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Abstract
DNA methylation plays a pivotal role in regulating cellular processes, and altered DNA methylation pattern is a general
hallmark of cancer. However, DNA methylome in circulating tumor cells (CTCs) is still a mystery due to the lack of proper
analytical techniques. We introduced an efficient workflow, LCM–µWGBS, which can efficiently profile the DNA
methylation of microdissected CTC samples. LCM–µWGBS combines the laser capture microdissection (LCM)-based CTC
capture method and whole-genome bisulfite sequencing in very small CTC population (µWGBS) to gain insight into the
DNA methylation landscape of CTCs. We herein profiled the DNA methylome of CTCs from lung cancer patients. Deriving
from a comprehensive analysis of CTC methylome, a unique “CTC DNA methylation signature” that is distinct from
primary lung cancer tissues was identified. Further analysis showed that promoter hypermethylation of epithelial genes is a
hallmark of stable epithelial–mesenchymal transition process. Moreover, it has been suggested that CTCs are endowed with
a stemness-related feature during dissemination and metastasis. This work constitutes a unique DNA methylation analysis of
CTCs at single base-pair resolution, which might facilitate to propose noninvasive CTC DNA methylation biomarkers
contributing to clinical diagnosis.

Introduction

Circulating tumor cells (CTCs) are cells that have shed into
the bloodstream from primary or metastatic tumors and

circulate in the bloodstream of cancer patients. CTCs have
the potential to form metastases in distant organs that are
ultimately responsible for the vast majority of cancer-related
deaths [1]. The development of “liquid biopsies” presents
new opportunities for noninvasive monitoring of cancer,
with applications ranging from early detection to treatment
selection and monitoring response. Given the critical role of
CTCs in the metastatic cascade, the number of CTCs in
patient peripheral blood has been found to correlate with the
diagnosis and clinical outcomes. The enumeration of CTCs
enables detecting cancers and monitoring therapeutic
response by a noninvasive way. Moreover, CTCs captured
as a “liquid biopsy” contain intact genomic and tran-
scriptomic information of cancer cells, which made them
suitable for use as clinical biomarkers [2–5]. The rarity of
CTCs in circulating blood becomes the primary issue to
overcome for CTC assay. Differentiating CTCs from the
vast contaminating leukocytes background requires highly
sensitive and specific assays. Classical CTC enumeration
includes the presence of cell surface epithelial cell adhesion
molecule (EpCAM), cytoplasmic epithelial cytokeratins,
and the absence of the hematopoietic CD45 marker [6].
However, recent works have documented that CTCs were
frequently in an intermediate epithelial-to-mesenchymal
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(EMT) state, and some epithelial markers become rapidly
downregulated when cancer cells enter the bloodstream
[7–9]. To date, the primary method for isolating and cap-
turing CTCs is micromanipulation; however, this process is
too time consuming and laborious for routine clinical
application. Laser capture microdissection (LCM) has been
widely used to isolate cells from solid tissue samples,
especially in fixed in formalin and embedded in paraffin
samples. LCM enables a highly accurate isolation of CTCs
from leukocytes, and has been successfully used to isolate
CTC single cells. The ability of LCM to capture CTCs
without loss of cells and cell integrity is critical in sub-
sequent sequencing analysis [10].

DNA methylation is an epigenetic mechanism used by
cells to control gene expression, which can fix genes in the
“off” position [11, 12]. Extensive DNA methylation per-
turbation has been widely explored in human cancer,
causing changes in gene regulation that promote oncogen-
esis. Understanding epigenetic changes shows promise for
improving the characterization of malignancy to predict
diagnosis and prognosis [13–16]. Some DNA methylation
changes are even found in some cases of a specific type of
cancer. With the emerging of high-throughput technologies,
such as comprehensive DNA methylation microarrays and
genome-wide bisulfite sequencing (WGBS), large amount
of DNA methylation profiling data have been generated
[12, 17]. These data provided us great importance to
improve the prediction of cancer diagnosis and prognosis.
To date, few works focused on the DNA methylation ana-
lysis of CTCs, which is most likely explained by the
combined technical challenges of CTC isolation and DNA
methylation analyses on extremely rare cells. Some pio-
neering studies explored the DNA methylation on some
specific genes. For example, Chimonidou et al. investigated
the methylation status of three tumor-associated genes
(CST6, BRMS1, and SOX17) in breast cancer CTCs [18–20],
and the results suggested that the expressions of these genes
are modulated by DNA methylation.

The epigenetic landscape of CTCs remains a largely
unexplored field with great potential. Considering the
mounting evidence for the role in epigenetics, especially
DNA methylation in several cellular mechanisms, elucida-
tion of DNA methylation profiles of CTCs is essential to
understand the molecular mechanism of tumor metastasis
[21, 22]. In this study, we sought to better understand the
whole-genome DNA methylome of CTCs at single base-
pair resolution. LCM platform was employed for CTCs
isolation. CTC DNA methylation data were generated by
using WGBS method from lung cancer CTCs. Our work
comprehensively addressed the epigenetic state of CTCs,
and provided an epigenetic picture to elucidate mechanisms
during dissemination and metastasis and to develop tumor
biomarkers.

Results

LCM–µWGBS workflow for DNA methylation
profiling

Subtraction enrichment and immunostaining-fluorescence
in situ hybridization (SE-iFISH) was an established method
to detect CTCs. In general, CTCs were characterized as
nucleated cells with epithelial markers and/or hyperdiploid,
with absence of lymphocytic marker CD45. This method is
independent of downregulation or loss of EpCAM expres-
sion. According to previous works [23, 24], CTCs were
defined as DAPI+/CD45−/CEP8 > 2 in our work (Fig. 1).
LCM method was then applied to capture CTCs on the
polyethylene-napthalate (PEN) membrane-coated slide. The
enriched CTC samples were encapsulated in a hydrogel
matrix, which made them easily to be isolated by LCM and
compatible with downstream analysis. µWGBS is an
established DNA methylation analysis method of a small
number of cells based on the post-bisulfite adapter tagging
(PBAT) assay. With the attempt to robustly and efficiently
identify the whole-genome DNA methylation profiles of
CTCs, we have developed a LCM–µWGBS workflow by
combining LCM-based CTC capture and µWGBS method
(Fig. 1).

By optimizing multiple steps in the procedure, we can
now acquire high-quality DNA methylation data down to
LCM dissected cells. To technically validate this strategy,
we detected the DNA methylome measured from the
introduction of individually micromanipulated cells from

Fig. 1 Schematics of LCM–µWGBS for CTC DNA methylation
profiling. Subtraction enrichment and immunostaining-fluorescence
in situ hybridization (SE-iFISH) was used to detect CTCs. LCM
method was then applied to capture CTCs. At last, whole-genome
bisulfite sequencing of a small number of cells was employed for DNA
methylation profiling.
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lung cancer cell line A549 into 5 ml of blood from a healthy
donor, followed by cancer cells subtraction enrichment and
LCM–µWGBS processing. LCM procedure requires a
dedicated instrument in a confined space to avoid con-
tamination of experimental materials. The parameters for
LCM should be set at the lowest energy to ensure the
integrity of those dissected cells. Because of the rarity of
CTCs, experimental groups of 10 and 50 A549 cells were
isolated from the mixed blood cells using LCM method,
respectively. Those harvested cells of interests were pooled
together for each sample to provide enough starting mate-
rials for subsequent µWGBS. The result showed that the
conversion rate resulting from bisulfite treatment is more
than 98% for the 10-cell and 50-cell A549 DNA methy-
lome, suggesting the high fidelity of this method. An
average of 145 million paired-end reads were generated,
covering 58% of the human genome (Table 1). We deter-
mined the presence of 16,660,129 and 19,437,132 CpG
sites for the 10-cell and 50-cell A549 DNA methylome,
which account for 58% and 61% of the total CpG sites at
the whole-genome-wide level. To evaluate the performance
of LCM–µWGBS, we benchmarked them against human
A549 cell line WGBS data. The result showed significantly
high Pearson correlation coefficients of 0.82 and 0.89 with
10-cell A549 and 50-cell A549, respectively (Fig. 2). As for
the gene promoter regions, we observed Pearson correlation
coefficients of 0.91 and 0.94 with 10-cell A549 and 50-cell
A549 (Fig. 2), respectively. Moreover, these two data dis-
play the similar DNA methylation level as the A549 cell
line WGBS data (Supplementary Fig. S1). These results
suggested that LCM–µWGBS method provides an accurate

and efficient way to interrogate CTCs DNA methylation
information at the whole-genome-wide level.

DNA methylation signature of lung cancer CTCs

According to the CTCs collection strategy, CTCs were
isolated from a cohort of 15 lung cancer patients in this
way, yielding between 10 and 22 CTCs/5 ml of patient
blood (Table 1). To gain a comprehensive insight into the
DNA methylation changes during CTC dissemination and
metastasis, genome-wide DNA methylation profiling of 15
CTC samples, 5 matched primary tumor samples, and 5
matched adjacent normal tissue samples derived from lung
cancer patients were performed using LCM–µWGBS
method (Fig. 3a, Table 1, Supplementary Table S1). Biopsy
specimens contain a mix of tumor and normal tissue cells,
tumor infiltrating lymphocytes. The tumor tissues had been
stained with H&E before µWGBS. Moreover, we employed
a deconvolution method to estimate the tumor purity [25].
The result showed that the tumor purity was >90%. Bisulfite
sequencing reads were generated with an average of 150
million reads per sample (7.5× coverage). Two CTC sam-
ples (patient 1 and patient 6) were sequenced to 250 million
reads per sample (12.5× coverage), and sequencing satura-
tion analysis was performed to determine the sequencing
coverage needed for LCM–µWGBS. As sequencing depth
increases, more CpG sites were detected. The number of
CpG sites reaches saturation at the 6× to 10× genome
coverage (Supplementary Fig. S2). This result suggested
that the sequencing depth of this work is enough for further
analysis. After mapping to the human reference genome

Table 1 Statistics of µWGBS data of CTCs.

Sample ID Origins CTC# Total
clean reads

Percentage of
mapped reads

Coverage Unique CpGs CpG
coverage

Bisulfite
conversion rate

Patient1_CTC No LCLM 16 255320380 38% 0.544 18602441 0.648 0.992

Patient2_CTC No LCLM 11 131833442 47% 0.189 6262136 0.218 0.991

Patient3_CTC No LCLM 13 131827972 50% 0.314 10285461 0.358 0.990

Patient4_CTC No LCLM 10 131916942 49% 0.182 5734767 0.200 0.984

Patient5_CTC No LCLM 18 131575810 50% 0.108 3532767 0.123 0.992

Patient6_CTC LCLM 18 263668458 48% 0.512 17650885 0.615 0.991

Patient7_CTC LCLM 22 176002976 33% 0.639 19175555 0.668 0.995

Patient8_CTC LCLM 18 163784488 37% 0.572 17405709 0.606 0.995

Patient9_CTC LCLM 20 141161092 25% 0.545 16200091 0.564 0.994

Patient10_CTC LCLM 20 141161092 50% 0.641 19896348 0.693 0.995

Patient11_CTC No LCLM 11 133144320 37% 0.148 4550251 0.159 0.992

Patient12_CTC No LCLM 16 130581964 47% 0.210 8219373 0.286 0.991

Patient13_CTC No LCLM 18 131534266 50% 0.151 4884290 0.170 0.992

Patient14_CTC No LCLM 18 136890898 51% 0.234 7522107 0.262 0.990

Patient15_CTC No LCLM 16 131982568 48% 0.189 6222565 0.217 0.992

LCLM lung cancer liver metastasis.
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(hg38), we identified an average of 13,474,616 CpG sites
for CTC samples, which covered on average 46.9% of the
total CpG sites at the genome-wide level. We investigated
the DNA methylation levels along all chromosomes by
assessing with a 300-kb sliding window. To assess the DNA
methylation similarities of the CTCs samples, Pearson
correlation coefficients were calculated for every two sam-
ples. The average correlation coefficient was observed to be
0.68, indicating a relatively higher consistency of CTCs
samples. Further unsupervised hierarchical clustering ana-
lysis showed that CTCs clustered together as a single group,
indicating that CTCs resemble each other more closely than
their primary tumor counterparts (Fig. 3b).

Consistent with previous reports [12, 17], normal tissues
have higher CpG methylation level (70–80%), whereas
dramatic DNA methylation losses occur in cancer samples
in this context. Notably, we found that global DNA
methylation was significantly lower in CTCs compared with
normal and cancer samples (Wilcoxon rank sum test,
P < 2.2 × 10−16, Fig. 3c). This progressive decrease in glo-
bal DNA methylation from normal tissues to primary
tumors and, in turn, to their associated CTCs suggested a
successive loss of DNA methylation during tumorigenesis.

Further analysis suggested a significant loss of the asso-
ciation between methylation levels of adjacent CpG sites
(Fig. 3d), indicating DNA methylation loss may occur ran-
domly rather than at consecutive CpG sites. From a genomic
perspective, the decrease of DNA methylation occurred at all
genomic compartments, such as promoter, gene body,
intron, and intergenic region (Fig. 3e). After we subgrouped
the promoters based on their CpG contents, we found that
the CTC DNA exhibited more unmethylated CpGs at the
CpG-poor promoters (Wilcoxon rank sum test, P < 2.2 × 10−16)
and similar methylated CpGs at CpG island promoters (Wil-
coxon rank sum test, P= 0.37, Fig. 3e) than the primary tumor
samples, suggesting hypomethylated CpG sites in CTCs
mainly occurred in the promoter regions lacking CpG islands.

Identification of differentially methylated regions
(DMRs)

The discrepancies between the CTCs and primary lung
cancer DNA methylome prompted us to detect DMRs.
DMRs were identified using a smoothing approach, and
CpGs with correlated methylation values were grouped
together (see “Materials and methods“). We totally

Fig. 2 The repeatability and
robustness of LCM–µWGBS
workflow. Micromanipulated
A549 cells were spiked into the
whole blood of the healthy
donors. 10 cells and 50 cells
were captured from the mixed
samples, respectively, and the
DNA methylomes were profiled
subsequently. a DNA
methylation levels of A549 cell
lines measured using LCM–

µWGBS and WGBS at the
whole-genome-wide level.
b DNA methylation levels of
A549 cell lines measured using
LCM–µWGBS and WGBS at
the promoter region.
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identified 64,607 DMRs (ctc-DMRs) between CTCs and
primary tumor samples, and 28,414 DMRs (t-DMRs)
between primary tumors and normal tissues. A total of 3292
DMRs were classified as overlapping (Fig. 4a). The com-
plete lists of ctc-DMRs and t-DMRs can be found in Sup-
plementary Tables S2 and S3. The ctc-DMRs and t-DMRs
represent 2,223,957 CpG sites and 1,281,976 CpG sites in
the reference genome that are distributed across all human
chromosomes, respectively. To validate those identified
DMRs, we performed a pairwise sample comparison, and
the result showed that most of the DMRs (90%) were
existed in at least three samples (Supplementary Fig. S3).

The DMRs were distributed across the human genome,
and provided information on all genomic contexts. DMRs
were identified in promoters (16,719 for ctc-DMRs

and 6368 for t-DMRs), exonic, (22,901 for ctc-DMRs and
10,345 for t-DMRs), intronic (39,857 for ctc-DMRs and
16,824 for t-DMRs), and intergenic regions (35,140 for ctc-
DMRs and 15,826 for t-DMRs). Consistent with previous
reports, 1884 (6.6%) of these t-DMRs were hypermethy-
lated, whereas 26,530 (93.4%) were hypomethylated. Glo-
bal DNA hypomethylation is a common genetic feature of
lung cancer tumorigenesis. As for ctc-DMRs, 43,283
(67.0%) of them were hypomethylated, indicating a greater
tendency toward decreased DNA methylation at aberrantly
methylated loci in CTCs (Fig. 4b).

Hypomethylated regions in CTC samples covered 4.2%
of the entire human genome. In all, 42.8% of the hypo-
methylated regions are located within gene promoters.
Previous reports suggested that DNA hypomethylation and

Fig. 3 Genome-wide DNA
methylation changes in lung
cancer CTCs. a Whole-genome
representation of DNA
methylation levels of lung
cancer CTCs, primary tumors
and normal tissues. b
Unsupervised hierarchical
clustering of DNA methylation
data from lung cancer CTCs,
primary tumors and normal
tissues. c DNA methylation
level was significantly lower in
CTCs compared with normal
and cancer samples.
d Correlation of DNA
methylation levels between
neighboring CpG sites. e DNA
methylation levels among
different genomic sequences.
The error bars represent the 95%
confidence intervals.
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Fig. 4 Functional characterization of DMRs. a The number of
DMRs between CTCs and primary tumors (ctc-DMRs), and the
number of DMRs between primary tumors and normal tissues (t-
DMRs). A total of 3292 DMRs were classified as overlapping DMRs.
b More hypomethylated DMRs were observed than hypermethylated
DMRs in both ctc-DMRs and t-DMRs. c Normalized enrichment
score (NES) representing enrichment (NES ≥ 3.4) of transcription
factor binding sites (TFBSs) in hypomethylated ctc-DMRs and

hypermethylated ctc-DMRs. d Integrated pathway analysis of TFBSs
in hypomethylated ctc-DMRs. The bars represent the percentage of
genes detected per pathway category with P value ≤ 0.05. e CpG sites
in hypermethylated t-DMRs further gained methylation intensities in
CTCs. f Representative tumor suppressor genes show increased
methylation in CTCs and primary tumors. The error bars represent the
95% confidence intervals.
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transcription factor binding sites (TFBSs) are highly cor-
related, describing a codependency of these regulatory
mechanisms. In this work, we found that CTC DNA
hypomethylation and transcription factor occupancy
revealed a significant relationship (Fisher’s exact test, P <
2.2 × 10−16). We then analyzed ctc-DMRs using i-cisTarget
method [26], and found a significant enrichment for several
TFBSs among DNA hypomethylated regions that are spe-
cific to CTCs (Fig. 4c). For example, transcription factor
EGR1 shows the most remarkable enrichment in the
hypomethylation regions specific to CTCs. EGR1 has been
reported to be involved in the regulation of cell growth,
differentiation, and apoptosis in several cancer types [27].
Transcription factors E2F1 and TCF12 both regulated target
genes mainly involved in cell cycle and/or cell division
processes [28, 29]. Further Gene Ontology analysis of
global CTC hypomethylated TFBSs demonstrating that
stemness-related transcription factors are significantly enri-
ched to coordinately regulate proliferation and pluripotency
(Fig. 4d), such as CNOT3, KDM2B, and KLF10. Thus,
CTCs are clearly distinguishable from primary tumors
based on their DNA methylation status at DMRs, where
they feature more hypomethylated TFBSs.

Despite the progressive loss of DNA methylation dur-
ing tumorigenesis, we found that CpG sites in the

hypermethylated t-DMRs further gained methylation
intensities in CTCs (Fig. 4e). Several tumor suppressor
genes promoters that were hypermethylated in tumors
showed a greater tendency toward increased methylation
in CTCs with potential cancer-driving effects (Fig. 4f).
For example, PIK3R1 is a suppressor of the mitogenic
AKT pathway, and highly frequent promoter methylation
and PIK3R1 has been reported in lung cancer. The pro-
moter hypermethylation of PIK3R1 is significantly asso-
ciated with gene expression in lung cancer samples
(TCGA, LUAD, r= 0.54, P < 2.2 × 10−16). This focal
gain of DNA methylation in tumors and even CTCs
highlights the extensive changes in DNA methylation that
occur in cancer progression and dissemination. To further
gain insight in to the functional significance of DNA
methylation changes, we performed KEGG pathway
enrichment analysis for those hypo- and hypermethylation
related genes (Table 2). This analysis revealed that genes
in the hypomethylation regions are involved in the “TGF-
beta signaling pathway,” “hippo signaling pathway,” and
“hedgehog signaling pathway.” These pathways have
been documented to be significantly related to EMT
process [30]. On the other extreme, genes in the hyper-
methylation regions are involved in the “tight junction,”
“focal adhesion” functions.

Table 2 KEGG pathway
enrichment analysis.

KEGG ID Description No. of genes F.D.R.

Hypomethylation hsa04392 Hippo signaling pathway 14 0.03793

hsa04012 ErbB signaling pathway 41 0.00192

hsa04120 Ubiquitin mediated proteolysis 61 0.00158

hsa04350 TGF-beta signaling pathway 36 0.02109

hsa01521 EGFR tyrosine kinase inhibitor resistance 34 0.02774

hsa04668 TNF signaling pathway 44 0.03742

hsa04015 Rap1 signaling pathway 79 0.04836

hsa04152 AMPK signaling pathway 47 0.06318

hsa04340 Hedgehog signaling pathway 20 0.07179

hsa00510 N-Glycan biosynthesis 21 0.07652

hsa04066 HIF-1 signaling pathway 39 0.07821

Hypermethylation hsa04810 Regulation of actin cytoskeleton 34 0.00002

hsa04530 Tight junction 16 0.02035

hsa04974 Protein digestion and absorption 16 0.00087

hsa04020 Calcium signaling pathway 26 0.00092

hsa04370 VEGF signaling pathway 12 0.00125

hsa04510 Focal adhesion 27 0.00192

hsa04670 Leukocyte transendothelial migration 17 0.00370

hsa04015 Rap1 signaling pathway 26 0.00746

hsa04973 Carbohydrate digestion and absorption 8 0.01561

hsa04520 Adherens junction 11 0.01809

hsa04014 Ras signaling pathway 26 0.02038

hsa04964 Proximal tubule bicarbonate reclamation 5 0.02578

1890 L. Zhao et al.



Among ten lung cancer patients, only four of them had
clinically detectable liver metastasis (LCLM, Table 1). We
next sought to detect distinct patterns of liver metastatic
CTCs. The result showed that global DNA methylation was
nearly similar in CTCs derived from four patients diagnosed
with LCLM compared with no LCLM group (Wilcoxon
rank sum test, P= 0.36, Supplementary Fig. S4). We totally
detected 487 genes which showed significantly distinct
DNA methylation in their promoter regions. Subsequently
pathway analysis revealed higher activation of some known
pathways in LCLM patients (Supplementary Table S4), such
as Notch signaling pathway, Hippo signaling pathway, etc.
The comparison of patient cohort of LCLM and no LCLM
revealed the epigenetic signature of liver metastatic CTCs.

CTC DNA methylation of epithelial, mesenchymal,
and stem cell markers

Previous works have documented that CTCs were frequently
in an intermediate EMT state, and significantly lost the epi-
thelial markers. Since different epithelial and mesenchymal
genes are actually known to act in concert during EMT pro-
cess, we herein comprehensively interrogated the epigenetic
status of epithelial and mesenchymal markers on CTCs. As
shown in Fig. 5, epithelial gene promoters are hypermethy-
lated in CTC samples. For example, epithelial gene Cdh1 and
EpCAM, key features of EMT process, were significantly
hypermethylated in CTCs (Fig. 5). This result is consistent
with previous findings that CTCs loss some of their epithelial
characteristics, and promoter hypermethylation of epithelial

genes is hallmarks of stable EMT process. Furthermore, the
DNA methylation of mesenchymal gene promoters are
mixed, with some showing DNA hypermethylation in CTCs
(Vim and Snail2) and others with DNA hypomethylation
status in CTCs (TWIST1, CDH2, and PTPRC). The promoters
of putative stem cell genes are hypomethylated in CTCs (such
as ALDH1A1, CD44), which strongly supports the findings
proposed with the TFBS enrichment analysis, suggesting that
CTCs are endowed with a stemness-related feature, and this
program may play a pivotal role in determining the
metastasis-seeding ability of CTCs.

Discussion

The concept of liquid biopsies for noninvasive detecting and
monitoring cancer has been embedded in our minds as a
promising approach in cancer diagnosis and prognosis.
CTCs provide a source of intact genomic and epigenomic
information for lineage-based analysis [31]. Efficient isola-
tion of CTCs in the bloodstream, followed by genomic and
epigenomic quantification, may provide a highly specific
diagnostic assay. Here, we have described a new workflow,
LCM–µWGBS, which can accurately and reproducibly
profile the DNA methylome based on microdissected CTC
samples at the single base-pair resolution. Our approach
combines the CTC negative enrichment with LCM method,
enabling isolation of CTCs with intact DNA, together with
DNA methylation profiling in very small cell population.
This work provided a comprehensive genome-wide analysis
of the DNA methylation events that characterize CTCs in
lung cancer, and compared the methylation changes with
matched primary tumors and normal tissues. We herein have
reinforced the notion of epigenetic disruption as a signature
during dissemination and metastasis.

As expected, the DNA methylation level was sig-
nificantly lower in primary lung cancer samples compared
with normal tissues [12, 14, 17, 32]. We described a clear
distinction in DNA methylation patterns between CTCs and
primary tumors, mostly in the form of hypomethylation in
the former. From a functional genomic standpoint, the DNA
methylation decrease was observed in the CTC DNA cov-
ered all genomic compartments. Since DNA methylation
changes were associated with profound effects on gene
expression, it suggested that the progressive decrease in
global DNA methylation plays important roles during
tumorigenesis and blood-borne dissemination. Interestingly,
we found progressive increase in DNA methylation in focal
regions, suggesting that DNA methylation hypermethylation
of tumor suppressor exists in CTCs. Our results added a new
dimension to the dissemination and metastasis. Whether the
DNA methylation change in CTCs is of prognostic, pre-
dictive, or therapeutic importance has yet to be determined.

Fig. 5 Targeted analysis of DNA methylome data. DNA methyla-
tion levels of epithelial, mesenchymal and stem cell markers. DNA
methylation levels of epithelial, mesenchymal, and stem cell markers.

DNA methylome profiling of circulating tumor cells in lung cancer at single base-pair resolution 1891



EMT plasticity of CTCs reveals that epigenetic landscape
is implicated in the dynamic events during dissemination
and metastasis. The epithelial genes tend to be hyper-
methylated in their promoters, such as Cdh1, a key feature of
EMT transition [33]. Such promoter hypermethylation leads
to the loss of the epithelial features, and acquisition of a
mesenchymal-like phenotype. As for the mesenchymal
genes, the DNA methylation status showed plastic, which
suggested that CTCs appear arrested in a biphenotypic state.
Another observation suggests that CTCs have several
properties that commonly feature stem cell implication. For
instance, CTCs result in hypomethylation of TFBS of master
stemness and proliferation regulators, such as CNOT3,
KDM2B, and KLF10. Moreover, putative stem cell genes
are hypomethylated in their promoters in CTCs, such as
ALDH1A1 and CD44, suggesting that CTCs are endowed
with a stemness-related feature. This finding reinforced the
stem cell-like characteristics of CTCs in lung cancer.

Our LCM–µWGBS method has several advantages.
First, it is an efficient workflow, which can accurately and
reproducibly profile the DNA methylation of micro-
dissected CTC samples, and will facilitate the investigation
of CTC DNA methylome. Second, this method is inde-
pendent of loss of EpCAM expression. Classical CTC
staining criteria include the presence of cell surface
EpCAM. However, EpCAM is not a perfect marker for
CTC selection due to the high variation in its gene
expression. Third, we provided the CTC DNA methylome
at single base resolution, which can discover a unique “CTC
DNA methylation signature” that is distinct from primary
tumors. Several limitations of our work should be addres-
sed. First, only few lung cancer patients (15 patients) were
involved in this analysis. Second, CTCs are very hetero-
geneous tumor cells; however, this method is difficult to
attain single-cell resolution with the current LCM technol-
ogy because many harvested cells do not remain intact after
laser microdissection. Third, the field of single-cell epige-
nomics is still in its infancy.

Taken together, we provided a robust and efficient method
for CTC DNA methylation analysis. Using this method, we
revealed a detailed description of the DNA methylation
landscape in lung cancer CTCs at single base-pair resolution.
It might facilitate to propose noninvasive CTC DNA
methylation biomarkers contributing to clinical diagnosis.

Materials and methods

Patient specimens and cell lines

Blood, primary tumors, and paired adjacent normal tissues
were collected from lung cancer patients with written con-
sent, which was approval by the Affiliated Hospital of

Xuzhou Medical University Agency Ethics Committee. We
collected patient peripheral venous blood (7.5 ml) using
EDTA tubes and stored them at room temperature for
processing within 24 h. Tissue samples were snap-frozen in
liquid nitrogen and stored at −80 °C. Human lung cancer
cell line A549 was purchased from Cell Bank of Type
Culture Collection of the Chinese Academy of Sciences
(Shanghai, China) and maintained in a humidified incubator
at 37 °C, using minimum essential media, supplemented
with fetal bovine serum (10% v/v).

CTCs enrichment and detection

An EpCAM-independent method was employed for CTCs
subtraction enrichment. At first, red blood cells were lysed
using RBC lysis buffer (G-bioscience) according to the
manufacturer’s protocol. The sample was then centrifuged
at 800 × g for 10 min at room temperature, and the super-
natants above the red blood cells were removed to deplete
serum. All the sedimented cells were mixed with 3 ml
nonhematopoietic cell separation matrix, followed by cen-
trifugation at 400 × g for 8 min. White buffy was collected
and subjected to magnetic separation of beads to deplete red
blood cells. The resulting pellet containing rare cells was
incubated with 150 μl immunomagnetic particles coupled to
anti-CD45 monoclonal antibody for 10 min, followed by
magnetic separation. The cell pellet was mixed with 100 μl
cell fixative solution and applied to the formatted and
coated CTC slide. After the drying process, the slides were
suitable for iFISH.

CTCs were detected by immunostaining of CD45, 4′,6-
diamidino-2-phenylindole, dihydrochloride (DAPI), and
FISH of the centromere of chromosome 8 probe (CEP8).
CTCs are identified by combining immunofluorescent
staining of CD45 and FISH with the CEP8 probe method. In
brief, we added hybridization solution containing CEP8
probe to the slides. After hybridization, the antibody of CD45
was added to the slides. Finally, the nuclear dye DAPI
(100mg/ml, Sigma) was added and slides were mounted for
microscopic observation. Cells with the DAPI+/CD45−/
CEP8 ≥ 3 pattern were considered to be CTCs. Cells with
DAPI+/CD45+/CEP8= 2 pattern were defined as white
blood cells and cells with DAPI+/CD45−/CEP8= 2 pattern
were defined as indeterminate cells.

CTCs extraction using LCM

The target cells in fixed slide were laser microdissected
following the manufacturer’s protocol for the PALM Laser
MicroBeam System (Zeiss AG, Oberkochen, Germany). To
facilitate LCM extraction, a PEN membrane-coated glass
slide was used to prepare samples, which made it easily to
be cut together with the samples. When we identified the
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target cell, a circle was drawn around it. Then, the area of
the interest was laser microdissected, and catapulted into an
adhesive cap of the collection tube. All CTCs harvested
from each patient were pooled into one tube for subsequent
µWGBS analysis.

µWGBS analysis

The tumor tissues had been stained with H&E before
µWGBS to maximize sample tumor purity and the effi-
ciency of tissue utilization. µWGBS was performed
according to the protocol of previous single-cell bisulfite
sequencing echnology [7]. The PBAT method was used to
avoid high DNA loss from limited starting material.
Bisulfite conversion was performed according to the man-
ufacturer’s instructions for EZ DNA Methylation Direct Kit
(Zymo Research D5020), and bisulfite-treated DNA was
eluted using 9 µl of elution buffer. Here, bisulfite treatment
was performed directly on lysed cells by placing cells in
10 µl digestion buffer and 1 µl proteinase K for 20 min at
50 °C. Sequencing library was prepared using the TruSeq
DNA Methylation Kit (Illumina, EGMK91396) according
to manufacturer’s instructions. For library amplification, 18
PCR cycles were performed. The final library purification
was performed twice using Agencourt AMPure XP beads.
Library concentration was estimated using Qubit dsDNA
HS Assay Kit. Sequencing was performed on Illumina
HiSeq X Ten platform.

Bioinformatics analysis of DNA methylation
sequencing data

Several bioinformatics steps were carried out to analyze the
bisulfite sequencing reads: (1) adapter trimming, (2) align-
ment of bisulfite-treated reads to human genome,
(3) determination of methylation state at each cytosine, and
(4) filtering the contaminating reads. Library adapter was
trimmed using trimmomatic [34], and fastqc is used to
evaluate clean data. Bisulfite sequencing reads alignment
was done using Bismark [35] with default parameters. All
analyses were performed based on the human reference
genome assembly hg38.

DMRs were determined using DMRseq [36] and bsseq
software package [37]. In brief, we processed CpG count
matrixes to merge symmetric CpG sites across stands and
filtered those CpG sites for at least 1× coverage across the
human genome, which accords with the minimum
requirements for DMR inference. DMRs were identified by
testing for differences between samples. We set the sliding
window size and step at 1000 and 100 bp. DMRseq was
employed by setting a cutoff of 0.05 and increasing the
number of permutations to 500. Background regions were

considered as the testable regions, and used as the candi-
date regions for permutation analysis to determine
significant DMRs.

TFBSs enrichment analysis in DMRs

TFBS enrichment in DMRs was calculated using i-cisTarget
software [26] (https://gbiomed.kuleuven.be/apps/lcb/i-cisTa
rget/) based on the normalized enrichment score (NES).
NES corresponds to the enrichment score, which reflects the
degree to which the motif set is overrepresented at the top or
bottom of a ranked list of motifs. NES is positive if it was
enriched in DMRs. NES score threshold > 3.4 was used
(passes a FDR threshold of 0.05). Motif search is performed
in DMR regions overlapping with predefined candidate
regularity regions.

Functional enrichment analysis

Functional enrichment analysis of KEGG was performed
using the using the DAVID software [38] for the methyla-
tion related genes. The KEGG categories were corrected
using the Benjamini–Hochberg method, and the genes with
F.D.R of less than 0.05 were considered to be significantly
enriched.

Data availability

The bisulfite sequencing data have been deposited in the
NCBI Sequencing Read Archive database (SRA,
http://www.ncbi.nlm.nih.gov/sra/) under the accession
number PRJNA649023.
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