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Abstract: Neurofeedback of real-time functional magnetic resonance imaging (rtfMRI) can enable
people to self-regulate motor-related brain regions and lead to alteration of motor performance and
functional connectivity (FC) underlying motor execution tasks. Numerous studies suggest that FCs
dynamically fluctuate over time. However, little is known about the impact of neurofeedback training
of the motor-related region on the dynamic characteristics of FC underlying motor execution tasks.
This study aims to investigate the mechanism of self-regulation of the right premotor area (PMA) on
the underlying dynamic functional network connectivity (DFNC) of motor execution (ME) tasks and
reveal the relationship between DFNC, training effect, and motor performance. The results indicate
that the experimental group spent less time on state 2, with overall weak connections, and more
time on state 6, having strong positive connections between motor-related networks than the control
group after the training. For the experimental group’s state 2, the mean dwell time after the training
showed negative correlation with the tapping frequency and the amount of upregulation of PMA.
The findings show that rtfMRI neurofeedback can change the temporal properties of DFNC, and the
DFNC changes in state with overall weak connections were associated with the training effect and
the improvement in motor performance.

Keywords: real-time fMRI; neurofeedback; dynamic functional network connectivity; functional
connectivity state; motor execution

1. Introduction

Real-time functional magnetic resonance imaging (rtfMRI) technology has been widely
applied to train individuals to actively control their brain activities by using real-time neu-
rofeedback [1,2] in recent years. Many rtfMRI studies have demonstrated that individuals
can self-regulate brain activity in a target brain region or connectivity in a target network to
improve the corresponding cognitive ability and behavior performances [3–8]. Moreover,
rtfMRI neurofeedback was applied to train a number of clinical populations, such as those
with chronic stroke [9], schizophrenia [10] and Parkinson’s disease [11,12], to help the
rehabilitation of patients.

Previous rtfMRI studies have shown that subjects can self-regulate brain activity in
a target motor-related region or connectivity between motor-related regions. Some stud-
ies reported that rtfMRI was able to train subjects to voluntarily modify activities in the
somatomotor cortex, left M1, and left premotor cortex without measuring motor perfor-
mance [13–16]. Some rtfMRI studies that measured motor performance demonstrated that
self-regulation of the supplementary motor area or right premotor areas (PMA) can induce
an improvement in motor performance [3,11,12]. Moreover, the neurofeedback of connec-
tivity between the left primary motor cortex and the left lateral parietal cortex can induce
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the aimed direction of change in connectivity and also a differential change in cognitive
performance [17]. The above studies suggest that self-regulation of the motor-related area
or connectivity can change motor performance.

Besides modulation of motor performance, neurofeedback training of activities in
motor-related regions or connectivity between motor-related regions can also modify func-
tional connectivity (FC) between brain regions/networks. The neurofeedback training
of regulating the right PMA induced an increase in FC between the target region PMA
and the other motor-related regions [3,18]. Moreover, the altered FC was related to motor
performance [3]. In Horovitz’s study (2010), the regulation of the motor cortex not only
induced correlations between the visual and motor areas but also increased basal ganglia
involvement and bilateral motor cortex connectivity during neurofeedback training [19].
Self-regulation of the supplementary motor area (SMA) can be achieved by Huntington’s
disease patients and leaded to an increase in FC between the SMA and left putamen,
with beneficial effects in motor behavior [20]. rtfMRI neurofeedback training of the connec-
tivity between the left lateral parietal and left primary motor areas modified FC between
the motor/visuospatial network and the default model network [17,21].

Although previous rtfMRI studies revealed changes in FC underlying motor tasks
after self-regulating the activities of motor-related areas, the FC used in these studies
was considered in a “static” sense. The static FC neglected the dynamic characteristics
of fMRI data during the whole scanning process [22]. Moreover, an increasing amount
of evidence suggests that FCs of fMRI data fluctuate over time [23,24]. The temporal
fluctuations of FC at different time scales are crucial to understanding the ultimate neural
underpinnings of cognitive processing. In recent years, dynamic FC analysis has been
applied to fMRI data widely and has revealed reoccurring patterns of dynamic FC, called
dynamic states [22,25,26]. However, few studies have investigated the relationship between
dynamic FC fluctuations and rtfMRI neurofeedback training so far. In particular, the effect
of neurofeedback of motor-related areas on the dynamic FC of motor execution tasks is
unclear. Investigating the reorganization of dynamic FC underlying motor tasks after
neurofeedback of motor-related areas is essential for us to further understand the neural
mechanism of neurofeedback training and reveal the relationship between changes in
dynamic FC and neurofeedback training.

Our previous studies investigated changes in static FC with the neurofeedback of the
right dorsal PMA (dPMA) [3]. In this study, we were particularly interested in exploring
the mechanism of self-regulation of the right dPMA with rtfMRI neurofeedback on the
underlying dynamic functional network connectivity (DFNC) of motor execution (ME)
tasks. For this purpose, we first conducted independent component analysis (ICA) on
the fMRI data of motor execution (ME) tasks before and after neurofeedback training to
extract task-related networks. We focused on interactions within and between task-related
networks that were positively or negatively related with the ME task. Then, time-varying
FC within and between task-related networks was estimated using a series of sliding
windows. We applied K-means clustering to FC matrices of all the windows to identify
connectivity states that reoccurred over time and were reproducible across subjects.

In this study, we aimed to test whether right dPMA self-regulation modulated DFNC
underlying the motor execution (ME) task and revealed the relation among the neuro-
feedback training effect, DFNC, and motor performance. Previous studies revealed that
dynamic FCs changed with development [27], aging [28], long-term training [29], and dis-
ease [30,31]. Given that DFNC was plastic, we hypothesized that the neurofeedback of
the right dPMA would change the DFNC of some FC states of the ME task. Furthermore,
several previous studies have shown that the temporal properties of DFNC are correlated
with some behavior performance, such as personality traits, clinical score, social abili-
ties, and attention scores [32–35]. Moreover, some rtfMRI studies found that FC changes
were correlated with behavioral improvements after the neurofeedback training [3,36].
Given the relationship between DFNC/FC and behavior measures, we hypothesized that
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the DFNC changing underlying ME tasks is related to motor behavior improvement after
self-regulation of the right dPMA.

2. Materials and Methods

The fMRI data in this study were the same as in our previous study [3].

2.1. Participants

Fifteen right hand-dominant participants (6 males and 9 females, mean age: 22 years,
SD: 1.6 years) in the experimental group and 13 right hand-dominant participants (8 males
and 5 females, mean age: 23, SD: 1.7 years) in the control group participated in the
experiment. All subjects gave written informed consent, which was set by the MRI Center
of Beijing Normal University. The experiment was approved by the Institutional Review
Board (IRB) of the State Key Laboratory of Cognitive Neuroscience and Learning in Beijing
Normal University (approval number ICBIR_B_0011_006).

2.2. Imaging Parameters

The fMRI scanning was performed on a 3T Siemens scanner at the MRI Center of
Beijing Normal University. A single-shot T2*-weighted echo EPI sequence (TR = 2000 ms,
TE = 40 ms, flip angle = 90◦, FOV = 240 × 240 mm2, matrix = 64 × 64, slice thickness = 4 mm,
inter-slice gap = 0.8 mm, slices = 32) was used in the experiment. The EPI sequence was
the same for the whole fMRI experimental procedure.

2.3. Experimental Procedure

The whole experimental procedure included pre-scan practice, a pre-training scan,
rtfMRI neurofeedback training, a post-training scan, and a questionnaire interview. Figure 1
shows the diagram of the whole fMRI experimental procedure.
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2.3.1. Pre-Scan Practice

All subjects practiced tapping their right index finger according to a metronome at
4 Hz to adapt the frequency used in the experiment. The subjects were instructed that
their four fingers from index finger to little finger represented one, two, three, and four
separately. Then, they tapped 1-2-3-4 and 4-2-3-1-3-4-2 at 4 Hz for a 30-s period and
imagined tapping the 4-2-3-1-3-4-2 at 4 Hz for a 30-s period without actual movement.
The experimental and control groups received the same pre-scan training.

2.3.2. Pre- and Post-Training Scan

Both the pre- and post-training scan included one ME run and one motor imagery
(MI) run. Five resting 30-s blocks alternated with four 30-s task blocks in each 270 s run.
When the word “PUSH” was displayed on the screen, the subjects needed to tap or imagine
the sequence of 4-2-3-1-3-4-2 at 4 Hz with their right hand. When subjects saw “Rest” on
the screen, they needed to remain awake and relax.

2.3.3. Neurofeedback Training

For each subject, one target ROI and one background ROI were manually defined
in TBV software based on the activation map during the pre-training ME run. The tar-
get ROI was located in the right dorsal PMA and the background ROI that excluded
the motor-related areas covered almost all voxels around the axial slice (MNI: z = 10).
The neurofeedback value that was calculated based on Equation (1) was presented to
the subjects.

Neurofeedback value = (ROIt-task − ROIt-rest) − (ROIb-task − ROIb-rest) (1)

ROIt-task and ROIb-task in Equation (1) are the mean fMRI signals of the target ROI and
background ROI during the task block. ROIt-rest and ROIb-rest are the mean fMRI signals of
the two ROIs during the preceding rest block.

There were four neurofeedback training runs. Each run lasted 7.5 min. Eight 30-s
rest blocks were alternated with 7 30-s task blocks in each run. During the neurofeedback
runs, all participants were asked to increase the curve height of the neurofeedback as much
as they could by imagining the series of 4-2-3-1-3-4-2 without actual finger movement.
The strategy instructions that were provided to all subjects included varying the speed,
strength, and the method of finger tapping and so on during motor imagery. During the rest
blocks, the subjects were asked to be relaxed without any movement. The only difference
between the experimental group and the control group was that the control group received
sham neurofeedback that was selected randomly from the experimental group.

2.3.4. Questionnaire Interview

After the post-training scan, all the subjects were required to finish a questionnaire
about their performance. In addition, all participants were asked questions about their
states in the experiment.

2.4. Offline Data Analysis

Because this study mainly investigated the alterations of DFNC of the ME tasks that
were induced by neurofeedback training, the fMRI data of the MI tasks were excluded from
the following analysis in this study. Moreover, 12 experimental subjects and 12 control
subjects were used in the following analysis because 3 subjects in the experimental group
and 1 subject in the control group reported finger movements during the movement
imagery based on our previous study [3]. An overview of the framework of DFNC
processing is presented in Figure 2.
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2.4.1. Preprocessing

The whole preprocessing procedure was carried out in the SPM8 package (http:
//www.fil.ion.ucl.ac.uk/spm/software/spm8, released April 2009). For each subject,
functional images of the pre-training ME run, the four neurofeedback training runs, and the
post-training ME run were corrected for slice timing and head movement. Then, the images
were spatially normalized into a standard EPI template, resliced to 3 × 3 × 4 mm3 voxels,
and spatially smoothed with an 8 mm full-width half maximum (FHWM) Gaussian kernel.

2.4.2. Group ICA

Group spatial ICA [37] in GIFT 3.0 version (http://mialab.mrn.org/software/gift/,
released 21 May 2013) was applied to the pre-training and post-training fMRI data of the
ME tasks for all subjects. Prior to the group ICA analysis, a two-step principal components
analysis (PCA) was used to reduce data dimensionality to 100 based on the previous
study [25]. The Infomax ICA algorithm [38] was repeated 100 times using the ICASSO
algorithm to obtain stable and reliable components [39]. GICA1 back-reconstruction was
performed to estimate the time course and spatial map of each component of each subject.

After the back-reconstruction, the correlation coefficient between the mean time course
of each component over all subjects and the reference function was calculated. The reference
function was derived from the convolution of the task paradigm with the hemodynamic
response function (HRF). The components with an absolute correlation coefficient larger
than 0.5 were selected as the task-related components. Thirty-five selected components
underwent further analysis. One sample t-test was applied to each selected component of
all the subjects to identify the activation map of each component. The components whose
spatial activation map contained ventricles, vascular, white matter area, and cerebrospinal
fluid artifacts were further excluded from the following analysis. The final 29 task-related
components were retained for the DFNC analysis. Based on the functions of Brodmann
areas (BA), anatomical properties, and network division of the previous DFNC study [25],
the 29 selected components were divided into four network groups: motor-related net-
work (MN), visual network (VN), cognitive control network (CCN), and default mode
network (DMN).

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://mialab.mrn.org/software/gift/
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2.4.3. DFNC Analysis

The whole process of DFNC analysis was performed using the sliding windows
approach of the “temporal DFNC” toolbox in GIFT 3.0 version [25,40]. The time courses
of all the selected components were triple detrended (linear, quadratic, cubic), despiked,
and lowpass filtered (0.15 Hz) [41]. For the pre-training/post-training run of each subject,
the Pearson correlation between the time courses of each pair of components during a
series of sliding windows was calculated. Gaussian windows were used (δ = 3 TR), and the
step of the sliding windows was set to 1 TR, resulting in 121 windows. Because 30–60 s
could be a reasonable choice of window lengths [42], we set the length of each window
to 30 s, which was the length of each block. For each sliding window, the correlations of
all selected components consisted of an FC matrix with c × c size, where c is the number
of the selected components. To reduce possible noise from a limited number of data in
each window, L1 regularization was applied to the inverse covariance matrix to promote
sparsity. The regularization parameter was optimized for each subject independently by
evaluating the log-likelihood of windowed covariance matrices from the same subject
in a cross-validation framework [25,40,41]. Finally, there were 121 FC matrices for the
pre-training/post-training run of each subject.

2.4.4. Clustering Analysis

The FC matrices of the pre-training and post-training runs for all subjects were clus-
tered by K-means to identify reoccurring FC patterns [25]. L1 distance (Manhattan distance)
was used in K-means because it may be a more effective similarity measurement for high
dimensional data [43]. The number of clusters was set to 7 according to the Akaike in-
formation criterion method [44] (see Figure S1 in the Supplementary Materials). The FC
matrix exemplars with local maxima were selected as centroids first, and K-means was
repeated 150 times to obtain stable cluster results subsequently. The median of each cluster
was extracted as the “FC state.”

2.4.5. Temporal Property Analysis of DFNC

For each state, the mean dwell time and fraction of time [39] were calculated in this
study. The mean dwell time of a dynamic FC state was measured as the average number of
consecutive windows corresponding to the state in a run, whereas the fraction of time of
a state was measured as the proportion of windows corresponding to the state during a
single run. The mean dwell time denotes how long a participant remains in a particular
state and fraction of time denotes the probability of occurrence of a state. Two-way repeated
measure analyses of variance (ANOVA) that used training as the within-subject factor
(pre-training and post-training) and group as the between-subject factor (experimental and
control group) were conducted for the mean dwell time and fraction time of each state.
All two-way repeated measure ANOVAs were carried out in SPSS 20.0 (https://www.
ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software, released
August 2011). Among all dynamic FC states, the FC states that showed significant main
effects and interaction effects were selected as the target dynamic FC states. The target FC
states underwent further analysis. The effect sizes of the ANOVAs were calculated by the
online WebPower [45].

2.4.6. Subnetwork Connectivity Analysis of the Target FC States

For each target state, the FC matrix was divided into 10 connectivity patterns that
were FC within the MN (M-M), within the VN (V-V), within the CCN (C-C), within the
DMN (D-D), between the MN and VN (M-V), between the MN and CCN (M-C), between
the MN and DMN (M-D), between the VN and CCN (V-C), between the VN and DMN
(V-D), and between the CCN and DMN (C-D). We called the 10 connectivity patterns the
10 subnetworks in this study. For each target state, the strength of each subnetwork was
computed by averaging all the Fisher Z scores of the correlation coefficients across all the
connections in the subnetwork. For each subnetwork of each group, two-way repeated

https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software
https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software
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measure ANOVAs were performed to investigate the training and group effect. The effect
sizes of the ANOVAs were calculated by the online WebPower.

2.4.7. Relationship between the Behavioral Performance and DFNC

For each target FC state, the mean dwell time, the fraction of time, and the strengths
of the 10 subnetworks were used to examine the relationship between the behavioral
performance (tapping frequency) and DFNC. The correlation between the behavioral per-
formance and the mean dwell time/fraction of time/subnetwork strength was calculated
for each target state of each group’s pre-training and post-training run.

2.4.8. Relationship between the Neurofeedback Training Effect and DFNC/Motor Behavior

Offline GLM analysis was applied to each subject’s preprocessed data of the pre-
training ME run and the four neurofeedback training runs using the SPM8 package.
For each subject’s pre-training ME run, the target ROI was defined as a 6 mm-radius
sphere around the maxima of the right dPMA based on the t-contrast map that compared
the ME task with the baseline. The percent signal change (PSC) of each voxel for each train-
ing run was computed by dividing the beta value corresponding to the task regressor by
the beta of the constant term. The mean PSC of the target ROI was calculated by averaging
PSC across voxels within the ROI.

For each target FC state, the mean dwell time, the fraction of time, and the subnetwork
strength were used to investigate the relationship between the neurofeedback training
effect and DFNC. The correlation between the PSC of each training run and the mean dwell
time/fraction of time/subnetwork strength was calculated for each target state of each
group’s pre-training and post-training run. Moreover, the correlation between the PSC
of each training run and the motor behavior was calculated for each target state of each
group’s pre-training and post-training run.

2.4.9. Network-Based Statistic (NBS) Analysis

For each target FC state, the NBS method that was demonstrated to yield substantially
greater statistical power than generic methods for controlling the family-wise error [46]
was used to identify the network connections that showed significant group/training
differences. For the target state of each subject’s pre-training/post-training run, the FC ma-
trices of the sliding windows that belonged to the target state were transformed into Fisher
Z scores, and the mean FC matrix was obtained by averaging across the corresponding
sliding windows.

For each group, paired t-tests were applied to each pairwise connectivity of the mean
FC matrices of the pre-training and post-training runs to identify the training differences.
For the pre-training/post-training run, a two-sample t-test was applied to each pairwise
connectivity of the mean FC matrices of the experimental and control groups to identify
the group differences. The test statistic for each pairwise connectivity was thresholded
(t > 3) to construct a set of suprathreshold links. Based on the set of suprathreshold links,
the connected components were detected using a breadth first search algorithm from the
GRETNA toolbox (https://www.nitrc.org/projects/gretna, released 19 November 2017).
The number of links (size) for each connected component was calculated.

A permutation test was carried out for each t-test to ascribe a p-value that was con-
trolled for the FWE to each connected component based on its size. Each permutation
test generated 1000 random permutations. For each permutation of two-sample t-test,
all subjects were randomly reallocated into two groups, and the two-sample t-test was
recalculated. For each permutation of the paired t-test, the pre-training and post-training
runs for all subjects in each group were randomly assigned to either the pre-training or
post-training run, and the paired t-test was recalculated. The same threshold (t > 3) was
used to generate a set of suprathreshold links, and the maximal component size of each
connected component was stored. The maximal component size of all the permutations
was then ranked in ascending order. For each observed component of size k, the p-value is

https://www.nitrc.org/projects/gretna
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estimated by calculating the ratio M/1000, where M is the number of permutations whose
maximal component size is greater than k. The components with p < 0.05 were selected
as the suprathreshold links that showed significant group/training differences. For each
group, the correlation between the alteration of behavioral performance and the alteration
of the suprathreshold links that survived the NBS test was also calculated.

3. Results
3.1. Temporal Property Analysis of DFNC

The spatial activation maps of the 29 task-related components that belonged to the
MN, VN, CCN, and DMN are presented in Figure S2 in the Supplementary Materials.
Moreover, Figure 3 shows the median patterns of seven FC states. The seven states are
differentiated by connectivities between components. State 1 showed strong positive
correlations between MN/VN/CCN/DMN components and strong negative correlations
between MN and VN/CCN/DMN components. State 2 showed weak positive correlations
between MN/VN/CCN/DMN components and slight correlations that were close to zero
between MN and VN/CCN/DMN components. State 3 had high positive correlations
between MN components and weak positive correlations for all the other connections.
State 4 displayed weak positive FCs between MN/VN/CCN/DMN components and
negative FCs between MN and VN/CCN/DMN components. The modular structure of
state 5 was not as clear as the other states. State 6 displayed high positive FCs between MN
components, weak positive FCs between VN/CCN/DMN components, and weak negative
FCs between MN and VN/CCN/DMN components. State 7 showed high positive FCs
between most MN components, weak positive FCs between VN/CCN/DMN components,
and negative FCs between MN and VN/CCN/DMN components.
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Figure 3. The median pattern of 7 FC states in motor execution tasks run clustered by K-means. The total number and
percentage of occurrences is listed above each FC pattern.

Among the seven FC states, the mean dwell times of state 2 and state 6 were the
highest two. Figure 4 presents the comparison of the mean dwell time and the fraction
of time for the states that showed significant group/training differences. The repeated
measure ANOVA tests revealed a significant main effect of group for both the mean
dwell time (Fgroup(1,22) = 10.156, p = 0.004 < 0.05, effect size = 0.6686) and the fraction
of time (Fgroup(1,22) = 13.092, p = 0.002 < 0.05, effect size = 0.9867) of FC state 2. Tests of
simple effect revealed that the experimental group showed significantly lower mean
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dwell time (F(1,22) = 10.12, p = 0.004 < 0.05, effect size = 1.2988) and fraction of time
(F(1,22) = 21.09, p < 0.001, effect size = 1.8748) than the control group for state 2 in the
post-training ME run. Moreover, there was no significant training main effect, group main
effect, or interaction effect for the mean dwell time of state 6. However, a significant group
main effect (Fgroup(1,22) = 7.416, p = 0.012 < 0.05, effect size = 0.6433) was observed in the
fraction of time of state 6. The simple effect analysis revealed that the fraction of time of
the experimental group was significantly higher than that of the control group for state 6 in
the post-training run (F(1,22) = 6.86, p = 0.016 < 0.05, effect size = 1.0691). FC states 2 and 6
were selected as the target states for further analysis.
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Figure 4. Time measurements for the pre-training and post-training ME runs of the two groups. (a) The mean dwell time
of state 2, (b) the fraction of time of state 2, and (c) the fraction of time of state 6. Pre_exp represents the pre-training run
of the experimental group. Post_exp represents the post-training run of the experimental group. Pre_con represents the
pre-training run of the control group. Post_con represents the post-training run of the control group. Error bars represent
the standard error (* p < 0.05; ** p < 0.01).

3.2. Subnetwork Connectivity Analysis of the Target FC States

Figure 5 shows the strength of the subnetworks that showed significant group/training
differences for the target states (state 2 and state 6). For the strength of subnetwork D-
D within DMN in state 2, the group main effect was significant (Fgroup(1,22) = 6.358,
p = 0.019 < 0.05, effect size = 0.6202). Tests of simple effect showed that the D-D strength
of the control group was significantly higher than that of the experimental group after
the neurofeedback training (F(1,22) = 8.36, p = 0.008 < 0.05, effect size = 1.172). Moreover,
the strength of subnetwork C-D between the CCN and DMN of state 6 showed a significant
main group effect (Fgroup(1,22) = 5.962, p = 0.023 < 0.05, effect size = 0.5726). Tests of simple
effect showed that the C-D strength of the experimental group was significantly higher than
that of the control group after the neurofeedback training (F(1,22) = 5.50, p = 0.028 < 0.05,
effect size = 0.9604).
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(a) The D-D subnetwork in state 2, and (b) the C-D subnetwork in state 6. Error bars represent the
standard error (* p < 0.05).
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3.3. Relationship between Behavioral Performance and DFNC

Figure 6a,b display the relationship that has a significant correlation between the
behavioral performance and the mean dwell time/fraction time of the target FC states.
The experimental group showed significant negative correlation between the tapping
frequency and the mean dwell time (r = −0.5560, p = 0.0302 < 0.05) or the fraction of time
(r = −0.5562, p = 0.0309 < 0.05) for state 2 of the post-training ME run. No significant
correlations were observed in state 6 of the experimental group or in the two target states
of the control group. Moreover, the subnetwork strengths of state 2 and state 6 were not
significantly correlated with the motor performance of the two groups.
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Figure 6. The relationship between tapping frequency and DFNC for post-training ME run of the
experimental group. (a) The significant regression relationship between the tapping frequency and
the mean dwell time of state 2, and (b) the significant regression relationship between the tapping
frequency and the fraction time of state 2.

3.4. Relationship between the Neurofeedback Training Effect and DFNC/Behavioral Performance

Figure 7 shows the relationship that had a significant correlation between the PSC of
the training runs and the mean dwell time/fraction time of the target FC states. For the
experimental group, the mean dwell time of state 2 in the post-training ME run showed
significant negative correlation with the PSC of run C (r = −0.7038, p = 0.0106 < 0.05) and
run D (r = −0.5836, p = 0.0451 < 0.05). Moreover, the fraction time of state 2 in the post-
training ME run showed significant negative correlation with the PSC of run C (r = −0.6246,
p = 0.0299 < 0.05). No significant correlations were observed in state 6 of the experimental
group or in the two target states of the control group. Moreover, the neurofeedback training
effect did not show significant correlation with motor performance.
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Figure 7. The relationship between the PSC of the neurofeedback runs and DFNC of the post-training run for the
experimental group. (a) The significant regression relationship between the mean dwell time of state 2 and PSC of run
C, (b) the significant regression relationship between the fraction time of state 2 and PSC of run C, and (c) the significant
regression relationship between the mean dwell time of state 2 and PSC of run D.

Figure 8 shows the relationship that had a significant correlation between the PSC of
the training runs and the subnetwork strength of the target FC states. For the experimental
group, the D-D strength of state 2 was significantly negatively correlated with the PSC of



Brain Sci. 2021, 11, 582 11 of 19

run C (r = −0.6107, p = 0.0349 < 0.05) and run D (r = −0.5949, p = 0.0413 < 0.05). For the
control group, the V-C strength of state 6 was significantly positively correlated with the
PSC of run C (r = 0.6175, p = 0.0324 < 0.05) and run D (r = 0.6841, p = 0.0141 < 0.05).
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Figure 8. The relationship between the PSC of the neurofeedback runs and the subnetwork strength of the post-training
run. (a) The significant regression relationship between the PSC of run C and the strength of D-D subnetwork for the
experimental group’s state 2. (b) The significant regression relationship between the PSC of run D and the strength of D-D
subnetwork for the experimental group’s state 2. (c) The significant regression relationship between the PSC of run C and
the strength of the V-C subnetwork for the control group’s state 6. (d) The significant regression relationship between the
PSC of run D and the strength of the V-C subnetwork for the control group’s state 6.

3.5. NBS Analysis

By using the NBS method, connections showing significant differences between the
pre-training and post-training were found in state 2 of the experimental group (p < 0.05) and
in state 6 of the control group (p < 0.05) (see Figure 9a,b). For state 2 of the experimental
group, real-time neurofeedback training resulted in a significant increase in two MN-
DMN connections and two MN-VN connections. Moreover, one MN-VN connection,
one VN-DMN connection, two MN-CCN connections, and one MN-MN connection were
significantly decreased after neurofeedback training. For state 6 of the control group,
there were 13 connections that showed significant differences between the pre-training and
post-training runs. Among the 13 connections, 11 connections between the component of
the bilateral middle occipital gyrus and the 11 components of MN showed a significant
increase after neurofeedback training. Furthermore, one connection between DMN and MN
was significantly enhanced, whereas another connection between two DMN components
was significantly decreased after neurofeedback training. The details of the statistical
results in state 2 and state 6 can be found in Tables 1 and 2, respectively.

Among all the connections, there were only two connections whose alteration showed
significant correlation with the alteration of the behavioral performance after the neurofeed-
back training for state 2 of the experiment group. Figure 9c,d show the relationship between
the alteration of the two connections and the alteration of the behavioral performance after
the neurofeedback training. Moreover, the mean strength of the two connections during
the pre-training and post-training runs for both groups are shown in Figure 9e,f. For the
connection between the bilateral precentral gyrus component and the hippocampus com-
ponent (connection 1), the increase in the tapping frequency was significantly negatively
correlated with the increase in the connection strength after the neurofeedback training
(r = −0.677, p = 0.015) (see Figure 9c). Moreover, the mean strength of connection 1 was
significantly decreased in the experimental group after the neurofeedback training (see
Figure 9e). For the connection between the bilateral postcentral gyrus component and the
middle occipital gyrus component (connection 2), the increase in the tapping frequency
showed a significantly positive correlation with the increase in the connection strength
after the neurofeedback training (r = 0.607, p = 0.036) (see Figure 9d). Moreover, the mean
strength of connection 2 was significantly increased in the experimental group after the
neurofeedback training (see Figure 9f).
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Table 1. Statistics and specific brain locations of connections that survived the NBS approach in state 2 of the experimental
group for the post-training run versus the pre-training run.

Component
Index 1

Network
1 Region 1 Component

Index 2 Network 2 Region 2 t-Score p-Value

1 MN Left postcentral gyrus 29 DMN Cuneus 3.227 0.0081

2 MN Bilateral precentral gyrus 4 MN Bilateral inferior frontal
gyrus, triangular part −3.349 0.0065

2 MN Bilateral precentral gyrus 12 VN
Bilateral middle occipital
gyrus, superior occipital

gyrus
−3.126 0.0096

2 MN Bilateral precentral gyrus 17 CCN Hippocampus −3.276 0.0074

4 MN Bilateral inferior frontal
gyrus, triangular part 15 VN Bilateral middle occipital

gyrus 3.268 0.0075

8 MN Bilateral postcentral gyrus 15 VN Bilateral middle occipital
gyrus 3.109 0.0099

8 MN Bilateral postcentral gyrus 29 DMN Cuneus 3.934 0.0023

10 MN Supplementary motor area 17 CCN Hippocampus −3.381 0.0061

12 VN
Bilateral middle occipital
gyrus, superior occipital

gyrus
22 VN Cingulate and paracingulate

gyrus −3.142 0.0094

Table 2. Statistics and specific brain locations of connections that survived the NBS approach in state 6 of the control group
for the post-training run versus the pre-training run.

Component
Index 1

Network
1 Region 1 Component

Index 2 Network 2 Region 2 t-Score p-Value

1 MN Left postcentral gyrus 29 DMN Cuneus 3.227 0.0081

2 MN Bilateral precentral gyrus 4 MN Bilateral inferior frontal
gyrus, triangular part −3.349 0.0065

2 MN Bilateral precentral gyrus 12 VN
Bilateral middle occipital
gyrus, superior occipital

gyrus
−3.126 0.0096

2 MN Bilateral precentral gyrus 17 CCN Hippocampus −3.276 0.0074

4 MN Bilateral inferior frontal
gyrus, triangular part 15 VN Bilateral middle occipital

gyrus 3.268 0.0075

8 MN Bilateral postcentral gyrus 15 VN Bilateral middle occipital
gyrus 3.109 0.0099

8 MN Bilateral postcentral gyrus 29 DMN Cuneus 3.934 0.0023

10 MN Supplementary motor area 17 CCN Hippocampus −3.381 0.0061

12 VN
Bilateral middle occipital
gyrus, superior occipital

gyrus
22 VN Cingulate and paracingulate

gyrus −3.142 0.0094

1 MN Left postcentral gyrus 29 DMN Cuneus 3.227 0.0081

2 MN Bilateral precentral gyrus 4 MN Bilateral inferior frontal
gyrus, triangular part −3.349 0.0065

2 MN Bilateral precentral gyrus 12 VN
Bilateral middle occipital
gyrus, superior occipital

gyrus
−3.126 0.0096

2 MN Bilateral precentral gyrus 17 CCN Hippocampus −3.276 0.0074
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Figure 9. Significant connectivity differences in the target FC states for the experimental group and control group. (a,b) The
connectives showing significant differences for the post-training minus the pre-training run in state 2 of the experimental
group (a) and in state 6 of the control group (b), (c) the significant regression relationship between the alteration of the
tapping frequency and the alteration of the connectivity of connection 1 for the experimental group after neurofeedback
training, (d) the significant regression relationship between the alteration of the tapping frequency and the alteration of
the connectivity of connection 2 for the experimental group after neurofeedback training, and (e,f) the mean connectivity
strength of connection 1 (e) and connection 2 (f) for the pre-training and post-training runs of the two groups. Error bars
represent the standard error (* p < 0.05).

4. Discussion

In this study, we tested how the upregulation of the right dPMA changed DFNC un-
derlying the ME tasks and how the alteration of DFNC affected motor behavior. We found
that the neurofeedback training of the right dPMA changed the temporal properties of
two dominant states, which were state 2, with weak network connections, and state 6,
with strong MN-MN connections and negative DMN-MN connections. The neurofeedback
training induced less occurrence of state 2 and more occurrence of state 6 for the experimen-
tal group compared to the control group. For state 2 of the experimental group, the dwell
time/fraction time showed negative correlation with the tapping frequency and PSC of the
neurofeedback training runs. The alteration of FNC between the hippocampus network
and the bilateral precentral network was negatively correlated with the alteration of the
finger tapping frequency. The study shows that the upregulation of a specific motor-related
region with rtfMRI-neurofeedback is associated with underlying DFNC changes, which are
linked to motor improvements.
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4.1. DFNC Changes after the Neurofeedback Training

In this study, our first goal was to identify DFNC changes in the ME tasks after the
neurofeedback training. We found that the upregulation of the right dPMA induced the
DFNC changes in state 2 and state 6 that showed the dominant mean dwell time among
the seven states in the experimental group. For state 2, the prominent feature was that
overall weaker connections existed widely between and within networks. Previous studies
found that the dynamic state with weaker connectivity between and within networks
was more frequently observed during rest than during tasks [47]. Moreover, the most
frequent dynamic FC states during rest showed attenuated connectivity between and
within networks [25,26]. The weak FNCs of state 2 may indicate relatively less efficient
information transfer between brain networks. Based on the findings of the previous studies,
we inferred that dynamic state 2 possibly was relevant to relaxation and rest. For state 6,
the connections within MN showed high positive correlation and the connection between
MN and DMN showed negative correlation. The high positive correlation within MN and
anti-correlation between DMN and MN in state 6 are in line with the previous evidence
revealing that the finger tapping task activated the brain regions in the motor-related
networks [3,13,48] and DMN was negatively correlated with the other task-positive brain
networks [49]. Therefore, we inferred that state 6 may be relevant to the task-focused state.

The mean dwell time and fraction of time of FC states are important temporal proper-
ties of dynamic FC. Recent studies have reported significant changes in the mean dwell
time in some specific FC states that are associated with aging [28], development [27], train-
ing [29], and disorders [30,50]. In contrast to the control group, the experimental group
had significantly higher mean dwell time/fraction time in state 6 and significantly lower
fraction time in state 2 after the neurofeedback training (see Figure 4). The results indicated
that the experimental group tended to spend more time on task-focused state 6 and fo-
cused attention on their finger tapping tasks after the neurofeedback training. In contrast,
a sham-feedback control group who saw rt-fMRI feedback from another subject, but be-
lieved they were receiving feedback from their own right dPMA, tended to spend more
time in rest state 2 and were distracted from their finger tapping tasks after the training.
The comparison between the two groups suggests that neurofeedback information played
an important role in the learning process and changed the temporal variation of FC states
of the two groups. The true neurofeedback played a positive role in driving the experi-
mental group more frequently into an attention state, whereas the sham feedback played a
negative role in driving the experimental group more frequently into a rest state. Moreover,
the results provided converging evidence to support that the temporal properties of DFNC
are alterable by training.

4.2. Subnetwork Connectivity Changes in the Target FC States after the Neurofeedback Training

For the D-D subnetwork within the DMN of state 2, the experimental group showed
significantly lower mean strength than the control group after the training (see Figure 5a).
Previous studies demonstrated that DMN showed high activity during mind-wandering [51].
The lower strength of the D-D subnetwork within the DMN of the experimental group
suggests that the experimental group focused more attention on the finger tapping tasks
than the control group. These results are consistent with the above DFNC findings that the
experimental group spent less time in state 2 and more time in state 6.

For the C-D subnetwork between the CCN and DMN, the mean strength of the
experimental group was significantly higher than that of the control group in state 2 after
the neurofeedback training (see Figure 5b). The prefrontal cortex in the CCN played
an important role in execution function [52] and activity in the pre-frontal cortex also
could represent goals and the means to achieve them [53]. Based on the role of the CCN,
we inferred that the true neurofeedback training possibly facilitated the experimental group
to control their own thoughts and actions based on the experimental goals by increasing the
interaction between the CCN and DMN, which might lead to the reduction in D-D strength.
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4.3. The Relation between DFNC and Motor Performance/Training Effect after the
Neurofeedback Training

The second goal of this study was to reveal the relationship among DFNC, the neuro-
feedback training effect, and motor performance. Because the mean dwell time/fraction
of time reflects the temporal property of DFNC and the subnetwork strength reflects the
network connectivity of DFNC, this study used the mean dwell time/fraction of time and
the subnetwork strength to represent DFNC. The training effect was measured as the PSC
of each training run and the motor performance was measured as the tapping frequency.
For the experimental group, the mean dwell time/fraction of time of state 2 and the D-D
strength of state 2 were negatively correlated with the PSC of training runs C and D after
the neurofeedback training (see Figures 7 and 8a,b). The higher PSC of training runs C and
D caused the subjects in the experimental group to spend less time in state 2 and reduced
the D-D strength of state 2 in the post-training ME runs. For the control group with sham
feedback, the V-C strength of state 6 was positively correlated with the PCS of training runs
C and D after the neurofeedback training, whereas a significant correlation between DFNC
of state 2 and the PSC of the training runs was not observed. The different results of the two
groups may suggest that the successful upregulation of the PSC in the target ROI in training
runs possibly helped the experimental group inhibit the D-D strength and the occurrence
of state 2 after the neurofeedback training, which is consistent with the DFNC changes
of state 2 induced by the neurofeedback training. For the controls with sham feedback,
the subjects with a stronger PSC in training runs C and D possibly had stronger control
ability to use visual memory to perform ME tasks, which could lead to high interactions
between the control and visual networks in the ME tasks after the training.

The mean dwell time of the experimental group in state 2 was negatively correlated
with the tapping frequency after the neurofeedback training (see Figure 6a,b). The longer
the experimental subjects remained in state 2, the lower tapping frequency they would
have. However, such a correlation was not observed in the experimental group before
neurofeedback training or in the control group before and after training. The results
indicate that the true neurofeedback training established the relationship between the
DFNC of state 2 and motor behavior. Moreover, it should be noted that the relationship
between DFNC and the PSC/motor performance was observed, whereas the relationship
between the PSC and motor performance was not observed. The results may suggest that
the motor improvement after the neurofeedback training could be attributed to the changes
in DFNC that were induced by the neurofeedback training.

It should be noted that the temporal properties of state 2 in the experimental group
were correlated with both the PSC of the training runs and motor performance after
the neurofeedback training, which may indicate that state 2 was an important state that
can capture the training effect and motor behavior. The previous reports found that the
state that is characterized by sparse links with relatively weak connections and a lack
of strong anti-correlations is relevant to development, aging, and disease [27,28,54–56].
Our results provided further evidence to support the importance of state 2 with overall
weak links. Moreover, it was observed that the frequency of this state was related to the
amount of self-focused thought [27]. For the experimental group, the mean dwell time
of state 2 during ME tasks was negatively related to the amount of upregulation of the
right dPMA, which may suggest that the successful upregulation reduced the time to think
about themselves after neurofeedback training. Due to the reduced time for self-focused
thought, the experimental group spent more time on task-focused state 6 and improved
their finger-tapping frequencies.

4.4. Network Connectivity Changes of the Target FC States

For the experimental group, neurofeedback learning mainly increased the connectiv-
ities between the MN and VN/DMN and decreased the connectivities between the MN
and CCN in state 2 (see Figure 9a). For the control group, the training mainly increased
the connectivities between the MN and VN in state 6 (see Figure 9b). Both groups used
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motor imagery strategies in the training. Because motor imagery and motor execution
shared congruence in functional neuroanatomy [57,58], the training mainly resulted in
the alteration of connectivity between the MN and the other subnetworks for the two
groups. The visual cortex was possibly engaged in forming a visual memory of the mo-
tor in the motor imagery training [59]. The control group did not acquire motor skills
because they did not find effective strategies to control their brain activities during the
neurofeedback training. The increased link between the MN and VN in task state 6 might
indicate that the control group possibly needed to make more efforts to use the visual
memory of the motor to complete the finger-tapping task after the training. In contrast,
the experimental group was able to find efficient strategies and acquired motor skills
during the neurofeedback training. They did not need to make great efforts to use visual
memory to perform finger tapping due to their learned motor skills during the training.
Thus, the connectivities between the MN and VN in task state 6 were not observed in the
experimental group. Moreover, the neurofeedback training caused the experimental group
to increase the connectivities between the MN and VN in rest state 2. The increase in one
connectivity (connection 2) between the MN and VN was positively correlated with the
increase in the tapping frequency for the experimental group. The results might indicate
that the true neurofeedback caused the experimental group to form implicit visual memory
of the motor behavior. The experimental group possibly tended to use visual implicit
memory in the relaxation state (state 2), which could have contributed to the improvement
in motor behavior.

For the connection between the bilateral precentral gyrus component and the hip-
pocampus component (connection 1) in state 2, neurofeedback training led to a significant
decrease in the experimental group (see Figure 9e). The connectivity of connection 1 in the
experiment changed from positive to negative after the neurofeedback training. A larger
decrease in the connectivity of connection 1 led to a higher increase in the tapping frequency
after the neurofeedback training of the experimental group. Before the training, all subjects
needed to remember the sequence order of the fingers when they performed the finger-
tapping task. Because the hippocampus gyrus plays an important role in the formation of
new memories [60] and the bilateral precentral gyrus is involved in executing voluntary
motor movements [16], the hippocampus component showed positive correlation with the
precentral component to form the memory of the finger sequence and contribute to the
finger tapping before training. After the neurofeedback training, the correlation between
the hippocampus component and the precentral component was significantly decreased
and became negative for the experimental group, whereas the correlation was still positive
for the control group. The anti-correlation between the hippocampus component and
the precentral component after neurofeedback training may suggest that the precentral
component of the experimental group showed competition with the hippocampus compo-
nent. Because the experimental subjects acquired the tapping skill during neurofeedback
training, they might have used implicit visual memory and executed the finger tapping
more automatically after the training, which possibly resulted in the competition between
the precentral and hippocampus components.

4.5. Limitations

There are some caveats in this study. First, this study focused on investigating the two
core dynamic states because the two states are dominant in the fluctuations of FNC. Future
studies should examine more dynamic states to better understand the DFNC underlying
the ME task. Second, the number of participants in this study was not large, which may
lead to the instability of the results to some extent. In order to guarantee the reliability
of the results, we reported the significant results with large effect size. Moreover, it is
necessary to collect more subjects to investigate the alteration of DFNC induced by the
neurofeedback training in future studies.
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5. Conclusions

This study investigated the alteration of DFNC underlying ME tasks after neurofeed-
back training of the right PMA. Findings show that the upregulation of the right PMA
induced DFNC changes such as reduced mean dwell time in the weak-connected state 2
and an increased fraction of time in state 6 with strong MN-MN connections. Moreover,
the mean dwell/fraction of state 2 was associated with both the amount of upregulation
and the improvements in motor performance. Thus, the findings may suggest that the
rtfMRI neurofeedback of a key motor-related region can improve the motor performance
by changing the temporal properties of DFNC underlying ME tasks.
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