “feature space”. By detecting differences in information flow (i.e., the combination of 
functional and structural connectivity, as demonstrated in Fig. 4 for instance), one may better understand 
the functional disruptions, and their associated neurobiological substrate (white matter pathways), which 
could ultimately lead to novel biomarkers. Moreover, if a specific function is known to be affected in a brain 
disorder (e.g., motor network in ALS), our method enables improved extraction of the corresponding white 
matter pathways, thereby facilitating the discovery of alterations which may not be identified by diffusion 
MRI tractography only. Of course, the drawback of this approach is that anatomical connections which do 
not support that specific brain function will not be tested and potential alterations could therefore be missed. 

Figure 10.  Enhancement of structural connectivity: Mean and standard deviation of the correction parameter 
(Pl in Table 1) for under-estimated structural connectivity of each link. These results were generated using 
deterministic tractography and 100 simulated fMRI instances. Connections P5-P7, P6-P9, P8-P10, P9-P12, 
P11-P15 and P15-P16 are consistently enhanced.
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In this situation, using resting-state fMRI in our model may be a better option, allowing the investigation of 
structural networks associated with all major brain functions.

•	 Clinical outcome prediction: Several prior works100–102 have demonstrated the ability to improve the prediction 
of clinical assessment scales or behavioral outcomes such as memory, using fMRI or dMRI. The additional 
information provided by our information flow network, or properties of a function-specific structural net-
work, may lead to increased accuracy of such predictions.

•	 Patients stratification: The ability to separate structural networks/pathways based on the specific function they 
support offer new and rich information that could help identify patients subgroups in heterogeneous disor-
ders such as schizophrenia103–105. We envision that new machine learning or classification algorithms may be 
able to take advantage of such information to improve their classification performance.

•	 Longitudinal studies and assessment of treatment effects: fMRI and dMRI have been widely used to monitor 
disease progression, or the effects of treatments in neurodegenerative disorders such as Alzheimer’s disease 
or ALS101,106–108. We believe that our approach might provide new information (joint flow network) or more 
specific data (enhanced structural connectivity mapping by incorporating fMRI data) which could help detect 
longitudinal changes, especially in disorders where the effect size of imaging biomarkers can be small, par-
ticularly in the early stages of the disease.

•	 Pre-operative mapping and targeting intervention: MRI has been utilized to provide pre-operative functional 
brain mapping, and help guide neurosurgical planning, especially to identify and avoid areas during surgical 
resection, that provide essential functions such as motor and language109–113. With the proposed scheme, 
both cortical/sub-cortical areas and associated white matter pathways which must be avoided could be iden-
tified simultaneously. Similarly, our approach could help other clinical interventions where localization of a 
functional area or white matter fiber bundle is critical, such as placement deep brain stimulation surgery, or 
transcranial magnetic stimulation (TMS).
By identifying targeted structural sub-networks supporting distinct functions, our model may also help 
focus and improve advanced analyses in the following ways:

•	 Increase statistical power in graph-theoretic network analysis: Whole brain network analysis is useful to 
capture the interactions between several circuits and brain areas for cognitive, behavioral or motor func-
tions114–116. Using prior knowledge about those functions, targeting only specific brain circuits identified 
with our proposed method could enable the detection of smaller effects.

•	 Improve the efficiency of time consuming investigations such as effective connectivity mapping: Computing 
effective connectivity is computationally expensive117,118. This could be partly overcome by performing 
effective connectivity estimation only for the connections of interest (i.e., for a specific brain function and 
associated structural network).

Our joint flow network model constitutes a useful tool to explore the relationship between functional and 
structural connectivity9–21. It could also be adapted to directly leverage effective connectivity information, from 
dynamic causal modeling or Granger causality119–126, and estimate the directionality of information flow. Finally, 
recent work127 has demonstrated that many tractography algorithms systematically identify a significant number 
of invalid white matter pathways, while (although to a far lesser extent) missing existing tracts. Such findings have 

Figure 11.  Comparison with the Gaussian Mixture Modeling (GMM) approach by Venkataraman et al.45: 
In this joint probabilistic model, the mean fractional anisotropy (FA) along connections (Panel a) is used as 
an estimate of structural connectivity, and combined with (correlation) functional connectivity (as shown 
in Fig. 8(f)). The probabilistic model, using the EM algorithm, determines whether each potential link is 
anatomically connected (Panel b) and functionally positively (Panel c) or negatively (Panel d) correlated. The 
top row shows connectivity matrices, while the bottom row shows corresponding network representations.
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serious implications for clinical applications such as neurosurgical planning111, and our proposed method may 
help mitigate the number of false-negative tracts. Future work will also focus on the generalization of the correc-
tion term Pl, so it can take negative values and therefore minimize the number of false-positive tracts.

Methods
Datasets.  Two different datasets were utilized in this study: Twenty-five subjects from the Human 
Connectome Project (HCP) Young Adult study56,57, and the realistic Fibercup diffusion phantom58–60.

Diffusion MRI, task-fMRI and resting-state fMRI HCP Open Access data were used to estimate the language 
processing and resting-state circuits (Section 2.2). It is publicly available from the ConnectomeDB database 
[https://db.humanconnectome.org]. All data were acquired on a customized Siemens 3T Connectome Skyra scan-
ner with the following parameters: dMRI was obtained with 1.25 mm isotropic voxels, TR/TE = 5520/89.5 ms, 
three b-values of 1000, 2000 and 3000 s/mm2 and 90 directions per b-value with 18 additional b = 0 volumes128. 
Task and resting-state fMRI was obtained with 2 mm isotropic voxels, TR/TE = 720/33.1 ms, with respectively two 
runs of 3:57 min each, and four runs of 14:33 min each66,75.

The Fibercup data provides diffusion MRI data and the ground truth fibers layout, which can be used for 
validation. It is publicly available from the Tractometer website (http://www.tractometer.org/original_fibercup/
data/) from the Sherbrooke Connectivity Imaging Lab. Ground truth for seven fiber bundles (Fig. 8(a)) and 
centers of the sixteen regions of interest (Fig. 8(c)) are available. The phantom simulates a coronal section from 
a human brain, and is suitable for evaluating connectivity estimation algorithms. The dMRI data of the phantom 
was obtained with 3 mm isotropic voxels, TR/TE = 5000/102 ms, and 64 directions uniformly distributed over the 
sphere. The data with b-value of 2000s/mm2 was used in our experiments.

Simulation of fMRI data.  The fMRI BOLD signal for the Fibercup phantom is synthesized 100 times using the 
SimTB Toolbox88, and using the spatial patterns shown in Fig. 12(a). The images are generated with size 64 ×  
64 × 3, with 2 mm isotropic voxels, TR = 72 ms, and 1200 time points (similar to the HCP fMRI acquisition 
parameters). For each of the 100 realizations, the spatial coverage of each region is randomly and independently 
scaled by a factor (between 0.8 and 1.2), drawn from a uniform distribution to simulate structural variability. 
For regions belonging to the same circuit (e.g., P8 and P10), the BOLD signal shares the same activation pattern 
(block design) as illustrated in Fig. 12. Each time course consists of 20 ON time-blocks of 30 TRs and 20 OFF 
time-blocks of the same length. Unique random events for each network were added for each TR with a proba-
bility of 0.2 to introduce variability in the signal. Figure 12(c) shows the five base BOLD time courses allocated to 
the five networks. In Fig. 12(d) and (e), low correlations between base time courses and activation spatial maps 
illustrate their independence. Additionally, Rician noise was added to the BOLD signals.

Figure 12.  fMRI simulation for the Fibercup phantom: Five functional networks, corresponding to the 
structural connectivity pattern of the Fibercup phantom, were created to share similar fMRI time courses (e.g., 
TC1), as shown in panel (a). Nodes from the same network have the same color. A simple block design (Panel b) 
was used to generate BOLD signal time courses (TC) for each functional network (Panel c) by convolution with 
the hemodynamic function. Panels (d) and (e) show the correlations between base time courses and activation 
spatial maps (SM), and illustrate their independence. Panel (a) is adapted from Fig. 4 in Fillard et al.58.

https://db.humanconnectome.org
http://www.tractometer.org/original_fibercup/data/
http://www.tractometer.org/original_fibercup/data/
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Data processing.  Diffusion MRI data.  The HCP dMRI data was first preprocessed following the default 
HCP preprocessing pipeline (v3.4)129, which includes correction for distortions and motion. Preprocessing is not 
needed for the Fibercup phantom data. After preprocessing, the Diffusion Toolkit/TrackVis [http://trackvis.org] 
was employed for diffusion tensor estimation and tractography130. The normalized streamline count between 
brain regions defined from the Desikan-Killiany brain parcellation [https://surfer.nmr.mgh.harvard.edu/fswiki/
CorticalParcellation] was used to define structural connectivity, i.e., link capacity in the network, denoted as Dl in 
the network model described in Section 2.

Task and resting-state fMRI data.  The HCP task-fMRI data was first processed following the HCP “fMRIVol-
ume” pipeline (v3.4)129, which includes gradient unwrapping, motion/distortion correction, registration to struc-
tural scan, nonlinear registration into MNI152 space, and intensity normalization. Subsequently, spatial 
smoothing and activation maps generation using the general linear model (GLM) implemented in FSL’s FILM 
(FMRIB’s Improved Linear Model with autocorrelation)55 were performed. Additional details about the HCP 
“fMRIVolume” pipeline can be found in Barch et al.66. When computing the “average” Pearson correlation 
between pairs of brain areas (each with multiple fMRI time courses), the Fisher z-transformation was used before 
and after averaging correlation coefficients. For task-fMRI, Ri

m is defined as the average value from the maps of 
regression parameter estimates (story and math tasks) within each cortical/sub-cortical area.

The HCP resting-state fMRI was also processed following the HCP “fMRIVolume” pipeline (v3.4)129. Spatial 
independent component analysis (spatial ICA) was conducted utilizing FSL melodic and FIX53,54,131. Subsequently, 
we used a recently proposed statistical method132 to identify meaningful (i.e., not noise) ICA components. The 
average magnitude of a spatial map m in a region i is interpreted as the functional activation of that region for 
mode (resting-state network) m, and is denoted as Ri

m, in the network model. Before calculating the average 
functional activation, the spatial maps were refined by masking with the Desikan-Killiany brain parcellation. 
After the average functional activation is computed, regions were further classified into either active or inactive 
for each individual resting-state network (mode) using K-means132,133. Ri

m is set to zero for inactive regions.

Availability of material and data
The datasets analyzed for this study are available from the Human Connectome Project (Open Access Data) 
ConnectomeDB database and from the Tractometer website from the Sherbrooke Connectivity Imaging Lab (for 
the phantom data). All connectivity matrices and numerical tables presented in this manuscript will be provided 
upon request to the authors. The source code will also be made freely available at http://www.cmrr.umn.edu/ 
downloads/.
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