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A randomized controlled trial for response of
microbiome network to exercise and diet
intervention in patients with nonalcoholic fatty
liver disease
Runtan Cheng1,2,3,13, Lu Wang4,13, Shenglong Le1,5, Yifan Yang 1,3, Can Zhao6, Xiangqi Zhang1,3, Xin Yang 3,

Ting Xu3, Leiting Xu1,7, Petri Wiklund1,2, Jun Ge1,8, Dajiang Lu2,9, Chenhong Zhang 3,10✉,

Luonan Chen4,11,12✉ & Sulin Cheng 1,2,5✉

Exercise and diet are treatments for nonalcoholic fatty liver disease (NAFLD) and pre-

diabetes, however, how exercise and diet interventions impact gut microbiota in patients is

incompletely understood. We previously reported a 8.6-month, four-arm (Aerobic exercise,

n= 29; Diet, n= 28; Aerobic exercise + Diet, n= 29; No intervention, n= 29) randomized,

singe blinded (for researchers), and controlled intervention in patients with NAFLD and

prediabetes to assess the effect of interventions on the primary outcomes of liver fat content

and glucose metabolism. Here we report the third primary outcome of the trial—gut

microbiota composition—in participants who completed the trial (22 in Aerobic exercise, 22

in Diet, 23 in Aerobic exercise + Diet, 18 in No Intervention). We show that combined

aerobic exercise and diet intervention are associated with diversified and stabilized keystone

taxa, while exercise and diet interventions alone increase network connectivity and robust-

ness between taxa. No adverse effects were observed with the interventions. In addition, in

exploratory ad-hoc analyses we find that not all subjects responded to the intervention in a

similar manner, when using differentially altered gut microbe amplicon sequence variants

abundance to classify the responders and low/non-responders. A personalized gut microbial

network at baseline could predict the individual responses in liver fat to exercise intervention.

Our findings suggest an avenue for developing personalized intervention strategies for

treatment of NAFLD based on host-gut microbiome ecosystem interactions, however, future

studies with large sample size are needed to validate these discoveries. The Trial Registration
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Nonalcoholic fatty liver disease (NAFLD) is the most
common chronic liver disease with prevalence estimates
ranging from 25% to 45% in worldwide1,2. NAFLD is

closely associated with type 2 diabetes (T2D)3, most likely via a
common pathophysiological mechanism - insulin resistance4.
Therefore, interventions targeting the synergistically pathogenic
mediator of NAFLD and diabetes are likely to be a rational
approach in the prevention and treatment of the comorbidity
condition.

The gut microbiota, which contributes to the metabolic health
of the human host, may work as one of the targets for the
treatment of NAFLD. Emerging data demonstrate that dysbiosis
of the gut microbiota is linked with NAFLD and T2D5,6.
Although the exact mechanism(s) require further elucidation,
inflammation, damage to the intestinal membrane, and translo-
cation of bacteria have all been suggested7. Drugs with antifibrotic
or anti-inflammatory treatments for various stages of NAFLD in
human trials is pending8. Currently, increased physical activity
and dietary modifications are the only effective therapeutic
options for NAFLD management, and the mechanisms of these
interventions have been associated with modulation of gut
microbiota and its metabolites9. For example, a low-carbohydrate
diet (LCD) has been reported to improve fatty liver metabolism
and to promote rapid shifts of the gut microbiota composition in
NAFLD patients10. Regular aerobic exercise has been shown to
reduce hepatic fat in obesity11,12, and some studies have shown
that exercise increases gut microbial diversity13 and alters the
composition and functional capacity of gut microbiota14,15.
However, the underlying mechanism of the beneficial effects of
exercise and diet on NAFLD, as well as the related metabolic
disorders through regulation of the gut microbiota, still remain to
be elucidated.

One of the challenges in constructing the relationship
between the gut microbiota and improvement of NAFLD during
exercise and/or dietary interventions is that not all patients
respond to the intervention in a similar manner. Earlier studies
have shown that there was an individual variation in response to
exercise, with some subjects experiencing greater improvement
than others16. The low/non-responders could be up to 50% in
terms of change of gut microbiota after exercise intervention17.
Some researchers have suggested that the variation in respon-
siveness might be due to genotypic and phenotypic factors18,19.
Thus, large inter-individual variance may mask the changes of
the microbiome in studies using traditional statistical analytical
methods. Currently, it is widely accepted that, in the microbial
community, the keystone taxa are drivers of microbiome
structure and function, and in particular, their interaction net-
work, which plays an important role in microbial functions and
disease progression20. Therefore, to establish an effective inter-
vention strategy, it may be worthwhile to analyze the microbiota
correlation network at the microbial community level, while
assessing the physiological mechanisms at the individual level
and further exploring individual microbial networks that
underlie the differences between responders and low/non-
responders of various interventions.

In the present study, we analyzed the composition and meta-
bolic pathways of the gut microbiota, constructed a co-occurrence
network at the population level, and developed personalized gut
microbial networks. This individual network enabled us to
identify the microbial signature and interaction of taxa at a per-
sonal resolution, and to further differentiate responders from low/
non-responders after intervention. Taken together, our study with
relatively long-term intervention provides both statistical and
sample-specific network insights into the complex gut microbial
ecosystem in patients with NAFLD and glucose metabolism
impairment.

Results
Participant characteristics and gut microbiota research design.
This study was an 8.6-month, four-arm, randomized trial (Fig. 1a,
Fig. S1) and participant characteristics have been reported in our
previous publication21. Briefly, 115 participants were recruited from
7 health clinical service centers in the Shanghai Yangpu district.
They were randomized into four groups: aerobic exercise inter-
vention (AEX, n= 29), fiber-enriched low-carbohydrate diet
intervention (Diet, n= 28), aerobic exercise combined with diet
intervention (AED, n= 29) and no intervention without guided
exercise and dietary intake (NI, n= 29). Of all participants, 85
individuals completed the intervention trial.

For the primary outcome of liver fat content, we previously
found that hepatic fat content (HFC) was significantly reduced in
the exercise AEx (–24.4%), diet (–23.2%), and AED (–47.9%)
groups by contrast to the 20.9% increase in the NI group (p < 0.001
for all) after intervention21. Of note, 91% of the subjects in the
AED group decreased their HFC, and the corresponding figures
were 68% in the AEx group, and 86% in the Diet group. In
contrast, 72% in the NI group increased their HFC during the
intervention period. However, for the primary outcome of glucose
metabolism, no significant remission or progression of prediabetes
was found between the intervention and NI groups based on the
glycated hemoglobin A1c (HbA1c)21. These results indicated that
our intervention was effective mainly for HFC reduction.

We found that not all the subjects responded to the intervention
in a similar manner. Therefore, we stratified the participants
into responders (HFC decreased more than 5%) and low/non-
responders (HFC decrease less than 5% or increased) (Fig. 1b). For
the primary outcome of gut microbiota composition, seventy-six
subjects provided paired stool samples at baseline and after the
intervention for 16 s rRNA gene sequencing. The demographics and
clinical variables of those who have had gut microbiota results are
presented to Table S1. In addition, to better understand the
intervention impact on the function of microbiome, we selected a
subset of the cohort (n= 42) with the best or worst response, in
terms of HFC reduction, to the intervention, and analyzed gut
microbiota by the metagenomics data (Fig. 1c).

The microbiota data and clinical parameters were used to (1)
characterize the change of gut microbiota composition in
response to interventions; (2) determine associations of the
microbiome with the level of physical fitness, fat mass, serum
biomarkers and short-chain fatty acids (SCFAs); (3) analyze the
metabolic function shift of the microbiome in response to
interventions; (4) discover the co-occurrence network features of
the microbiome ecosystem before and after intervention; and (5)
predict personalized response to intervention based on the
baseline gut microbiota composition and network.

Changes of structure and function of gut microbiota induced
by exercise and/or dietary intervention of participants with
comorbidity of NAFLD and prediabetes. We first performed
16 S rRNA gene sequencing of fecal samples collected before and
after interventions and obtained a total of 5421 amplicon
sequence variants (ASVs). We found that the alpha diversity
(Shannon index) of gut microbiota was significantly decreased in
the NI group (p= 0.045) with large individual variance by con-
trast to the intervention groups, which maintained their diversity
after the intervention (Fig. 2a, NI vs. AED p= 0.011, NI vs. AEx
p= 0.007 and NI vs. Diet p= 0.025, respectively, analysis of
variance with repeated measures adjusted for change of body
weight, baseline value and intervention duration). The changes in
microbial diversity may reflect the natural progression of NAFLD
in the NI group. Moreover, the principal coordinates analysis
(PCoA) based on weighted UniFrac distances shows the
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significant difference between NI and the other groups after the
interventions (p < 0.05, PERMANOVA, Fig. 2b). These results
indicate that microbial diversity deteriorates with the increased
HFC, while exercise and dieting may help to maintain the
diversity of the gut microbiota. To avoid only included the rela-
tive abundance data in the analysis which may introduce the bias,
we then measured the absolute abundance of microbiome by
quantitative real-time PCR (qPCR) targeting the 16 S rRNA gene.
We found that there were no significant differences between
baseline and after intervention as well as among the groups
(Fig. S2a). Moreover, the total bacterial content of each subject in
the same group at two time points also did not differ significantly
(Fig. S2b–e).

Furthermore, we performed Linear discriminant analysis Effect
Size (LEfSe) analysis22 of ASVs that appeared in more than 20%
of the samples. The ASVs showed significant differences between
the intervention groups and the NI group after intervention
(adjusted p < 0.05, log2 fold change >2) (Fig. 2c). Compared with
the NI group, we found that 15 ASVs were enriched and 5 ASVs
decreased in the AED group; and 13 ASVs were enriched in
the AEx group, while 9 ASVs were enriched and 6 ASVs were
decreased in the Diet group after the intervention. Among these
ASVs, ASV2077 (AED: p= 0.018, AEx p < 0.01, Diet: p= 0.032)
and ASV2513 (AED: p= 0.012, AEx: p < 0.01, Diet: p= 0.013)
belonged to Bacteroides, and ASV3942 (AED: p= 0.030, AEx:
p= 0.024, Diet: p < 0.01), which belongs to Ruminococcus,

increased in all intervention groups. In addition, ASV5361,
which belongs to Lachnospiraceae, increased in both AEx
(p= 0.027) and AED (p= 0.037) groups. ASV2440, belonging
to Bacteroides, increased in both Diet (p < 0.01) and AED
(p < 0.01) groups. Noticeably, some ASVs from the same family
or genus showed different behaviors. For example, ASV 4432 in
Lachnospiraceae was enriched in the AED (p < 0.01) group but
decreased after the diet (p= 0.023) intervention compared with
the NI group. To investigate whether changes of microbiome at
the ASV level were similar to the changes at the genus level, we
further performed a LEfSe analysis of the same parameters on the
genus level. We found that those observed changed ASVs, if
belonging to the same genus, indeed, they do have a similar trend
at the genus level (Fig. S3).

We next performed partial Spearman correlation analysis to assess
change of ASVs with clinical biomarkers after adjustment for body
weight and fat mass (n= 46, Fig. 2d). We found that three altered
ASVs were significantly negatively associated with the reduction of
HFC [ASV2468, belonging to Bacteroides (r=−0.31, p= 0.040),
ASV3307, belonging to Ruminococcaceae (r=−0.32, p= 0.030),
and ASV4538, belonging to Lachnospira (r=−0.37, p= 0.012)].
In addition, ASV478, which belongs to Phascolarctobacterium
(r=−0.32, p= 0.033); ASV1715, which belongs to Alistipes
(r=−0.35, p= 0.022); and ASV 5195 and ASV5305, which belong
to Lachnoclostridium (r=−0.30, p= 0.045, r=−0.34, p= 0.023,
respectively), were negatively correlated with HbA1c. Only ASV776,
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Fig. 1 Summary of clinical study. a Study design. The measurements were performed before and after intervention, and comparison of dietary fiber intakes
and estimated physical fitness indicated by VO2max before and after intervention are given. The white point, box range, line range and density plot width
represent median, interquartile range, 95% confidient interval and frequence, respectively. AEx: aerobic exercise; AED: AEx+Diet; NI: no intervention.
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belonging to Erysipelotrichaceae (r= 0.36, p= 0.016), was positively
associated with HBA1c. Although a previous study23 showed the gut
microbiota may benefit humans via SCFAs production from
carbohydrate fermentation, fecal SCFAs did not change significantly
from baseline to follow-up within groups in this experiment.
However, we found that some alterations in gut microbes correlated
with changes in SCFAs (Fig. 2d). The level of butyric acid
significantly correlated with 9 ASVs. Notably, ASV3718 in the
genus Faecalibacterium was significantly negatively correlated with 4
out of all 6 SCFAs, while ASV1989 in the genus Bacteroide was
positively correlated with 4 SCFAs (Fig. 2d).

To assess microbial functions, we also applied shotgun
sequencing in a subset of samples (Fig. 1c) and annotated the
data to the KEGG pathway (Fig. 3). By using LEfSe analysis
(p < 0.05, LDA score > 2), we found that in total, 64 specific
pathways were significantly different between the AED/AEx/Diet
groups and NI group after interventions, most of which fall into
the ‘carbohydrate metabolism’, ‘energy metabolism’, ‘glycan
biosynthesis and metabolism’, ‘lipid metabolism’, ‘amino acid
metabolism’ and ‘metabolism of cofactors and vitamins’ function
pathways. The differences in functional pathways of the three
intervention groups relative to the NI group were generally
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similar, however, the AED group had more differential pathways
than other groups. Notably, within ‘lipid metabolism’, ‘Sphingo-
lipid metabolism’ was more vigorously different from that of
other pathways (Fig. 3). In addition, most functional pathways
were more abundant in the NI group; only ‘glycan biosynthesis
and metabolism’ was more abundant in the intervention groups.
Taken together, the above findings indicate that exercise or/and
diet intervention(s) distinctly alter the abundance and function of
microbiome, which are associated with changes in HFC and
SCFAs.

Intervention induced change in gut microbiota co-occurrence
network. It has been shown that bacterial species in the human
gut may survive, adapt, and decline as interdependent functional

groups (guilds) responding to environmental perturbations24,25.
To identify bacteria in the gut ecosystem that responded as
functional groups to interventions, we adopted “co-abundance
groups (CAGs)” to analyze the community structure in the
microbial ecosystem24. We used the SparCC algorithm to calculate
the correlation coefficients among 279 ASVs shared by at least
20% of the samples from all the groups and time points26. These
279 ASVs were then clustered into 35 CAGs (Table S2) and their
abundance difference between groups were showed in Fig. S4a.

Network analysis can disentangle microbial co-occurrence and
provide comprehensive insight into the microbial assembly patterns
and community structures27. Using Spearman correlation analysis,
we constructed a co-occurrence network (Fig. 4a–d) to illustrate the
potential interactions among the 35 CAGs in each group with
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baseline and follow-up samples. Each node in the network
represents a CAG, and each edge represents a significant correlation
(p < 0.05) between two CAGs. We found that the number of edges
and average degrees that signify the connectivity of CAGs in the gut
microbiota network were higher after intervention than at baseline
in the AED, AEx and Diet groups, but not in the NI group (Fig. 4e).
In addition, the network robustness28 was significantly decreased in
the NI group but maintained or increased in all intervention groups

(Fig. 4f). The greatest increase in robustness score was in the AEx
group (+29.3%), followed by the Diet (+12.8%) and AED (+ 3.1%)
groups.

Because the complexity caused by the nonlinear dynamics of
the nodes is related to the network architecture, we assessed the
distribution of the network degree to judge the topological
features of the microbial network (Fig. S4b). We found that
most of the connections of the co-occurrence network were
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concentrated in a few nodes, which is an important features of a
scale-free network. This kind of network with a power-law
distribution comprise highly connected nodes, which are defined
as hubs29. The hubs in a microbial network have been proposed
as keystone taxa, as their removal has been computationally
shown to cause a drastic shift in the composition and functioning
of a microbiome20. In our data, the nodes (CAG6, CAG7, CAG8,
and CAG28) had more than 4% of the total number of
connections in each network. Therefore, these CAGs can be
regarded as hubs and maybe the keystone taxa of the gut
microbial community of each group (Fig. S4c). Interestingly, the
abundance of these four CAGs increased significantly after
intervention in the AED group compared with the NI group, but
did not change significantly in the AEx and Diet groups (Fig. S4a).
The most abundant ASVs among these four CAGs belong to
Bacteroides, Ruminococcaceae, Alistipes and Subdoligranulum.
Collectively, these findings suggest that interventions improve the
stability of the microbial ecosystem by reconstructing the network
among keystone taxa.

Personalized gut microbial networks can predict the inter-
vention efficiency of individual patients. Since not all subjects
responded to the intervention in a similar manner (Fig. 1b), we
assessed whether these response variations were associated with
the individual characteristics of the gut microbiota. First, we used
differentially altered ASVs abundance in each intervention group
(Fig. 2c) to classify the responders and low/non-responders, we
found that only the baseline ASVs abundance in the Diet group
showed the prediction power with a receiver operating char-
acteristic (ROC) area under the curve (AUC) of 0.65 (specifi-
city= 0.58, sensitivity= 0.67). No significant prediction
power for the classification in the AED group (AUC= 0.53,
specificity = 0.40, sensitivity= 0.67) and the AEx group
(AUC= 0.52, specificity= 0.50, sensitivity= 0.60) was found.
Second, since ASVs abundance could not describe the individual
network characteristics, we developed a Single SparCC network
method by combining a SparCC network26 with a sample specific
network (SSN)30 (Fig. 5a). We used baseline metagenomics data
to build a network for each patient (Fig. 5b) and found that
responders in all three intervention groups tended to have more
interactions between species than low/non-responders, but no
statistical significance was observed (Fig. S5). Furthermore, in the
linear regression analysis, the edge number in the AEx group
significantly predicted the change of HFC (Fig. 5c). Then we
performed an unsupervised classifier to differentiate the respon-
ders from the low/non-responders by each Single SparCC net-
work edge number. We found that AUC was about 70% in
different intervention groups (Fig. 5d), and the AUC of super-
vised Least absolute shrinkage and selection operator (LASSO)
classifiers were higher in all three groups (Fig. 5e). For the pur-
pose of comparison, we also tested the ability of age, body weight
(WT) and body mass index (BMI) to distinguish the respon-
siveness of the interventions (Fig. S6). The result showed that
these clinical parameters were not able to differentiate the
responders from the low/non-responders (age: AUC= 0.437,
p= 0.347; WT: AUC= 0.470, p= 0.655; BMI: AUC= 0.519,
p= 0.771), except for BMI in the AED group.

Considering the small sample size of metagenomic data, we
performed the same Single SparCC network analysis on the
intervention groups’ samples by using the 16 S rRNA gene
sequencing data (Fig. S7). Consistent with the metagenomic
results, the responders of the three intervention groups tended to
have more network edges than low/non-responders, but none of
them were statistically significant (Fig. S8a). In regression
analysis, we found that, in addition to the AEx group, the

baseline edge numbers in the AED group also showed significant
correlation with the HFC change; however, this was not observed
in the Diet group (Fig. S8b). For supervised LASSO classifiers,
ROC showed that the edge number of ASV data used to predict
the responder exceeded 70% AUC in all three intervention groups
(Fig. S8c), which was higher than the metagenomics data.
However, the effect of unsupervised classifiers deteriorated and
was almost ineffective in the Diet group (Fig. S1d). These results
indicated that our Single SparCC networks could be used to
construct personalized gut microbial networks for each individual
sample and thus differentiate the responders from the low/non-
responders, particularly for the exercise intervention. Taken
together, these analyses demonstrate that the individual baseline
gut microbial network can predict the response to exercise
intervention.

Discussion
In the current study, in patients with NAFLD and pre-diabetes,
we identified the characteristics of the gut microbiota responding
to an 8.6-month aerobic exercise and/or low-carbohydrate dietary
intervention. We showed that after combined exercise and diet
intervention, changes are prominent in gut microbial composi-
tion in which keystone taxa became divergent but their connec-
tions remained stable. By contrast, with exercise or diet
intervention alone, effects were significant regarding network
connectivity and robustness between taxa. Moreover, the perso-
nalized microbial network was able to predict the intervention
efficiency of individual patients.

Members from Ruminococcus have been reported to produce
SCFAs from complex carbohydrates31,32. A recent study33

showed that Ruminococcaceae was negatively correlated with the
fibrosis severity. In agreement with this, members in Rumino-
coccaceae was found negatively correlation with HFC in our
study. In addition, some members of Bacteroides contribute to
the release of energy from dietary fiber and starch, and they are
likely to be a major source of propionate34. Accordingly, we
found that members in Bacteroides was positively correlated with
propionic acid, isobutyric acid and isovaleric acid. A previous
study showed that compared to western countries, the abun-
dance of Bacteroides in NAFLD is much lower in Chinese
individuals35. However, our result suggested an important
energy-extracting role of members in Bacteroides, although their
abundance is relatively low in Chinese population. Of note, there
are currently conflicting results about the shifts of microbiota at
the taxon level in NAFLD-related studies. For example, some
studies showed that Bacteroides abundance was higher in NASH
(nonalcoholic steatohepatitis, a stage of NAFLD progression)
than in non-NASH36. Another article showed the phylum Bac-
teroidetes (44.63%) tended to be more abundant in healthy
subjects than in NAFLD35. Our results showed that members in
Bacteroides abundance was increased after both diet and exercise
intervention, and this increase was correlated with decreased
HFC. However, previous studies showed higher fiber intake was
marginally associated with lower abundance of Bacteroides
uniformis37, and Bacteroides was increased in participants with
obesity but decreased in lean participants after exercise
intervention38. These inconclusive results may be ascribed to
differences in ethnicity, living environment and lifestyle among
the cohorts. Thus, the mechanism of action of the key microbiota
needs to be investigated in future studies.

The long-term adaptation after intervention may account for
maintenance of gut microbiota alpha diversity in all intervention
groups in contrast to the NI group in which alpha diversity
decreased. However, the connectivity and robustness of
the microbiota co-occurrence networks improved in three
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intervention groups. Various ecological microbiome studies39,40

have shown that healthy people have a higher average network
degree and hence greater connectivity of their gut microbiota
network41. A poorly developed microbial network usually has

lower functionality due to fewer taxa present that can support
their function in ecosystems39. In combination with these find-
ings, our results indicate that microbiota as an ecosystem were
more healthy and stable after intervention. Interestingly, when
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ASVs abundance is used to predict the change of HFC, it has the
best predictive power in the diet group, but is not predictive in the
exercise group. However, when assessed the robustness of co-
occurrence networks, the exercise intervention showed the
highest increment of robustness score. A possible explanation is
that diet intervention directly affects the structure and composi-
tion of gut microbiota through changes in nutrients, while exer-
cise intervention influences the interaction between bacteria
through the regulation of host metabolism. In addition, this study
confirmed that co-occurrence networks of microbiota are scale-
free networks, and further defined four keystone taxa, which have
an prominently high degree in each network. A recent study
found that keystone taxa that are highly connected in the
microbiome can explain microbiome compositional turnover
better than all taxa combined42. Therefore, we speculate that what
exercise intervention improves not the gut microbiota diversity,
but the stability of the interaction network of the gut microbiota
ecosystem, thereby improving the metabolism of the host. The
keystone taxa determined by the microbiota population network
topology may be a new perspective beyond finding key bacteria
by abundance and diversity comparison.

No disease-specific drug/medical therapy for NAFLD is avail-
able due to its complexly pathogenetic mechanism, and man-
agement of lifestyle (such as exercise and diet) in patients is the
only effcient invervention in clinical practices. However, studies
have shown that not all participants respond to invervents of
exercise or diet in a similar way16, which may be attributable to
the individual-variation and response of gut microbiota in
patients. In some studies, 50% of the study participants show no
change in their gut microbiota composition after an exercise
intervention17. Then prediction of inprovment of clinical phe-
notypes in different patiens based on their gut microbiota would
be important to increase effcieny of NAFLD treatment. In the
previous studies, they ascribed to use the group-level changes of
bacteria abundance to construct the prediction models, which
disregards the fact that the menbers of gut microbiota show
ecological interactions such as competition or cooperation with
each other. Our Single SparCC method evaluated not only
microbiome composition and abundance, but also the interac-
tions between species. Such a network can be used to quantify the
system-wide features, e.g., robustness or stability of the system,
and further predict intervention effects. Various studies28,43 have
adopted the concept of connectivity and robustness from network
theory to investigate the rule of microbial community in diseases
from an ecological perspective. Actually, there is increasing evi-
dence indicating a link between undesirable health conditions
with altered microbial assembly process and a more fragile
microbiome network40,41. Our results indicated that the Single
SparCC network of gut microbiota is a valid method to predict
the responders from low/non-responders for exercise interven-
tion and therefore opens a new avenue to assess the effect of
exercise intervention on gut microbiota at an individual level.
Interestingly, we found that when differentially altered ASVs
abundance is used to classify the responders and low/non-
responders, it has the best prediction power in the diet group but
invalid in the exercise group. In terms of the AUC values, the
Single SparCC network of gut microbiota was better differential
features to responders from low/non-responders than age, body
weight and BMI in our study. These results indicate that corre-
sponding gut microbial characteristics can be used to predict
responsiveness of a subject to specific intervention methods. This
is of great clinical significance in improving effectiveness and
efficiency of interventional therapy of NAFLD. Notably, the
personalized prediction here requires a number of samples or
other individuals measured as the reference samples, against
which the network of each test sample can be projected.

Comparing with the conventional machine learning methods,
although the reference samples can be viewed as the training
samples, our method can further extract the second-order sta-
tistical information (e.g., correlation or association or network) of
each individual approximately, thus providing system-wide fea-
tures of each test sample. In general, our results are important in
terms of how to assess the intervention effect on physiology and
pathophysiology and to develop personalized lifestyle treatment
for such patients through their individual gut microbiota
network.

Our study provides novel information on how exercise and diet
intervention affect the gut microbiome for patients with comorbidity
conditions at both the population and individual levels. However,
there are some limits in this study. Our sample size for metagenomics
is relatively small but it is comparable with most of the studies44. The
dietary and exercise intervention methods are often different from
trial to trial, and even if the intervention methods are the same, the
intervention contents and intensity are different which makes the
comparison with other trials challenging. In addition, since the trial
was not originally designed to predict response efficiency with per-
sonalized microbiota network, our predictions were not validated by
independent samples. Nevertheless, this study provides a new per-
spective in the research of gut microbiota, that is, in addition to
focusing on the differential strains themselves, the topological prop-
erties of the microbial ecosystem community network are also of
great significance. Using the network features of gut microbiota to
predict individual response to exercise and diet interventions may
help to choose more precise and effective treatment for different
NAFLD pateints.

Methods
The study was approved by the Ethics Committee of Shanghai Institute of
Nutrition (06.01.2013) and has been retrospectively registered in the International
Standard Randomized Controlled Trial Number Register (ISRCTN 42622771). We
acknowledge that one limitation of the study is that the trial was restrospectively
registered. Two of the primary outcomes (Glucose tolerance test and Liver fat
content) have been previously reported21. All participants signed informed consent
forms before beginning the study. The study was conducted in accordance with the
principles of the Declaration of Helsinki.

Subjects and design. This study was a randomized controlled trial. Detailed
information was given in our previous publication21. The enrollment of partici-
pants was between January 6 and December 25, 2013. The eligibility criteria for
intervention groups were as follows: men or women aged 50–65 years with
impaired fasting glucose (IFG between 5.6 to 6.9 mmol/L) or impaired glucose
tolerance (IGT between 7.8 to 11.0 mmol/L 2 hour after the intake of 75 g glucose),
and diagnosed as NAFLD by 1H MRS (liver fat > 5%) and by questionnaire that
ongoing or recent alcohol consumption is <21 drinks on average per week in men
and <14 drinks on average per week in women; no chronic cardiovascular, serious
musculoskeletal or gastrointestinal problems and not on extreme diets; and for
women, serum follicle-stimulating hormone level greater than 30 IU/L and last
menstruation more than 6 months ago but within 10 years. The exclusion criteria
included body mass index (BMI) > 38 kg/m2; serious cardiovascular or muscu-
loskeletal problems; diagnosed with Type 1 diabetes and T2D; and mental illness.
In the initial study design, we estimated the sample size based on previous lit-
erature of liver fat and microbiota as primary outcome variable21. We estimated
that 34 subjects in each group would have 85% power for mean comparison
between the groups and therefore we targeted to have 50 subjects in each group.
However, during the recruitment period, we found that only about 20% of the
subjects met the inclusion criteria and due to the limited funding, we re-calculated
the sample size based on our previous similar type of study45,46. Thus, for this
report, sample size estimation for the primary outcome HFC with 29 individuals
has 95% power to test against the null hypothesis that there is no change in any
group. Further, when intervention groups compared with NI group having
17 subjects, the power for the HFC was 84% with < 0.05 two-sided significance
level. After every subject reached minimal 6 months intervention, the study did not
continue to follow-up all the subjects and consequently, the follow-up study was
terminated. There were no sex distribution differences between the groups and the
male/female ratio for each group was n= 6/23 for AEx, n= 6/22 for Diet, n= 7/22
for AED, and n= 7/22 for NI group, respectively.

Interventions. The duration of the intervention ranged from 6.5 months to
11.1 months and on average 8.6 months. There were no significant differences in
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the intervention duration among the groups (AEx 8.75 months, Diet 8.6 months,
AED 8.5 months and NI 8.6 months) as well as between responders (8.6 months)
and non-responders (8,7months).

The exercise (AEx) group participated in a supervised progressive aerobic
exercise training program (such as Nordic brisk walking + stretching and other
group exercises). Exercise was performed 2–3 times a week, 30–60 min per session
with 60–75% of the maximum oxygen uptake (estimated from fitness test). Each
exercise session included a 5 min warm-up and 5 min cool-down period. The diet
(Diet) group received a daily prepared meal (lunch), which accounted for 30–40%
of the total daily energy intake on the basis of each individual’s dietary intakes and
body weight. The meal included 37–40% carbohydrate with 9–13 g as fiber, 35–37%
fat (SAFA 10%, MUFA 15-20%, PUFA 19 10%) and 25–27% protein plus 5 g of
soluble fiber (dietary water-soluble fiber). The lunch box was then delivered to the
study district community office where the study subjects were gathered. If the
participants did not have time to come to pick up the meal, it was delivered to their
home and the participants ate it for dinner. The other two meals (breakfast and
dinner) were cooked by subjects themselves following the nutritionist advice. In
addition, the Diet group was advised to maintain their current level of physical
activity during the intervention. The Exercise plus Diet (AED) group performed
the same exercise program and followed the same diet as described above for the
AEx and Diet groups. The no intervention (NI) group was advised to maintain
their current level of physical activity and eating habits during the intervention.

Patient and public involvement. The patients were engaged via advertisements
distributed in 7 health clinical service centers in the Shanghai Yangpu district. In
addition, media and social media were used to inform about the study. Patients
were not involved in the design of the study. The study protocol was described to
study participants on the first study visit.

Fecal DNA extraction. Faecal samples were collected at the baseline and after the
intervention. Microbial genome DNA was extracted from fecal samples using the
bead-beating method (alterations in the gut microbiome and metabolism with
coronary artery disease severity). Briefly, we used an InviMag® Stool DNA kit
(Invitek, Berlin, Germany) with agitation in a mini-bead beater (Biospec Products,
Bartlesville, OK, USA) as follows: approximately 0.2 g of thawed feces were added
to a 2 mL screw-cap tube containing 1 mL of lysis buffer P of the kit and 0.3 g
Zirconia beads (0.1 mm, Biospec Products, Bartlesville, OK, USA). After sufficient
homogenization by vortex for approximately 5 min, bead beating was performed
for 1 min at maximum speed. DNA was extracted by following the manufacturer’s
instructions for bacterial DNA extraction involving proteinase K treatment and
subsequent purification using the KingFisher device (Invitek, Berlin, Germany).

qPCR of total fecal bacteria. A plasmid of the 16 S full-length positive Rumi-
nococcus strain (n= 1010 copies/μl) was diluted according to different gradients
successively to 109, 108, 107, 106, 105, 104, 103, and 102 copies/μl. qPCR was
performed in a 20-μl reaction system containing template (20 ng), primer Uni331F
(5’-TCCTACGGGAGGCAGCAGT-3’), primer Uni797R(5′-GGACTACCAGGGT
A TCTAATCCTGTT-3′), and supermix (Bio-Rad) on a qTOWER3G touch sys-
tem, with 2 replicates for standard and sample DNA. The PCR conditions were
95 °C for 5 min, followed by 40 cycles of 95 °C for 20 s, 60 °C for 60 s, and 80 °C for
5 s, and Melting curve 60 °C to 95 °C. A standard curve was determined though a
linear fifit of the copy number and CT value of the plasmid in different gradients.
The copy number of sample DNA was calculated through a standard curve.

Construction of amplicon library of V3-V4 region of 16 S rRNA and sequen-
cing. The extracted DNA from each sample was used as the template to amplify the
V3-V4 region of 16 s rRNA genes with bar-coded primers, forward primers-338F
(5′- sampleIDtag- ACTCCTACGGGAGGCAGCA-3′) and reverse primers-806R
(5′- sampleIDtag-GGACTACHVGGGTWTCTAAT). PCR reactions were run in a
thermocycler PCR system (Applied Biosystems, USA) using the following pro-
gramme: 5 min of denaturation at 96 °C followed by 25 cycles of for 30 sec at 96 °C
(denaturation), 30 sec at 50 °C (annealing) and 30 sec at 72 °C (elongation), with a
final extension at 72 °C for 5 min. PCR product was excised from a 1.5% agarose gel
and purified by QIAquick Gel Extraction Kit (QIAGEN, cat# 28706). Purified PCR
products from the fecal samples were combined at equal concentrations and used
to construct a metagenomic library using an Illumina TruSeq sample preparation
kit (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.
Barcoded V3-V4 amplicons were sequenced using a pair-end method via the
Illumina Miseq (Illumina, San Diego, CA, USA) sequencing platform with a 6-cycle
index read.

16 S rRNA Sequence analysis. Quality control of the raw data was performed as
follows: (1) the sequence should have a perfect match to the barcode in at least one
end; (2) the sequence should have a BLAST match to at least one end of the 16 S
rRNA gene V3-V4 region primers; (3) the length of the trimmed sequence (without
barcodes/primers) should be between 400 nt and 500 nt; and (4) there should be no
more than two undetermined bases. All the retained sequences were processed
using the QIIME 2 (Quantitative Insights into Microbial Ecology) package. The
sequences were aligned using the PyNAST aligner with the Greengenes core set

(Released 13.8) and then classified into ASVs at a threshold of 97% sequence
identity using UCLUST. The representative sequence for each ASV was selected
using default parameters and was imported into the latest Greengenes ARB
database to construct a phylogenetic tree.

Raw sequencing data were analyzed by QIIME 2. In the process of running the
DADA2 pipeline, based on the quality profile of the data, forward and reverse reads
were trimmed accordingly to ensure that the median quality score for each position
was above 32. The taxonomy of all ASVs were annotated by the SILVA (v132)
reference database47. All samples were rarefied to 10,000 per sample for
downstream analysis.

Metagenomics analysis. Forty-two paired samples were sequenced at the
Novogene Bioinformatics Institute (Novogene, Beijing, China). After construction
of 350 bp insert libraries, metagenomic samples were pair-end sequenced on the
HiSeq X Ten System. Cluster generation, template hybridization, isothermal
amplification, linearization, and blocking denaturing and hybridization of the
sequencing primers were performed according to the workflow specified by the
service provider. The pipeline was consistent with previous studies48,49. We
removed contamination of host DNA and assembled the metagenome by using
Bowtie (Default parameter Settings:—end-to-end,—sensitive, -i 200, -x 400) and
SOAP denovo (K-mers= 55)50.

Short chain fatty acid measurement. Slice of human feces were homogenized
with 1.2 mL of phosphate buffer solution in weighed 2 mL centrifuge tubes (marker
as W1). The mixture was vibrated completely and centrifuged twice at 4 °C at
16000 × g for 15 min. The supernatants were filtered and sterilized through a
0.22 μm nylon filter (EMD Millipore). Feces residue and tube were dried in 80 °C
drying apparatus overnight and weighed (marked as W2). 200 μL of the super-
natant was acidized with 100 μL of 50% (v/v) sulfuric acid. After vortexing and
standing for 2 min, the organic phase was extracted by adding 400 μL of diethyl
ether. The extracted solution was measured by gas chromatography (GC) on an
Agilent 6890 (Agilent Technologies, CA, USA). The concentrations of 6 short chain
fatty acids (acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid and
isovaleric acid) were calculated by each peak area and feces dry weight (W2-W1).

Co-abundance gene groups (CAGs). The ASVs shared by at least 20% among all
samples were considered key ASVs. The correlation among 279 key ASVs was
calculated by the SparCC algorithm51 with a bootstrap procedure repeated 100
times, and then correlation matrices were computed from the resampled data
matrices. Once the bootstrapped correlation scores have been computed, only
ASVs with correlation scores greater than 0.4 were classified into CAGs. The
p value at the desired cut-off < 0.05.

Network fragility. Given the N node (CAG) number in a network, the N nodes
were removed one by one in a random order. The fragility statistics (y axis) were
the ratio of the node number in the largest connected component to the node
number N, and were calculated when each node was removed, while the percentage
of removed nodes was taken as the x axis. The robustness value R for a network was
related to a function σ, which was dependent on the decreasing order of fragility
statistics as nodes were removed28, i.e.,

R ¼ 1
N

∑
N

i¼1
σði=NÞ

where i represents the ith CAG. To ensure the results were stable, we repeatly
remove the nodes in each network for 1000 times. The median fragility statistics of
the 1000 curves were taken as the coordinates for the final curve to plot the
robustness curve.

Single SparCC network analysis. The traditional correlation coefficient mainly
exploits the general information in a group of samples. Rather than focus on a
‘mean’ value within a group, our Single SparCC network is proposed to investigate
the characteristics of each sample. Gut microbiota 16 S sequencing and metage-
nomics data suffered from spurious correlation. SparCC is the most popular
method to eliminate spurious correlation26. SparCC can detect the association
between species in a set of sample size > 1, but it is invalid for an individual sample.
Our approach enabled us to explore the personalized characteristics of NAFLD
patients.

The correlation of species i and j can be inferred from their ratio. Even though
high-throughput sequencing only produce relative quantification of microbe, the
ratio of those relative value is the same with real abundance. Define tij to describe
variance of log transformed relative value of component xi and xj:

tij � Var log
ωi

ωj

" #
¼ Var log

xi
xj

" #
; ð1Þ

where xi and xj are the relative abundances of microbe x and y, while ωi and ωj are
the absolute abundances of those two microbes.
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In SparCC method, tij was related to Pearson correlation coefficient ρij by
equation:

tij ¼ ω2
i þ ω2

j � 2ρijωiωj; ð2Þ
where ω2

i and ω2
j are the variances of the log-transformed real abundance of species i

and j. Because of the sparse nature of microbial association network, we can assume
that the average of all ρij correlation is small enough to ignore, which allow us to solve
for ω2

i and ω2
j . Then put in the values of ω2

i and ω2
j back to Eq. (2), and end up with

the approximated correlation ρij. Suppose the sample size is S and the number of nodes
is D. Letting a = 2D-3, b ¼ 1

2ðD�1ÞðD�2Þ, we achieve an analytical solution for ρij:

ρij ¼
1

2sωiωj
∑
S

k¼1

 
b aþ 1ð Þ∑

D

j¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2

� 2b ∑
D

j¼1
∑
D

i¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2 
þ b aþ 1ð Þ∑

D

i¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2

� log
x kð Þ
i

x kð Þ
j

� μlogxij

 !2!!
ð3Þ

where

ω2
i ¼ b aþ 1ð Þ � 1

S
∑
D

j¼1
∑
S

k¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2

� b � 1
S
∑
D

i¼1
∑
D

j¼1
∑
S

k¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2
:

ð4Þ

μlogxij ¼ ∑
D

j¼1
∑
S

k¼1
log

x kð Þ
i

x kð Þ
j

 !
; ð5Þ

Since ρij is a form of k elements summation, we can break it down into a vector
that depends on the correlation coefficient ρij, and each element ρðkÞij is the sample
specific correlation:

ρðkÞij ¼ 1
2sωiωj

b aþ 1ð Þ∑
D

j¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2
� 2b ∑

D

j¼1
∑
D

i¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2 !

þ b aþ 1ð Þ∑
D

i¼1
log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2
� log

x kð Þ
i

x kð Þ
j

� μlogxij

 !2 !
:

ð6Þ

Thus, the algorithm is given as follows:
Step 1: From the taxonomy abundance of s samples, we calculated μlogxij , ωi and ωj.

Step 2: To infer the correlation ρðkÞij in the network for kth sample, we substitute
μlogxij , ωi and ωj into Eq. (6).

Step 3: We iteratively calculate the correlation coefficients for each sample.

Prediction of responders in change of HFC. In the supervised prediction process,
we used baseline samples from each group to predict the responders from low/non-
responders after intervention. The analysis takes three steps.

Step 1: Through the Single SparCC algorithm, we generated one SSN for each
individual in the n samples. We then converted these networks into an edge matrix,
which contained the variables consisting of 3321 edges. The edge weight in n
samples was taken as the feature.

Step 2: We used the N-sample edge matrix as the input set. The level of HFC
after the intervention was the dependent variable, which was used to train an
Elastic-Net model.

Step 3: Based on the predicted and true values from step 2, we calculated the
prediction metrics. Thereafter, responders from low/non-responders according to
their change of HFC after intervention were identified.

In addition, we performed a regression analysis to use the Single SparCC
network edges to assess whether they predict HFC change after intervention by
using the stat_poly_eq function in the R package ‘ggpmisc’.

In an unsupervised prediction process, we directly used the network attributes
(edge number, mean degree) of a Single SparCC network (before intervention) to
predict the responders from the low/non-responders. A ROC curve was then
drawn to visualize the predictive effect (roc function in R package pROC).

Statistical analysis. Before statistical test for relative abundance data, taxonomy
that appeared in less than 20% of the samples were excluded. Alpha diversity
(Shannon index) was performed using the phyloseq (v1.33) package in R v4.0. For
the comparison of Shannon index and the absolute content of microbiome, general
linear model of analysis of variance controlled for covariates (ANCOVA) for
repeated measures (2 factor interactions: group x time) and controlled for change
of body weight, baseline value and intervention duration followed by Sidak cor-
rection for multiple comparison between the groups. Contrast results (K Matrix)
were used to localize the group differences: *p < 0.05, **p < 0.01 and ***p < 0.001
by contract to the NI group. Beta diversity analyses were performed to assess the

community membership (weighted UniFrac distance for bacterial relative abun-
dance) and functional composition (bray curtis distances for KEGG pathway).
Pairwise comparisons of beta diversity between groups were performed using
pairwise.perm.manova (R package RVAideMemoire v0.9). p < 0.05 is considered as
significant in all the above analyses. The Spearman correlation analysis between
microbiome and clinical parameters was performed with MATLAB R2020a in
samples with complete data. Co-occurrence network analysis was conducted for
samples before and after intervention in all 4 groups using pairwise Spearman
correlations in MATLAB R2020a, and only the significant correlations (p < 0.05)
were used for network construction. The networks in each intervention group
(before and after intervention) were merged together to facilitate direct comparison
and were further visualized in Cytoscape software (v3.8.1). To detect differential
taxonomy, KEGG pathway analysis and linear discriminant analysis effect size
(LEfSe v1.0, which is an algorithm for high-dimensional biomarker discovery and
identifies genomic features such as genes, pathways or taxa as well as characterizing
the differences between two or more biological conditions or classes) was per-
formed with cut-offs (LDA Score > 2.0, p < 0.05).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The study protocol has been published previously (https://doi.org/10.1186/1471-2458-
14-48). The raw Illumina sequence data including 16 s rRNA sequence and
metagenomics generated in this study have been deposited to the NCBI database under
BioProject accession no. PRJNA757939 (https://www.ncbi.nlm.nih.gov/bioproject/?
term=PRJNA757939). The data is available for academic use under controlled access in
compliance with the regulation of the Ministry of Science and Technology (MOST) of
China for the deposit and use of human genomic data. All individual de-identified
participant data that support the findings of this study are available from the
corresponding author upon reasonable request based on the rule of data protection and
consent. The access to the controlled data will be valid for one year from the time of the
data accessibility approved. The processed data are available within the Source Data file.

Code availability
Codes used for computing population and individual networks are available on GitHub
(https://github.com/crtsjtu/AELC).
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