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Technological advances in next-generation sequencing-based approaches have greatly impacted the analysis of microbial
community composition. In particular, 16S rRNA-based methods have been widely used to analyze the whole set of bacteria
present in a target environment. As a consequence, several specific bioinformatic pipelines have been developed to manage these
data. MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST) and Quantitative Insights Into Microbial Ecology
(QIIME) are two freely available tools for metagenomic analyses that have been used in a wide range of studies. Here, we report
the comparative analysis of the same dataset with both QIIME and MG-RAST in order to evaluate their accuracy in taxonomic
assignment and in diversity analysis. We found that taxonomic assignment was more accurate with QIIME which, at family level,
assigned a significantly higher number of reads. Thus, QIIME generated a more accurate BIOM file, which in turn improved the
diversity analysis output. Finally, although informatics skills are needed to install QIIME, it offers a wide range of metrics that are
useful for downstream applications and, not less important, it is not dependent on server times.

1. Introduction

Microbes play an important role in virtually all ecosystems
ranging from those in the sea or the soil [1, 2] to those in
human body environments like the skin or the gut [3–5].
The link with human body environments generated many
studies of microbial community composition designed to
assess its role in variousmetabolic pathways and to determine
whether it is involved in inducing and/or preventing specific
pathological conditions. Such investigations could help to
clarify the pathogenesis of specific diseases and could also
lead to novel disease-markers and/or to the development of
novel therapeutic strategies. To date, several human diseases
have been significantly correlated with dysbiosis of specific
microbial communities [6–9].

Thanks to technological improvements in sequencing
methods, virtually all themicrobes from a given environment
can be analyzed in a single run, avoiding cultivation steps.
In particular, procedures based on 16S rRNA next-generation

sequencing, which allow the high throughputmicrobial iden-
tification within a specific metagenome, represent a powerful
means to investigate the composition and the biodiversity of
microbial communities [10]. The enormous amount of next-
generation metagenomic data generated by such procedures
necessitates bioinformatic tools able to analyze them. In fact,
an accurate taxonomic assignment of each microbe in a
target environment is required to evaluate the structure, the
biodiversity, the richness, and the role of the community
resident in a given environment [11, 12].

MetaGenome Rapid Annotation using Subsystem
Technology (MG-RAST) is a freely available (http://
metagenomics.nmpdr.org), fully automated system able to
process metagenome sequence data by performing sequence
alignment, sequence functional and phylogenetic assign-
ments, and comparative metagenomics [13]. Quantitative
Insights Into Microbial Ecology (QIIME) is an open-source
software pipeline (http://qiime.sourceforge.net/) able to
perform, starting from raw sequence data, a wide range
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Table 1: Summary of the taxonomic assignment data and of the algorithms available to obtain them in the MG-RAST and QIIME tools.

Postfiltering
reads∗

Total distinct
bacteria Families§

Bacteria families with
>100 sequences†

Available taxonomic
assignment algorithms‡

Default available 16S rRNA
databases±

MG-RAST 35,232 70 27 BLAT Greengenes, LSU, SSU, M5RNA,
RDP, no custom databases

QIIME 38,813 123 30 Rdp, Blast, Mothur, Rtax Greengenes, custom databases
∗Number of reads obtained after the quality filtering step by the two bioinformatic pipelines; §number of distinct bacteria Families identified, as total number
and †as themost represented Families withmore than 100 sequences; ‡taxonomy assignment algorithms available for both tools; ±16S rRNA databases available
for both tools.

of analyses on microbial communities, that is, sequence
alignment, identification of operational taxonomic units
(OTUs), elaboration of phylogenetic trees, and phylogenetic
and taxon-based analysis of diversity within and between
samples [14]. Both tools have been successfully used to
analyze a large number of metagenomic 16S ribosomal RNA
datasets by assessing their ability in the management of these
kinds of data [15, 16].

We have performed a comparative bioinformatic analysis
of the same dataset using both QIIME and MG-RAST to
evaluate their accuracy in taxonomic assignment. Here, we
report the efficacy of these two well established methods in
assigning sequence reads to microbes at different phyloge-
netic levels and in analyzing the diversity and richness of
microbial communities.

2. Materials and Methods

2.1. 16S rRNA Sequence Dataset. We constructed a dataset
containing the 16S rRNA sequence data obtained from the
analysis of the ileum mucosa samples of four unrelated chil-
dren: two patients with inflammatory bowel disease and two
sex- and age-matched healthy controls. The next generation
sequencing evaluation of their gut microbial communities
was carried out as previously described [8].

2.2. Bioinformatics Analysis

2.2.1. Preanalysis Step. The following parameters were set
for both QIIME and MG-RAST: (i) a minimum average
quality Phred score of 25 allowed in reads; (ii) a minimum
and maximum sequence length in the range of 200–1000
nucleotides; and (iii) amaximumnumber of ambiguous bases
and length of homopolymers equal to 6. In addition, to be as
stringent as possible, we did not allow any primermismatches
(setting the parameter “primermismatches” = 0) and allowed
only a 1.5 maximum number of errors in barcodes.

2.2.2. 16S rRNAs Detection, Clustering, and Identification.
16S bacterial rRNAs identification was performed by the
two tools using two distinct strategies. MG-RAST computes
the 16S rRNAs search with the Blast-Like-Alignment Tool
(BLAT) [17] against a reduced rRNAs database. This reduced
database is obtained from a 90% identity clustered version
of the SILVA [18] database and is used to increase the
rate of identification of the sequences similar to specific
rRNAs,thereby reducing the computing time. The selected

rRNA reads are then clustered at 97% identity by picking the
longest sequence within each cluster as representative of that
cluster. An additional similarity search with BLAT is then
performed using only the obtained representative cluster-
sequences against different 16S rRNA databases which can be
selected by the user (seeTaxonomic classification and Table 1).
We used MG-RAST default clustering parameters within the
BLAT algorithm.

In QIIME, the 16S rRNAs detection is performed with
an OTU-picking approach. The OTU-picking procedure
consists in assigning sequences to OTUs by clustering the
sequences on the basis of a threshold that the user may mod-
ify. When a sequence shows a similarity level near or above
the chosen threshold, it is taken in a sequence collection
that represents the presence of a taxonomic unit. QIIME
implements several clustering methods to perform this oper-
ation.We used the default clustering algorithmUCLUST [19],
which creates sequence clusters based on percent identity
(default identity = 97%). After the OTU picking step, the
representative sequence for each OTU, namely, the most
abundant sequences in that OTU, is chosen for subsequent
analyses in order to reduce the computational power and the
analysis time, without losing the frequency information.

2.2.3. Taxonomic Classification. InMG-RAST, the taxonomic
classification was performed with BLAT [17] and, for com-
parison purposes, we selected, among the available 16S rRNA
databases, the Greengenes database (2012 release, available at
http://greengenes.lbl.gov/) [20], setting theMax e-Value Cut-
off to 1 × 105 and the Min% Identity Cutoff to 80% (Table 1).
Reads assigned to the Bacteria root but not attaining the
threshold at the chosen taxonomic level fell in the category
“Unclassified”, while sequences not assigned to the Bacteria
root were classified as “No Hits”. To compare the power of
taxonomic assignment of the two pipelines, we extracted the
obtained results at amily level. After taxonomic assignment,
MG-RAST generates a web page for results visualization and
handling, and it can also generate a Biological Observation
Matrix (BIOM) file useful to transfer the obtained data to
other tools for comparison purposes [21].

QIIME can perform the taxonomy assignment
using different methods (Table 1) [22]. We used the
Ribosomal Database Project (RDP) classifier 2.2 [23]
against the Greengenes database (2012 release, available at
http://greengenes.lbl.gov/) [20] using the same thresholds
we used for MG-RAST. After taxonomic assignment, QIIME
generates a BIOM file that can be used for a wide range of
analyses [21].

http://greengenes.lbl.gov/
http://greengenes.lbl.gov/
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Table 2: Overview of all diversity analysis metrics and statistical tests available in MG-RAST and QIIME.

Alpha diversity metrics∗ Beta diversity metrics§ Statistical tests†

MG-RAST Shannon Bray-Curtis

Unpaired 𝑡 test
ANOVA
Mann-Whitney test
Kruskal-Wallis test

Nonphylogeny based metrics Non-phylogeny based metrics

QIIME

berger parker d
brillouin d
chao1
chao1 confidence
dominance
doubles
equitability
fisher alpha
gini index
goods coverage
heip e
kempton taylor q
margalef
mcintosh d
mcintosh e
menhinick
michaelis menten fit
observed species
osd
robbins
Shannon
simpson (1-Dominance)
simpson reciprocal
(1/Dominance)
simpson e
singles
strong

abund jaccard
binary chisq
binary chord
binary euclidean
binary hamming
binary jaccard
binary lennon
binary ochiai
binary otu gain
binary pearson
binary sorensen dice
bray curtis
bray curtis faith
bray curtis magurran
canberra
chisq
chord
euclidean
gower
hellinger
kulczynski
manhattan
morisita horn
pearson
soergel
spearman approx
specprof

ANOVA
G-test
Paired 𝑡 test
Longitudinal correlation
two sample 𝑡 test
adonis
ANOSIM
BEST
Moran’s I
MRPP
PERMANOVA
PERMDISP
db-RDA
Mantel test

Phylogeny based metrics Phylogeny based metrics

PD whole tree

unifrac
unifrac g
unifrac g full tree
unweighted unifrac
unweighted unifrac full tree
weighted normalized unifrac
weighted unifrac

∗Alpha diversity metrics for both the tools; §beta diversity available metrics; †parametric and non-parametric statistical tests available by default in the two
tools.

2.2.4. Diversity Analysis. To obtain an overall diversity anal-
ysis for subsequent comparative and statistical evaluations,
we merged the BIOM tables generated by both MG-RAST
and QIIME in a unique biom table, using a script included
in QIIME (merge otu tables.py). Thus, we obtained a unique
matrix table that reports all the taxonomic assignments
and their frequencies obtained by each of the two tools.
Subsequently, the diversity analysis was computed on the
merged biom table using the related scripts included in
QIIME.

QIIME alpha diversity analysis script (alpha rarefaction
.py) performs the rarefaction analysis by subsampling the
OTUs biom table on the basis of aminimumrarefaction depth
value that is chosen by the user depending on the minimum

number of sequences/sample obtained. For our subset, this
value was 1,195.Then, using differentmetrics, the alpha diver-
sity was computed for each rarefied OTUs table (Table 2).
We used three “non-phylogeny-based” metrics, namely, the
observed species, chao 1 [24], and the Shannon index [25].
Finally, all the results obtained from each rarefiedOTUs table
are joined in three global alpha diversity measures, one for
each metric used, and converted in .html plots in order to
handle and visualize the data.

QIIME beta diversity analysis script (beta diversity
through plots.py), after the rarefaction evaluation (this step
corresponds to the first step of the alpha diversity workflow),
computes the beta diversity on the rarefiedOTUs tables using
different metrics (Table 2). We used the Bray-Curtismetric
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Figure 1: Phyla distribution in the studied dataset as computed by each tool. Comparison of the bacterial phyla identified by MG-RAST and
QIIME related to the numbers (a) and to the Log10 scale (b) of the 16S OTUs identified. Error bars indicate standard deviations of the mean.
Box plots (b) show phyla distribution in the two groups; the 25th percentile, median, and 75th percentiles are reported by horizontal lines.
Whiskers represent minimum and maximum values (b).

[26]. Finally the script uses the obtained distance metric to
compute the Principal Coordinate Analysis (PCoA) and to
convert it into plots for results visualization.

2.2.5. Data Comparison and Statistical Analysis. We com-
puted the Analysis of Variance (ANOVA) [27] and the G-
test [28] using a Bonferroni correction [29] to determine the
statistical significance of each taxon assigned by the two tools.
In addition, we computed a PearsonCorrelation [29] between
the two datasets to correlate the taxa identified at family level.
All these tests are available in QIIME using a biom table file as
input (Table 2). We performed a nonparametric test [30] and
the ANOSIM [31] and ADONIS tests [32, 33] to determine
the statistical significance related to the diversity analysis.

3. Results

The 16S rRNA next-generation sequencing run produced
48,545 raw sequences belonging to the 4 samples. We used
those sequences as input in both the MG-RAST and QIIME
analysis workflows. The time required to complete the anal-
ysis was about 10 days for MG-RAST and less than 2 hours
for QIIME. This big time difference in both methods can
be explained considering the following aspects. MG-RAST
is a web server, therefore the analysis time depends on the
number of projects simultaneously submitted by different
users and on the priority level selected. In particular, for our
data we selected the “Lowest Priority” level to keep them
private and, of course, this setting requires a longer time. On
the contrary, QIIME is an installable software package; in this
case, the analysis time depends just on the amount of user
data and on his bioinformatic ability. In our dataset, we had
just four samples and a skilled user. After the filtering step, we
obtained 35,232 and 38,813 postfiltering reads for MG-RAST
and QIIME, respectively (Table 1).

Both tools identified 6 main Phyla within the root Bac-
teria: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria, and Tenericutes. The number of 16S OTUs
assigned to each Phylum is shown in Figure 1(a). Despite
some differences between MG-RAST and QIIME, particu-
larly in theProteobacteria, therewere no statistical differences
at Phylum level. The observed differences are due to a single
sample differently assigned by the two tools but normalized
during statistical analysis (ANOVA). The same 16S OTUs
distribution at Phylum level is reported also in Log10 scale,
showing the 25th, 50𝑡ℎ, and 75th percentiles. Minimum and
maximum values for each Phylum, as computed by the tools,
are shown as whiskers (Figure 1(b)).

At deeper phylogenetic levels, we found some interesting
differences in the taxonomic assignment betweenMG-RAST
and QIIME. In particular, 70 distinct bacteria Families were
identified by MG-RAST and 123 by QIIME, while when
considering only Families with more than 100 sequences,
27 and 30 distinct bacteria Families were identified by MG-
RAST and QIIME, respectively (Table 1). The taxonomic
composition of our dataset, reported at family level accord-
ing to the number of 16S rRNAs identified by MG-RAST
and QIIME, showed two distinct trends for the two tools
(Figure 2). Globally, QIIME assigned higher number of reads
to each family than did MG-RAST. In detail, 7 Families
were identified with a widely different score (Δ > |1000|
Sequences): Bacteroidaceae (Bacteroidetes phylum); Strepto-
coccaceae, Clostridiaceae, and Lachnospiraceae (Firmicutes
phylum); Alcaligenaceae, Enterobacteriaceae, and Pasteurel-
laceae (Proteobacteria phylum). Neither toolwas able to assign
some of the sequences to the Bacteria root: 605 “No Hits”
sequences for MG-RAST and 12 for QIIME. The sequences
assigned to theBacteria root, but with no taxonomical assign-
ment at family level, were reported as “Unclassified”; those
sequences were 8,022 for MG-RAST and 525 for QIIME,
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Figure 2: Family level taxonomic composition correlated with the number of OTUs identified by Mg-Rast and QIIme. Two distinct trends
are shown, respectively, for both the tools. Different colors represent different Phyla that belong to the identified families. Qiime reported
higher general values for each family compared to Mg-Rast. Seven families were identified with a widely different score (>1000 sequences,
indicated by bars): Bacteroidaceae (belongs to Bacteroidetes Phylum, in yellow); Streptococcaceae, Clostridiaceae, and Lachnospiraceae (belong
to Firmicutes Philum, in purple); Alcaligenaceae, Enterobacteriaceae, and Pasteurellaceae (belong to Protecobacteria Philum, in orange). No
hits field (in gray) represents those sequences who were not assigned to the Bacteria root (605 for Mg-Rast and 12 for QIIme). Unclassified
field (in green) represents those sequences who belong to the Bacteria root but both the tools were unable to identify precise taxonomy.

whichwas the greatest difference found between the two tools
(Figure 2).

Figure 3 shows differences in the diversity analysis carried
out by MG-RAST and QIIME. Neither the alpha diversity
measured as 16S rRNAs observed OTUs at family level

(Figure 3(a)) nor themean Shannon index score (Figure 3(b))
differed significantly between MG-RAST and QIIME. Simi-
larly, the single rarefaction curves, computed for each sample
by Chao1 richness estimator, showed similar trends/sample
with the two tools (Figure 3(c)). On the contrary, beta
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Figure 3: Diversity analysis. Alpha diversity of the identified 16S rRNAs OTUs with MG-RAST and QIIME shows no significant variation
between the two tools as measured using the observed species method (a) and Shannon index average scores (b). Also the single rarefaction
curves obtained for each sample, as computed by the Chao1 estimator, show similar trends with the two tools (c). Beta diversity analysis
among samples was carried out according to the Bray-Curtis metric; the same sample analyzed with the two tools appears to be distant, thus
indicating individual differences [𝑃 = 0.028, 𝑅2 = 0.3; ADONIS] (d).
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Figure 4: Analysis flowchart. The comparative metagenomic analysis of the gut microbiome composition in the same subjects using both
MG-RAST and QIIME pipelines highlighted that better performances can be obtained by QIIME. Since MG-RAST is easier to use it could
be useful for first-time users.

diversity computed with the Bray-Curtis metric showed a
significant difference (𝑃 = 0.028, 𝑅2 = 0.3; ADONIS)
in the same samples analyzed in duplicate by the two tools
(Figure 3(d)).

4. Discussion

The aim of this work was to compare the efficiency of
the bioinformatic analysis of 16S rRNA next-generation
sequencing-based data performed by QIIME andMG-RAST,
which are the most frequently cited tools in the context of
metagenomic analysis.

We first evaluated the accessibility and ease-of-use of
the two tools. MG-RAST is a web platform for automated
analysis, while QIIME is an open-source software package.
In the former case, the analysis depends on the times of
the MG-RAST server and on its data uploading limits. The
user has to submit the raw data to the MG-RAST server
specifying if the data is private (visible only to the submitter)
or public (data will be shared with all MG-RAST users).
MG-RAST provides, associated with a priority queue, five

different optionswith different times of analysis. For scientific
research purposes, we choose the “Lowest Priority” (data will
remain private) option. The time required by the MG-RAST
server to complete the analysis is related to the number of
jobs submitted by all MG-RAST users in the analysis queue
and to the priority level selected. Sometimes this may not be
compatible with the researcher’s needs.

QIIME is completely installable and users can start their
analysis as soon as the installation is complete (http://qiime
.org/install/install.html). However, installation requires some
basic informatic knowledge, since several dependencies must
be installed separately to use the complete QIIME analysis
pipeline. To counteract this limit, QIIME offers various
options that can be downloaded free of charge. Once QIIME
and all its dependencies are installed, users can start the
analysis pipeline.The time necessary to complete installation
depends on several factors, mainly the amount of data, the
chosen pipeline, and the user’s bioinformatic skills.

Tominimize differences betweenMG-RAST andQIIME,
we selected the same parameters for the preliminary analysis.
This step includes quality filtering, primer detections, and

http://qiime.org/install/install.html
http://qiime.org/install/install.html
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Table 3: Summary of the main features of MG-RAST and QIIME.

Availability Analysis time Prefiltering
quality

16S rRNA
detection mode

Taxonomic
assignment
methods∗

Diversity
analysis
metrics§

Machine
learning Ease-of-use

MG-RAST Web based 10 days
(for private use) Yes Alignment with

BLAT One One No Very simple
GUI

QIIME
Native code

plus additional
applications

2 hours Yes OTU-picking Several Several Yes
Requires basic
informatic skills

No GUI
GUI: Graphical user interface; ∗see Table 1; §see Table 2.

read demultiplexing. MG-RAST provides a preanalysis step,
while QIIME integrates the data in a script (split libraries.py).
For the preanalysis filtering step, both tools require a meta-
data mapping file in which the user must provide at least the
following information: (i) sample ID and barcode; (ii) primer
sequences used for the library construction; and (iii) one or
more description columns containing metadata information
related to the sample. We included the following additional
metadata information: age, sex, and treatment type (patient-
control). The mapping file must have a specific format to
be accepted by both tools; this step may be complex and
result in delays before the analysis workflow can even start.
To overcome this drawback, MG-RAST provides a template
mapping file that users can edit and modify with their own
data, while QIIME includes a script (check id map.py) that
checks the mapping file, identifies errors, and indicates how
to solve them.

Identification of 16S rRNAs from a set of quality-filtered
sequences can be carried out by MG-RAST only with a
limited pipeline (see Section 2.2.2), while QIIME provides
three high-level protocols that belong to the OTUs picking
procedure: de novo, closed-reference, and open-reference
OTUs picking. We choose the de novoOTUs picking method
since the dataset was small and in order not to lose any reads.

Taxonomic assignment can be performed by MG-RAST
only with BLAT [17], while several algorithms are available in
the QIIME pipeline [34, 35] (Table 1). MG-RAST by default
allows the direct use of several 16s rRNAdatabases (LSU, SSU,
M5RNA, RDP, and Greengenes) [36], but it is not possible
to use a custom database. By default, QIIME performs the
taxonomy assignment against the Greengenes database, but
users may supply a custom database which is made compat-
ible with the assignment algorithm (Table 1). In our dataset,
both tools were able to detect 6 different Phyla with a sim-
ilar identity. Interestingly, there were statistically significant
differences in the taxonomic identification at family level. In
particular, QIIME more accurately assigned reads to the dif-
ferent families while a lower number of reads were assigned
to the categories “No Hits” and “Unclassified” (Figure 2).

After the taxonomic assignment, which gives a picture of
the microbial community composition, typically a metage-
nomic analysis pipeline continues to evaluate the microbial
diversity both as alpha diversity (quantitative global diversity
within a sample) and as beta diversity (qualitative diversity
between a collection of samples) [37]. These parameters are
useful to estimate community richness and to establish the

degree of similarity of themicrobial composition among sam-
ples. We obtained similar results with MG-RAST and QIIME
in terms of alpha diversity measured with different metrics.
However, at beta diversity analysis, different values were
assigned to the same subject depending on the tool used for
the analysis, even though they were obtained with the same
metric (Bray-Curtis). Therefore, it is feasible that this dis-
crepancy results from differences in 16S rRNAs identification
and taxonomic assignment. In fact, since QIIME results in a
higher accuracy in reads assignment (a lower rate of “NoHits”
and “Unclassified”) this is converted into a more complete
BIOM file, which is the matrix used for diversity evaluation.
Table 3 summarizes the main features of the two tools.

5. Conclusions

We successfully carried out the comparative metagenomic
analysis of the gut microbiome composition in the same
subjects using both MG-RAST and QIIME pipelines. Our
results showed that the QIIME tool provides a more accurate
taxonomic identification which is crucial for the subsequent
diversity analysis. In addition, being freely downloadable, it
does not depend on server times. Finally, QIIME integrates
the BIOM file directly in its pipeline and this option is
useful for a wide range of downstream analyses and also
speeds up the entire workflow. Less experienced operators,
however, may find MG-RAST easier to use than QIIME.
Therefore, keeping in mind all the abovementioned features,
we suggest that MG-RAST could be useful for first-time-
users to familiarize with metagenomic analysis output and
criticisms. Upgraded versions of QIIME will follow in the
next year, including evenmore features especially a Graphical
User Interface (GUI), that will help non-computer-skilled
people to easily analyze their data. Figure 4 summarizes the
proposed flowchart.
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Bayesian classifier for rapid assignment of rRNA sequences
into the new bacterial taxonomy,” Applied and Environmental
Microbiology, vol. 73, no. 16, pp. 5261–5267, 2007.

[24] T. C. J. Hill, K. A. Walsh, J. A. Harris, and B. F. Moffett, “Using
ecological diversity measures with bacterial communities,”
FEMS Microbiology Ecology, vol. 43, no. 1, pp. 1–11, 2003.

[25] I. F. Spellerberg and P. J. Fedor, “A tribute to Claude-Shannon
(1916-2001) and a plea for more rigorous use of species richness,
species diversity and the “Shannon-Wiener” Index,” Global
Ecology & Biogeography, vol. 12, no. 3, pp. 177–179, 2003.

[26] E. W. Beals, “Bray-Curtis ordination: an effective strategy for
analysis of multivariate ecological data,” Advances in Ecological
Research, vol. 14, pp. 1–55, 1984.

[27] A. Field, “Analysis of variance (ANOVA),” in Encyclopedia of
Measurement and Statistics, N. Salkind, Ed., SAGEPublications,
Thousand Oaks, Calif, USA, 2007.

[28] R. R. Sokal and F. J. Rohlf, Biometry: The Principles and Practice
of Statistics in Biological Research, Freeman, New York, NY,
USA, 1981.
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