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Background: Chrysin is a natural flavone that is present in honey and has exhibited anti-
tumor properties. It has been widely studied as a therapeutic agent for the treatment of
various types of cancers. The objectives of this present study were to elucidate how
chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric
cancer cells.

Methods: Through the use of RNA sequencing, we investigated the differential
expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2,
H19 and let-7a overexpression and knockdown were conducted. Other features,
including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout
of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth
analysis in vivo.

Results: Our results identified COPB2 as a differentially expressed mRNA that is down-
regulated following treatment with chrysin. Moreover, the results showed that chrysin can
induce cellular apoptosis and inhibit cell migration and invasion. To further determine the
underlying mechanism of COPB2 expression, we investigated the expression of the long
non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment
with chrysin significantly increased let-7a expression and reduced the expression of H19
and COPB2. In addition, our results demonstrated that reduced expression of COPB2
markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression
is related to tumor growth.

Conclusions: This study suggests that chrysin exhibited anti-tumor effects through a
H19/let-7a/COPB2 axis.
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INTRODUCTION

Currently, gastric cancer (GC) is the third most common cause
of human mortality among malignant cancers (1). Although
surgical treatment for GC has led to increased survival rates, the
diagnosis of GC needs to improve (2). There are several potential
biomarkers of GC, including many genes and cell signaling
pathways that are involved in GC development, such as
BRCA2 and Ras-Raf-MAPK signaling (3, 4). Coatomer protein
complex subunit beta 2 (COPB2) is a protein that functions to
transport other proteins as vesicles from the endoplasmic
reticulum to Golgi apparatus (5). Recently, numerous reports
have indicated that COPB2 is abnormally expressed in colorectal
cancer (CRC), cholangiocellular carcinoma and lung cancer (6–
8). Previous studies have indicated that the reduction of COPB2
expression inhibited cell growth and induced apoptosis through
the JNK/c-Jun signaling pathway in RKO and HCT116 cells (9).
Moreover, miR4461 and miR335 were found to regulate COPB2
expression, which subsequently inhibited cell growth in CRC and
lung cancer cells (10, 11).

Increasing evidence suggests that non-coding RNAs
(ncRNAs), such as miRNAs, can be applied to the
classification of GC (12). As tumor suppressors, the let-7
family is down-regulated in GC (13). Increased expression of
let-7a has been shown to inhibit cell migration and invasion in
prostate cancer (14). Compared to the loss of let-7a expression,
the long non-coding RNA (lncRNA) H19 has been shown to be
highly expressed in cancers, including GC (15). As a molecular
sponge, H19 was found to be related to let-7 in the context of
breast cancer stem cells (16). Previous reports have suggested
that H19 expression suppressed endogenous let-7 while H19
mutant was not related to let-7 (17). Additionally, reduced
expression of H19 induced cellular apoptosis and inhibited cell
growth in HCC (18). However, there is little evidence to suggest
that COPB2 expression is associated with lncRNAs and miRNAs
in GC.

As a traditional Chinese medicine, chrysin is a natural flavone
that has anti-cancer function (19). Previous reports have
indicated that chrysin induces cellular apoptosis and inhibits
tumor glycolysis in HCC (20). Moreover, chrysin has been
shown to inhibit cell migration and invasion in melanoma cells
(21). In this study, chrysin was used to treat GC cells and we
screened differentially expressed genes using RNA-seq.
Additionally, we created a COPB2 knockout (KO) cell line
using the CRISPR/Cas9 system. Our findings indicate that
chrysin can regulate COPB2 expression through let-7, which is
antagonized by H19.
MATERIALS AND METHODS

Cell Culture and Chrysin Treatment
Human GC cell lines (SGC7901, MKN45 and BGC823) and the
human gastric epithelial cell line GES-1 were grown in
Dulbecco’s modified Eagle’s (DMEM; Gibco) supplemented
with 10% fetal bovine serum (Gibco), and cultured at 37°C in
5% CO2. The human gastric epithelial cell GES1 served as
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control. Experiments were conducted by treating GES1,
SGC7901, MKN45 and BGC823 cells with 40 mM of Chrysin
(Yuanye Bio-Technology, Shanghai) for 48 h when they reached
80 to 90% confluence.

RNA Isolation and RNA-Seq Analysis
GC cells were treated with 40 mM chrysin for 48 h, after which
total RNA was extracted. To remove and purify ribosomal RNA
(rRNA), we used the RiboZero Magnetic Gold Kit
(Epidemiology, USA). Then, RNA-seq (Sangon Biotech,
Shanghai, China) was carried out on HiSeq2500 (Illumina,
USA) to analyze raw reads, which were quality controlled by
FastQC. Using the HISAT2 software, the sequenced-reads were
aligned to the reference sequence. The gene expression analysis
and differential gene expression analysis were determined using
DEGseq and DESeq program, respectively, in HISAT2
(qValue <0.05, Fold Change >2). Using clusterProfiler, the
enrichment analysis, including Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway, of differential expressed genes
was determined.

Knockdown and Overexpression of
COPB2, H19 and let-7a
The pcDNA3.1 (GenePharma, China) vector served as the
backbone for the overexpression construct of COPB2
(pcDNA3.1-COPB2) and H19 (pcDNA3.1-H19). The cells
were cultured without FBS once they reached a confluence of
80% over 12–16 h. Next, the pcDNA3.1-COPB2 (2 mg),
pcDNA3.1-H19 (2 mg) and Lipofectamine 2000 (Invitrogen,
USA) were utilized for transfection. After incubating for 48 h,
G418 (400 mg/ml, Invitrogen, USA) was added to GC cells. The
clones were grown and picked after 14 days.

The siRNAs of COPB2 (si-COPB2) and H19 (si-H19) were
obtained from RiboBio (Guangzhou, China). The target
sequences of small interfering RNAs (siRNAs) are listed in
Table S1. The mimics and inhibitors of let-7a-3p, miR29b-3p
and miR675-3p were obtained from RiboBio. The GC cells were
transfected with knockdown (siRNA), let-7a-3p mimics, and let-
7a-3p inhibitor for 48 h. The nonspecific siRNA (si-Nc) was
transfected into control cells.

The COPB2-KO was generated using the CRISPR/Cas9
system (px459, Addgene, USA). The single guide RNAs
(sgRNAs) were designed as previously reported (22). The
sequences of sgRNAs are listed in Table S2. Transfection was
conducting using COPB2-KO (5 mg) and Lipofectamine 2000
(Invitrogen, USA) for 48 h. Next, puromycin helped select the
positive clones. After 14 days, the clones (COPB2-KO) were
grown and picked for subsequent western blot, qPCR and
sequencing analysis.

DNA Methylation Analysis
The Bisulfite Sequencing PCR (BSP) protocol was carried out as
previously described (23). Using the TIANamp Genomic DNA
Kit (TIANGEN, Beijing, China), the DNA of SGC7901 and
BGC823 cells were extracted. The DNA was modified using
CpGenome™ Turbo Bisulfite Modification Kit (Millipore, USA).
The differentially methylated regions (DMRs) of H19 were
June 2021 | Volume 11 | Article 651644

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Chrysin Induced GC Cells Apoptosis
amplified using nested PCR. The products, which included 10
positive clones, were analyzed using the BiQ Analyzer software
(http://biq-analyzer.bioinf.mpi-inf.mpg.de/tools/Methylation
Diagrams/index.php). The primers of H19 DMR are listed in
Table S3.

Gene Expression Analysis
The GC cells’ RNA was extracted and cDNAs were generated
using the cDNA first-strand synthesis kit (TIANGEN, China).
Gene expression analysis was conducted using quantitative real-
time PCR (qPCR). The conditions for qPCR included heating to
94°C for 3 min, and then denaturation at 94°C for 10 s after 35
cycles. The annealing was carried out at 59°C for 15 s. The
products were extended at 72°C for 30 s. The internal controls
included GAPDH and U6 for genes and miRNAs, respectively.
The primers for qPCR are listed in Table S4. The sequences of
COPB2 exon 5 and exon 22 are listed in Table S5.

Cell Migration and Invasion Analysis
Wound healing assay was conducted to analyze cell migration of
GC cells. In brief, 5 × 105 cells were cultured and seeded before
treatment with chrysin, siRNAs, overexpression vectors, let-7a-
3p mimics or let-7a-3p inhibitor. The cells were cultured after a
scratched line was created with culture medium without serum.
Cell migration was measured using the scratched area at 12, 24
and 48 h.

For cell invasion assays, GC cells (3 × 104) were cultured and
seeded with 20 ml Matrigel prior to treatment with chrysin,
siRNAs, overexpression vectors, let-7a-3p mimics and let-7a-
inhibitor (BD Biosciences, USA). Next, 0.5 ml of medium, which
contained 10% FBS, was added to the cells for 24 h. Then, 0.2%
crystal violet dye (Solarbio, China) was used to stain cells after
being fixed with 4% paraformaldehyde. The stained cells were
assayed using the ImageJ software.

Cell Counting Kit-8 Assay
The GC cells (4 × 103) were cultured and seeded prior treatment
with chrysin, siRNAs, overexpression vectors, let-7a-3p mimics
and let-7a-3p inhibitors in order to conduct cell viability assay, as
previously described (24). Then, Cell Counting Kit-8 (CCK-8)
solution (10 ml, Dojindo, Kumamoto, Japan) was added to each
well. After incubating for 2.5 h, the cells were measured using
absorbance (OD) at 450 nm to analyze cell viability.

Cell Apoptosis Analysis
GC cells (1 × 106) were cultured prior to treatment with chrysin,
siRNAs, overexpression vectors, let-7a-3p mimics and let-7a-
inhibitor for detection of cellular apoptosis, as previously
described (25). Then, Annexin V-FITC/PI reagent was added
to cell to react for 30 min and flow cytometry (BD Biosciences,
Franklin Lakes, NJ, USA) was used to detect fluorescent cells.

Western Blot Analysis
Total protein was extracted from GC cells using protein
extraction buffer (Beyotime, China). Then, proteins were
quantified utilizing the BCA protein assay kit (TIANGEN,
Beijing, China). Sodium dodecyl sulfate-polyacrylamide gel
Frontiers in Oncology | www.frontiersin.org 3
electrophoresis was used to separate the proteins. After
electrophoresis, proteins were transferred to the polyvinylidene
difluoride (PVDF) membrane. The membrane was then
incubated with primary antibodies, including anti-COPB2
(BETHYL, A304-522A-M-1, USA), anti-P53 (Abcam,
ab131442, USA), anti-BAX (CST, D2E11, USA), anti-BCL2
(CST, D55G8, USA), anti-E-CADHERIN (Proteintech, 20874-
1-AP,USA) and anti-GAPDH (Bioworld, AP0066, USA),
overnight at 4°C. Subsequently, membranes were incubated
with HRP-conjugated affiniPure goat antibodies IgG (BOSTER,
China) for 1.5 h. The target bands were analyzed using ECL
Super Signal (Pierce, USA).

Hematoxylin and Eosin (H&E) Staining
Tumor tissues from the control and chrysin groups were fixed in
4% paraformaldehyde for 48 h, embedded in paraffin wax and
sliced into 5 mm sections. The slides were then stained with H&E
and cancer cell infiltration was determined by observation under
a light microscope.

Animals and Animal Care
For in vivo experiments, 17 female nude mice (6–8 weeks old)
were utilized to determine the effect of chrysin treatment and
COPB2 KO on tumor growth. The mice were acquired and
grouped-housed in the Laboratory Animal Center of Jilin
University. All mice were provided ad libitum access to
standard rodent food and tap water within the laboratory
cages, as well as under specific pathogen-free (SPF) conditions.
The BGC823, pcDNA3.1-COPB2 and COPB2-KO cell lines (3 ×
106) were subcutaneously injected into the left flank of each
mouse, and tumors were observed after seven days. The tumor
length (L) and width (W) were calculated as L × W2/2.

Statistical Analysis
An unpaired Student’s t-test was utilized in the present study.
The SPSS 16.0 software (SPSS Inc., Chicago, IL, USA) helped
conduct statistical analysis. All data was expressed as mean ± SD.
A p-value of <0.05 was considered to be statistically significant.
The website of http://ualcan.path.uab.edu/index.html was used
for The Cancer Genome Atlas (TCGA) analysis. The TargetScan
database was used to predict miRNA.
RESULTS

Screen of Differentially Expressed Gene of
Chrysin-Treated GC Cells
In order to analyze gene expression patterns of chrysin treatment
in gastric cancer cells, we performed RNA-Seq. Overall, 20,010
genes were identified as core genes (Figure 1A). Compared to the
control group, 380 genes were significantly up-regulated while
2,071 were significantly down-regulated (Figure 1B). Data from
heatmap and KEGG pathway suggests that the differentially
expressed genes have functions in cell death and growth
(Figures 1C, D). In order to confirm this data, six genes
(CAPN2, MXI1, HSPA9, RHBDD2, COPB2 and GABAPAPL1),
which were related to cell growth and death, were further
June 2021 | Volume 11 | Article 651644
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validated (Figure 1E). The qPCR results indicated that COPB2
expression was downregulated upon chrysin treatment in
SGC7901 (Figure 1F) and MKN45 (Figure 1G) cells. These
results indicate that COPB2 expression is regulated by chrysin in
GC cells.

Chrysin Increased let-7a and Inhibited H19
and COPB2 Expression in GC Cells
In order to further verify the expression levels of COPB2 in GC,
we utilized the TCGA database. Results indicated increased
expression of COPB2 in primary tumor of the stomach
adenocarcinoma (STAD) patients (Figure S1A). Compared
to GES1 cells, qPCR and western bolt results indicated
increased expression of COPB2 in MKN45, SGC7901 and
BGC823 cells (Figures 2A, B). To investigate which miRNAs
were involved in COPB2 expression, bioinformatics analysis
was performed. The database suggested that let-7a targets
COPB2 (Figures 2C, S2). Furthermore, we analyzed let-7a
levels in the TCGA database. Results indicated no differences
between normal and tumor tissues (Figure S1B). However,
qPCR results suggested that let-7a levels were reduced in GC
cells, compared to GES1 cells (Figure 2D). Considering that
Frontiers in Oncology | www.frontiersin.org 4
let-7a is associated with expression of the lncRNA H19, we
analyzed the expression pattern of H19. The TCGA database
indicated increased expression of H19 among STAD patients
(Figure S1C). The qPCR results indicated increased expression
of H19 in GC cells (Figure 2E). DNA methylation results
indicated the hypo-methylation profile of H19 DMR in GC
cells (Figure S3). The cell growth was analyzed after chrysin
treatment. The CCK8 results indicated that 40 mM was the
optimal dose for subsequent experiments (Figure 2F).
Moreover, qPCR results indicated increased expression of
let-7a, as well as reduced expression of H19 after chrysin
treatment in GC cells (Figure 2G). Besides, chrysin was able
to induce cell apoptosis, as well as inhibit cell migration and
invasion in GC cells (Figures 3, S4). These results indicate that
chrysin has an anti-cancer role and regulates expression of
COPB2, H19 and let-7a in GC cells.

H19/let-7a Regulate COPB2 Expression
Considering thatH19 has a role in let-7a expression, we analyzed
the effect ofH19 knockdown and overexpression in GC cells. The
results indicated reduced expression of let-7a in the H19
overexpression group, as well as overexpression of let-7a in
A B

D

E F G

C

FIGURE 1 | Screening of differentially expressed genes by RNA-seq. Analysis of differential expressed genes after chrysin treatment (A), Identification of different
expressed genes (B). The heatmap was drawn to show the differentially expressed genes (C). KEGG pathway of the differentially expressed genes (D). The
expression of log2 fold change in six genes (E). Relative expression of CAPN2, MXI1, HSPA9, RHBDD2, COPB2 and GABAPAPL1 were analyzed by qPCR after
Chrysin treatment in SGC7901 (F) and MKN45 cells (G). The data are represented as the mean ± SD (n = 3). * (p <0.05) and ** (p <0.01) indicate statistically
significant differences.
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A B

D
C

FIGURE 3 | Analysis of cell apoptosis and invasion after chrysin treatment. The cell apoptosis was analyzed between Con and chrysin group (A). Statistical analysis
of the percentage of cell apoptosis (B). The cell invasion was analyzed (C). Statistical analysis of the percentage of cell invasion (D). The data are represented as the
mean ± SD (n = 3). ** (p <0.01) and *** (p <0.001) indicate statistically significant differences.
A

B

D E

F G

C

FIGURE 2 | Analysis of COPB2, let-7a and H19 expression pattern. The expression of COPB2 in GC cells using qPCR (A) and western blot (B). Schematic
representations of COPB2 and let-7a (C). Relative expression of let-7a in GC ells (D). Relative expression of H19 in GC ells (E). The cell growth was analyzed by
CCK8 assay (F). Relative expression of COPB2, let-7a and H19 was analyzed by qPCR after chrysin treatment in GC cells (G). The data are represented as the
mean ± SD (n = 3). * (p <0.05), ** (p <0.01), *** (p <0.001) and **** (p <0.0001) indicate statistically significant differences.
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the H19 knockdown group (Figures 4A–C). In order to
investigate the expression pattern of let-7a, we utilized miRNA
mimics and inhibitors. The qPCR and western blot results
demonstrated that let-7a mimics led to suppressed expression
of COPB2 (Figures 4D–G). These results confirm that H19 acts
as a sponge that competes with let-7a, thus regulating
COPB2 expression.

Reduced Expression of COPB2 Induced
Cell Apoptosis and Inhibited Cell Invasion
In order to analyze whether COPB2 expression has an effect on
cell death and growth, we transfected knockdown and
overexpression vector of COPB2 into GC cells. The CCK8 data
demonstrates that reduced expression of COPB2 and increased
expression of let-7a inhibits cell growth (Figure S5). Moreover,
our results suggested that reduced expression of COPB2 induced
cellular apoptosis (Figures 5A, B). In order to validate this, we
analyzed markers of cell apoptosis. The results showed that
increased expression of p53 was observed in the COPB2
knockdown group (Figure S6). In addition, COPB2 expression
did not have an effect on cell migration in GC cells (Figures
5C, D). However, our data shows that reduced expression of
COPB2 inhibited cell invasion (Figures 5E, F). Next, we
investigated the effect of chrysin about cell migration and
invasion in the COPB2 overexpression group. This result
demonstrated that chrysin induced cell apoptosis and inhibited
Frontiers in Oncology | www.frontiersin.org 6
cell migration and invasion (Figures S7, S8). In order to validate
this finding, the overexpression and knockdown of H19 and let-
7a were used to analyze cell apoptosis. The results demonstrated
that reduced expression of H19 and increased expression of let-
7a induced cell apoptosis (Figure S9). Overall, these results
suggest that COPB2 has a role in cell apoptosis and invasion.

Loss Expression of COPB2 Inhibited
Tumor Growth In Vivo
In order to assess the anti-cancer effect of chrysin in vivo, we
utilized nude mice. The BGC823 cells were injected into nude
mice and after seven days, mice were treated with chrysin (20
mg/kg) for two weeks. The results showed that chrysin is able to
inhibit tumor growth and COPB2 expression in vivo (Figures
6A–D). The H&E staining results confirm this data (Figure S10).
Moreover, qPCR result indicated that chrysin inhibited the
expression of H19, and increased let-7a in vivo (Figure S11).
In order to determine the effect of loss expression of COPB2 in
vivo, CRISPR/Cas9 system was used to edit the COPB2 exon 5
(Figure 6E). The qPCR data showed lower expression of COPB2
in the COPB2 KO group compared to the control group
(Figure 6F). Moreover, chrysin treatment reduced COPB2
expression in overexpression and KO of COPB2 cells (Figure
S12). To further confirm the effect of COPB2 expression, COPB2
KO cells were injected into nude mice. Results suggested
that loss of expression of COPB2 inhibited tumor growth
A B

D
E

F G

C

FIGURE 4 | Analysis of COPB2 expression pattern through H19/let-7a in GC cells. Relative expression of H19 and let-7a in pcDNA3.1-Con, pcDNA3.1-H19, Nc
and si-H19 group using qPCR (A–C). Expression of COPB2 protein in Nc-mimics, mimics-let-7a, Nc-inhibitor and inhibitor-let-7a group using Western blot (D).
Relative expression of let-7a, H19 and COPB2 in Nc-mimics, mimics-let-7a, Nc-inhibitor and inhibitor-let-7a group using qPCR (E–G). The data are represented as
the mean ± SD (n = 3). * (p <0.05), ** (p <0.01) and *** (p <0.001) indicate statistically significant differences.
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(Figures 6G, H). Overall, these results indicate that reduced
expression of COPB2 leads to anti-tumor effects.
DISCUSSION

Chrysin, a natural medicine, has anti-inflammatory and anti-
cancer function and has been used to treat degenerative disorders
and cancers in several Asian countries (26, 27). In this study,
chrysin was used to treat GC cells in order to evaluate its effect on
cellular apoptosis, growth, migration and invasion. Previous
reports have indicated that chrysin induces cell apoptosis and
inhibits cell growth, migration and invasion in glioblastoma cells
(28), which was by validated by our results, which showed that
chrysin has anti-cancer effects in SGC7901, MKN45 and
BGC823 cells. Moreover, chrysin was found to increase
expression of miR-9 and let-7a in GC cells, in accordance with
previous data (29). Interestingly, our previous data suggested
that chrysin inhibited cell migration and invasion in MKN45
cells through TET1, which regulates global DNA methylation
(30). Previous reports have indicated abnormal DNA
methylation in GC (31). Herein, our results suggested that H19
DMR is hypomethylated in SGC7901 and BGC823 cell lines,
Frontiers in Oncology | www.frontiersin.org 7
which is related to increased expression of H19. In addition,
chrysin functions to regulate the expression of H19, let-7a and
COPB2. Furthermore, chrysin inhibited cell invasion which was
overexpression of COPB2.

Recently, lncRNAs and miRNAs have been demonstrated to
have roles in development of different types of cancer, including
HCC (18). There is evidence that reduced expression of lncRNA
H19 leads to inhibition of tumor growth in breast cancer, bladder
cancer and colorectal cancer (32). Moreover, H19, as a
competitive endogenous RNA, is associated with miRNAs,
such as miR-29 and let-7 (16, 33). Our results indicated that
H19 and let-7a have competitive regulation in GC cells, which
has also been confirmed in a previous report (17). Emerging
evidence suggested that loss of expression of let-7 correlates with
poor prognosis in various cancer (34). Our data showed that
chrysin increased expression of let-7a and inhibited cell
migration and invasion. Previous reports indicated that
silencing of let-7, which targets MDM4, promotes cell
proliferation, migration and invasion (35). Further, reduced
expression of H19 and increased let-7a expression induced cell
apoptosis in GC cells, which validated the previous report (36).
These results suggested that the expression of H19 and let-7a is
involved in cell apoptosis, growth and invasion of GC cells.
A

B

D

EF

C

FIGURE 5 | Analysis of cell apoptosis, migration and invasion after knockdown and overexpression of COPB2. Cell apoptosis was analyzed in the pcDNA3.1-Con,
pcDNA3.1-COPB2, si-Nc, and si-COPB2 group (A, B). Cell migration was analyzed after si-COPB2 and pcDNA3.1-COPB2 were transfected (C, D). The cell
invasion was analyzed in pcDNA3.1-Con, pcDNA3.1-COPB2, si-Nc, and si-COPB2 group (E, F). Statistical analysis of the percentage of cell invasion (D). The data
are represented as the mean ± SD (n = 3). * (p <0.05) and **** (p <0.0001) indicate statistically significant differences.
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Previous reports indicated that let-7f targets HMGA2 in
thyroid cancer (37). Compared to let-7f, IL-6 and CKIP-1 were
reported to be targets of let-7a (38, 39). Our results suggest that
let-7a targets COPB2, which leads to differential expression after
Frontiers in Oncology | www.frontiersin.org 8
chrysin treatment in GC cells. A previous study indicated that
the expression of COPB2 is associated with cell growth,
apoptosis, migration and invasion, functioning through a miR-
216a manner, in lung cancer (8). Our results suggested that
FIGURE 7 | Schematic diagram of H19/let-7a regulate COPB2 expression.
A B D

E

F

G

H

C

FIGURE 6 | CRISPR/Cas9-mediated gene targeting of COPB2. Morphological observation of mouse tumor tissue (A). Analysis of tumor volume (B). The expression pattern
of COPB2 in tumor of mice after chrysin treatment (C, D). Schematic diagram of sgRNAs targeting the COPB2 gene loci (E). The expression of COPB2 using qPCR (F). The
tumor morphology (G) and volume (H). Blue indicated COPB2. * (p < 0.05), ** (p < 0.01), *** (p < 0.001) **** and (p < 0.0001) indicate statistically significant differences.
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expression of COPB2 was regulated by H19/let-7 axis in GC cells
(Figure 7). Moreover, reduced expression of COPB2 induced
cellular apoptosis and inhibited cell growth in prostate cancer
(40). Our data showed reduced expression of COPB2 increased
p53 and E-cadherin expression. These results indicated that
reduced expression of COPB2 induced cell apoptosis and
inhibited invasion through H19/let-7a.

In order to confirm the effect of COPB2 in vivo, a xenograft
model using nude mice was established. The in vivo results
suggested that chrysin led to reduced expression of COPB2,
which further confirms our data in GC cells. Furthermore,
chrysin inhibited tumor growth in vivo, which is in accordance
with a previous report in melanomas (41). These data indicate
that chrysin can regulate COPB2 expression, which inhibits
tumor growth in vivo. In order to further analyze the putative
effect of COPB2, the KO and overexpression COPB2 cell line
were injected into nude mice. As a powerful gene editing tool,
the CRISPR/Cas9 system was wildly used in vitro and in vivo.
Our results indicated that COPB2 KO suppressed tumor growth.

In summary, COPB2 is a differentially expressed gene that was
identified after chrysin treatment in GC cells. Our data indicated
that COPB2 is regulated by let-7a, which acts as a molecular
sponge ofH19. Moreover, reduced expression of COPB2 induced
cellular apoptosis and inhibited cell growth and invasion.
Therefore, this present study revealed that COPB2 is a
potential molecular targeted therapy in GC.
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