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Summary

Tuberculosis (TB) is one of the top 10 causes of mortality worldwide from
a single infectious agent and has significant implications for global health.
A major hurdle in the development of effective TB vaccines and therapies
is the absence of defined immune-correlates of protection. In this context,
the role of regulatory T cells (T,,), which are essential for maintaining
immune homeostasis, is even less understood. This review aims to address
this knowledge gap by providing an overview of the emerging patterns
of Treg function in TB. Increasing evidence from studies, both in animal
models of infection and TB patients, points to the fact the role of T,
in TB is dependent on disease stage. While T, might expand and delay
the appearance of protective responses in the early stages of infection,
their role in the chronic phase perhaps is to counter-regulate excessive
inflammation. New data highlight that this important homeostatic role of
T, in the chronic phase of TB may be compromised by the expansion
of activated human leucocyte antigen D-related (HLA-DR)*CD4" suppres-
sion-resistant effector T cells. This review provides a comprehensive and
critical analysis of the key features of T, cells in TB; highlights the
importance of a balanced immune response as being important in TB
and discusses the importance of probing not just T, frequency but also
qualitative aspects of T, function as part of a comprehensive search for
novel TB treatments.
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thymic stromal lymphoprotein (TSLP) [3-5].

Transcription factor forkhead box protein 3 (FoxP3) is a

Extensive experimental evidence shows that it is not only
important to mount an effective immune response, but
equally crucial to efficiently control it. A vital cog in the
immune regulation machinery is a class of CD4" T cells,
termed regulatory T (T,,) cells. T, cells have been exten-
sively studied, particularly in autoimmune disorders, as
potential therapeutic targets. T, can be broadly classified
as (a) thymic or tTrsgS/natural or nTregs, which originate
in the thymus, and (b) induced or iT,
pT,. which develop in the periphery during T cell acti-
vation. Development of nT,  is influenced by signal strength
[1,2] co-stimulatory CD28 signalling, inducible T cell co-
stimulator (ICOS)/ICOS ligand (ICOS/ICOSL) interactions

/peripheral or

key regulator of T, development, maintenance and sup-
pressive function [6-10] and its expression in
CD4*CD25"8hFoxP3+ tT,,, is positively regulated by IL-2
[11], transcription factors nuclear factor of activated T
cells (NFAT), signal transducer and activator of transcrip-
tion 5 (STAT-5) and ‘small’ and ‘mothers against decap-
entaplegic’ homologue 3 (SMAD3) [12-14] and negatively
regulated by phosphatidyl inositol-3 kinase (PI3K), protein
kinase B (Akt) and mammalian target of rapamycin (mTOR)
[15]. However, FoxP3 expression can also be induced upon
exposure to non-self antigens in CD4*FoxP3~ conventional
T cells, which then differentiate into FoxP3* T, known
as pT,/iT,, Dby a process regulated by cytokines

regs
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transforming growth factor (TGF)-p and interleukin (IL)-2
[16,17], suboptimal CD28-mediated co-stimulation [18]
and suboptimal T cell receptor (TCR) triggering [19,20].
While nT, ., maintain tolerance and homeostasis systemi-
cally, T, /iT,,, are crucial for dampening over-exuberant
antigen-specific immune responses locally [21]. Inducible
T regulatory type 1 (Trl) cells, a subclass of pT, . /iT, .
mediate suppressive effects via the immune-regulatory
cytokine IL-10 [22]; cell surface markers CD49b and
lymphocyte-activation gene 3 (LAG3) promote Trl dif-
ferentiation [23]; and IL-27, IL-6, IL-21, IL-10, immature
dendritic cells (DCs) and plasmacytoid DCs promote Trl
expansion [24-28]. Other iTreg subsets include T cell
immunoreceptor with immunoglobulin (Ig) and immuno-
receptor tyrosine-based inhibition motif (ITIM) domain
or TIGIT-1* cells, which express high levels of T, sig-
nature genes [e.g. IL-10, cytotoxic T lymphocyte antigen
4 (CTLA-4), LAG3, FoxP3, etc.] capable of suppressing
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Thl and Th17 responses via a mechanism involving expres-
sion of fibrinogen-like protein 2 (Fgl2) post-ligation of
TIGIT with CD155 [29]; IL-35-producing suppressive T
(Tr35) cells that suppress via secretion of regulatory
cytokine IL-35 [30]; and IL-10-producing non-pathogenic
Th17 cells that are capable of controlling autoimmune
inflammation, e.g. rheumatoid arthritis, inflammatory bowel
disease, etc. [31].

T,., suppression mechanisms can be contact-depend-
ent or -independent (Fig. 1). A breakdown in T, sup-
pression can occur due to (i) reduction in Treg
frequencies, (ii) loss of T, immunosuppressive capacity
or due to (iii) resistance acquired by effector T cells
(T to T, -mediated suppression, with impact on a
variety of clinical conditions (Tables 1 and 2) in addi-
tion to TB (Table 3). This review focuses on how these
mechanisms may contribute to disease in the context
of TB.
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Fig. 1. Mechanisms of T, ,-cell mediated suppression. Well recognised and studied T, suppression mechanisms include (1) acting as a sink for
interleukin (IL)-2 due to constitutive high expression of IL-2R and consequently depriving effector T cells of the crucial cytokine [125]; (2) secretion
of immune-suppressive cytokines IL-10, transforming growth factor (TGF)-p and IL-35 [126,127]; (3) granzyme-B dependent killing of target cells
[128]; (4) inhibitory signalling through binding of cytotoxic T lymphocyte antigen 4 (CTLA-4) on T, and CD80/86 on dendritic cells (DCs) and
reverse signalling via this interaction leading to elevated levels of indoleamine 2,3-dioxygenase (IDO) in DCs which eventually depletes tryptophan
and starves effector T cells [129,130]; (5) binding of lymphocyte-activation gene 3 (LAG3) to major histocompatibility complex (MHC)-II molecules
oo and
programmed cell death ligand 1 (PD-L1) on target cells [64,99]; (7) extracellular adenosine generated from adenosine triphosphate (AgTP) in concert
by cell surface CD39 and CD73 (ecto-5’-nucleotidase) interacts with adenosine A,, receptor (A2AR) on effector T cells and suppresses their function
by increasing cAMP levels [132,133]; (8) chemokine (C-C motif) ligand 3 (CCL3) and CCL4 secreted by T, bind to C-C chemokine receptor type 5

regs

on DCs causing reduction in antigen presentation [131]; (6) suppression due to interaction of programmed cell death 1 (PD-1) on T,

(CCR5) on effector cells triggering their migration and subsequent suppression [64,100].
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Table 1. A summary of clinical conditions both autoimmune (peach highlighted) and infection (blue highlighted) where T, frequency and function are

compromised.

SI.No.  Clinical Condition

1. Rheumatoid
arthritis (RA)

Erythromatosis

2. Multiple Sclerosis
(MS)

3, Systemic Lupus
(SLE)

4. Type 1 Diabetes

5), Malaria

6. Dengue

7. HIV

8. Candida infection

9. Leishmaniasis

Finding Reference

Polymorphisms in FoxP3 gene associated with reduced frequency of T, , TGF-p and IL-10 in RA. [32]

Increased circulating HLA-DR+ T, or inflammation-associated T, which are suppressive but have [33]
similar TCR repertoire as pathogenic CD4+ T cells.

Reduced frequencies of nT,  in patients with RA. [34]

T,... unable to suppress spontaneous generation of TNF-a in synovial cells of RA patients due to [35]

feduced expression of CTLA-4 and LFA-1.

CD4+CD25+ T, cells/T, -derived exosomes from MS patients are inefficiently suppressive. Circulating  [36-38]
exosomes with significantly high miRNA let-7i in MS patients, inhibit T, function through an IGFR1
and TGFBR1 mechanism.

CD25+CD127%v T, development and function are perturbed. CD39+FoxP3+ memory T, are [39,40]

diminished in MS patients. Expression of PD-1 is high in these T, in MS, suggesting possible

regs
exhaustion and compromised function.
CD25+Lag3+ T cells, expressing FoxP3 and IL-17A, but not being suppressive are increased in patients [41]

with SLE. The frequency of CD25+Lag3+ cells positively correlates with SLE disease activity.

Reduced suppressive function of T, cells in type 1 diabetes patients possibly due to reduced CD39 [42]

expression on memory T, cells.
Differentiation and stability of Tregs is impaired in Type 1 diabetes through a miRNA-1423p-dependent [43]

mechanism.

FoxP3 expression declines with type 1 diabetes disease progression, suggesting loss in T, function. The [44]
rate of loss is greatest in Peptidase inhibitor (Pi)-16 or Pil6+ T, cells.

FoxP3+T,, cells increase in humans and mice during blood stage malaria and hamper Th and Tth-B [45]
cell interactions.

Frequency of FoxP3+ T, declines in children with age in high exposure malaria settings. [46]

T, frequencies are higher in mild cases of dengue compared to moderate cases and healthy controls. [47]

T, frequencies in acute dengue fever are high and most of the expanded T population is comprised of [48]
naive T, with poor suppressive potential.

HIV-infected paediatric slow progressors have higher T, absolute numbers with a suppressive [49]
phenotype compared to rapid progressors.

CD4+CD25MghCD62Lhigh Tregs are depleted in HIV infection and this correlates with immune [50]
activation.

HIV+ elite suppressors maintain higher levels of T, and lower immune activation compared to [51]
progressors.

Frequency of PD-1+ T, increases in HIV and blockade of the PD-1/PD-L1 pathway increases TGF- [52]
and IL-10 in CD4+CD25"€"CD127°° T, _ cells.

Individuals who do not respond to ART have fewer and dysfunctional T with defects in mitochon- [53]

regs
drial function compared to healthy controls and HIV patients who respond to ART.
Candida albicans infection in a mouse model drives expansion of T, which corresponds with [54,55]

suppress Th1l and Th2 but promote pathogenic Th17

regs
increased fungal burden. Expanded T,

responses
Foxp3+IL-10+ T, cells are enriched in bone marrow of visceral leishmaniasis patients with high [56,57]

parasite load compared to those with low parasite load.
Frequency of CD4+CD25M¢"FoxP3+ T, cells correlates with parasite load in Kala-azar patients infected

with Leishmania donovani.

T, = regulatory T cell; ART = antiretroviral therapy; FoxP3 = forkhead box protein 3; TGF = transforming growth factor; IL-10 = interleukin 1;

reg

HLA-DR = human leucocyte antigen D-related; CTLA-4 = cytotoxic T lymphocyte antigen 4; LFA-1 = lymphocyte function-associated antigen 1;
IGFR1 =insulin like growth factor 1 receptor; LAG3 =lymphocyte activation gene 3; Th = T helper; Tth = T follicular helper cell; PD-1 = programmed
cell death protein 1; PD-L1 = programmed cell death ligand 1.

Tuberculosis majority of people developing asymptomatic infection, com-

monly referred to as latent TB. However, increasing evidence
Mycobacterium tuberculosis (Mtb), the causative agent of shows that the asymptomatic state of TB is not necessarily
TB, can either cause latent or active TB disease, with the a condition where TB bacilli are dormant, and therefore
© 2020 The Authors. Clinical & Experimental Inmunology published by John Wiley & Sons Ltd on behalf of British Society 275
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Table 2. A summary of clinical conditions where T susceptibility to T, -mediated suppression is altered.

Sl.no.  Clinical condition Finding Reference
1. Type I diabetes Resistance of T, cells to T, ,-mediated suppression via faster activation of STAT-3 signalling [58]
post-TCR stimulation in type 1 diabetes patients.
Teffs from type 1 diabetes patients are resistant to suppression mediated by CD4+CD25+ T, [59,60]
cells.
2. Rheumatoid arthritis (RA) ~ Synovial CD161+Th17 cells are resistant to T, -mediated suppression in RA patients. [61]
3. HIV infection Increased sensitivity of CD4+CD25- T, cells to T, ,-mediated suppression in HIV+ asympto- [62,63]
matic individuals compared to progressors.
HLA-B*27 and HLA-B*57 restricted CD8+ T cells associated with protection against HIV are
not suppressed by T, cells.
4, Tuberculosis HLA-DR+CD4+ memory T cells which are IFN-yPghTL-2high[],-17Mi8h][-22high are resistant to T, [64]

-mediated suppression in TB patients.

T, = regulatory T cell; T ; = effector T cells; TB = tuberculosis; IFN = interferon; IL = interleukin; HLA-DR = human leucocyte antigen D-related;

reg

STAT-3 = signal transducer and activator of transcription-3; TCR = T cell receptor.

the term ‘latent TB’ may be misleading. Indeed, radiography
and positron emission tomography/computed tomography
(PET/CT) scans of subjects with asymptomatic Mtb infec-
tion highlight a condition that is highly heterogeneous,
where some subjects have lung lesions from which viable,
metabolically active bacteria can be isolated [81], while
others lack detectable lung lesions. Irrespective of this
heterogeneity, only 5-10% of subjects with latent asymp-
tomatic TB are known to progress to active TB disease
during their lifetime, with the mechanisms driving such
progression being an area of active research that, in turn,
is limited by the lack of definitive correlates of protection,
which is beyond the scope of this review. Progression from
latent to active TB can be due to several reasons, among
which HIV co-infection is a major predisposing factor
[82]. Although Mtb is spread through aerosols and repli-
cates in lung epithelial cells, it can also replicate in lymph
nodes, bones, stomach, kidneys and other organs causing
extrapulmonary TB. In extreme cases Mtb can be systemi-
cally disseminated, precipitating a potentially fatal condition
known as miliary TB. Upon entering the host through
aerosol, Mtb bacilli are taken up by alveolar macrophages
by phagocytosis facilitated by cell surface receptors, e.g.
Toll-like receptors (TLR), C-type lectin receptors (CLR),
scavenger receptors (SR), complement receptors (CR) and
Fc receptors (reviewed in [83]) and replicate in macrophages
in the lung parenchyma. Primed DCs traffic to the lymph
node and trigger activation of adaptive immune cells which
are recruited to the lung, and gradually an organized struc-
ture, the granuloma, begins to form, which comprises a
core with replicating bacilli, surrounded by an inner ring
of epithelioid interlocked macrophages, neutrophils and
foam cells and an outer ring of T, B and NK cells [84].
With time, necrosis takes place and accumulation of necrotic
material leads to formation of a caseum and the granuloma
is known as a ‘caseating granuloma, which can also undergo

cavitation leading to Mtb dissemination [84,85]. The reso-
lution of infection within the granuloma relies upon host
immune responses, which can potentially be impacted by
T, cell function. Indeed, the role of T, has been studied
in the context of the early acute stage of Mtb infection
and the chronic phase of infection with evidence from
mouse, primate and human studies, as summarized below.

T . inTB

regs

Acute phase of infection: an analysis of animal model
studies suggests early expansion to be detrimental. Mouse
models highlight the impact of T, on TB to be phase-
specific with T, frequencies inadvertently high in the
acute phase, which is detrimental for infection control
[65-70]. Aerosol infection of mice with mycobacteria
leads to activation of CD4" T . cells by infected DCs in the
pulmonary lymph node at approximately day 11 and
subsequent expansion and accumulation of CD4* (effector
and regulatory) T cells in the lungs by days 14-21 [65].
Significant disease-associated lung pathology and colony-
forming units (CFU) burden can be observed at days 14-
21, and this period can be classified as the early phase of
infection in mice [65,69,70]. Time-points subsequent to
this, e.g. 4-7 weeks post-infection, can be classified as late
stages of infection [65,69,70]. While time-lines for early
and late phases can vary with multiplicity of infection, in
general 50-200 Mtb CFU results in increased T,
frequencies in lung and pulmonary lymph node at 10-21
days, which is maintained until 60-127 days post-infection
[67,68]. This early expansion was found to be deleterious
to emerging protective anti-TB Th responses [66-69].
Depletion of T, in C57BL/6 mice by systemic
administration of anti-CD25 three days prior to infection
with Bacille Calmette-Guérin (BCG) resulted in enhanced
culture filtrate protein (CFP)-specific IFN-y* and IL-2*
CD4" cells in lungs and spleen of BCG-infected mice
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14 days post-infection, suggesting that the presence of T,
cells hinders the appearance of protective Thl responses
[69]. Also, adoptive transfer of CD25* Treg into Mtb-
infected mice leads to reduced frequencies of Mtb-specific
T qcells in the lungs at 14-17 days post-aerosol infection
[66]. Importantly, the absence of protective Th1 responses
due to expansion of T, leads to increased bacterial
burden in the acute phase [67]. However, this dampening
effect of T,
and not evident in later stages of infection [65,69,70].
Depletion of CD25" T, had no effect on CFU burden or
lung pathology in BCG or Mtb Erdman-infected mice at
days 21 and 44 post-infection [69]. Similar results were
reported in another study, where T, depletion in Mtb
Erdman- or Kurono-infected DBA/2 mice reduced CFU at
2 weeks post-infection, but had no effect on bacterial
burden or pathology subsequently at 3 and 5 weeks [70]. It
is important to note that depletion of T, using anti-CD25
as described above [69,70] has the disadvantage of also
depleting activated CD25* T ; cells. Nevertheless, studies
carried out in mice using approaches of T, depletion
[67,69,70] and adoptive transfer [66,68] have demonstrated
that T, cells expand in the early phase of Mtb infection.
However, it has also been now demonstrated in mice that
Mtb-specific T, which expand early during infection are
culled via IL-12 driven expression of T-bet by 32 days
post-infection, T-bet being known for its pro-apoptotic
effects [65]. How Mtb infection drives this early expansion
of Mtb-specific T,, which is beneficial to the pathogen,
remains to be elucidated.

on protective immune responses is transient

Chronic phase: animal model studies show loss in T,
frequency or failure to recruit T, to site of infection
can be detrimental

In contrast to the role of Tregs in dampening protective
Th responses in the early/acute stage of infection in murine
models, several studies in mouse and primate models
highlight that T,
lating excessive inflammation in the chronic phase of
infection. Comparison of TB disease progression and
pathology in TB resistant and TB-susceptible mouse strains
showed TB-resistant mouse strains to have higher T,
frequencies and consequently less TB-induced lung pathol-
ogy in the chronic phase of the disease [71,72] compared
to TB-sensitive mice, which recruit significantly fewer T

might be potentially beneficial by regu-

regs

to the lung [72]. Interestingly, oral administration of heat-
killed M. maserensis (environmental mycobacterium) in
TB-sensitive C3HeN/Fe] mice resulted in a boost in Treg
frequencies with a reduction in lung pathology and
improved survival [71]. These observations have been cor-
roborated in non-human primate models of TB infection,
where cynomolgus macaques infected with 25 CFU of
Mtb Erdman can either develop active TB or establish

Emerging patterns of regulatory T cell function in tuberculosis

latency [73]. In this experimental system it was observed
that macaques that developed latent TB had higher basal
pre-infection T, frequencies compared to animals that
develop active disease [73]. In a separate study, IL-2
administered either pre- or post-Mtb infection in macaques
resulted in T, expansion which, in turn, led to reduced
bacterial burden and TB-induced pathology, suggesting
that expansion of T, cells in the later stage of chronic
TB infection can help to control excessive TB-induced
inflammation [74].

Human studies

In contrast to animal model studies, where changes in

circulating T, frequency can impact infection levels,

reports of T, gfrequencies in human TB are varied. Some
studies show an increase in peripheral T, frequencies in
TB [75-78]. However, our study [64] and others [79,80]
found no differences in peripheral T, , frequencies between
pulmonary TB patients and healthy controls. This disparity
may be linked to differences in markers used for T,
delineation, which vary and can include CD4 and CD25
[75]; CD4, CD25 and FoxP3 [76,79], a combination of
CD4, CD45RA/CD45R0O, CD127, CD25 and FoxP3 to
identify memory T, [80,64] or CD4*CD127°*CD25Fo
xP3*CD45RO*Ki67* to identify activated Treg cells [80].
Beyond variation in markers used for definition, a further
limitation of only tracking T, frequency to define T,
function in a disease such as TB is the impact of traf-
ficking; thus, T, frequencies have been shown to be higher
at the site of infection in the broncheoalveolar lavage
compared to that in the peripheral blood of pulmonary
TB subjects [75,86].

Chronic phase: novel qualitative studies of
T,,, function in humans highlight emergence of
T, resistant T effectors in chronic TB

re;

Many studies have probed T, frequency; however, few
human or animal model studies have analyzed qualitative
aspects of T, function in TB. Some studies have shown
that T, cells from pulmonary TB patients retain their
capacity to suppress autologous T, cells [87-89]. Data
from our laboratory show that autologous suppression
mediated by CD4*CD45RA-CD25*CD127"°% memory T,
cells isolated from subjects with pulmonary TB in south
India is significantly compromised [64]. By testing isolated
T, from healthy controls on T isolated from TB subjects
and vice versa, we demonstrated that this impairment is
not due to the loss of suppressive potential of T, cells
isolated from TB subjects; instead, it is due to the effector
cells from TB subjects acquiring resistance to T, -mediated
suppression [64]. Thus, CD127°"CD25* T,, cells from TB
subjects were effective in suppressing T from healthy
controls but not those from TB subjects; conversely, T,
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isolated from healthy controls effectively suppressed autolo-
gous T . but failed to suppress T from TB subjects [64].
Phenotypical analysis of the T -resistant T isolated from
TB subjects highlighted the presence of a significant pro-
portion of highly activated cells that expressed HLA-DR
and CD38; depletion of the HLA-DR* subset, in particular,
restored sensitivity of HLA-DR™ T, to autologous T,
suppression, thereby confirming that resistance of T ; from
TB subjects to T, -mediated suppression was due to the
presence of HLA-DR" cells [64]. The expansion of HLA-
DR*CD4" T cells in TB is driven by infection, as anti-
tubercular (anti-TB) treatment reduced the frequencies of
HLA-DR*CD4*" T cells [64,90,91]; indeed, we have shown
that by dampening the frequency of HLA-DR* cells, anti-
TB treatment restores T cell sensitivity to autologous
T,., cell-mediated suppression [64]. Consequently, measur-
ing HLA-DR*CD4" T cell frequency can potentially be
used to monitor treatment responses and predict efficacy
of treatment [91]. In this context, our observation
that HLA-DR*CD4" T cells resistant to T, -mediated

QS
(&
\e?
@
@
%'6

Latency is
established

T~

JC

l Latency

Legend

Mtb bacilli

Active TB

Granuloma R
disease

., CD4* Teffector cell

HLA-DR
PD-L1
| CD4* Treguatory cell

PD-1

reactivation
¢

suppression provides a mechanistic basis for how the
expansion of HLA-DR* T effectors may be detrimental
in TB [64]. The findings from our study are summarized
in Fig. 2.

This observation of the emergence of T, -resistant
T,; in TB is consistent with data from other chronic
inflammatory conditions, particularly autoimmune dis-
orders (Table 2). CD161'Th17 cells enriched in the
synovial fluid of rheumatoid arthritis patients are resist-
ant to T, -mediated suppression and their depletion
restores suppression in in-vitro cultures [61]. A similar
phenomenon of the emergence of suppression resistant
effectors has been reported in systemic lupus erythro-
matosis [92], multiple sclerosis [93], type 1 diabetes
[59,94] and juvenile idiopathic arthritis [95], with poten-
tially varying mechanisms underpinning such resistance.
In multiple sclerosis, it was attributed to high T cell-
derived granzyme B [93]; in type 1 diabetes due to
down-regulation of TGF-BRII on T cells and conse-
quently reduced TGF-p-mediated suppression [94] and
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Fig. 2. A diagrammatic model which highlights the difference in T, suppression in healthy, latently infected individuals and active TB subjects in
context of expansion of HLA-DR*CD4* memory T cells. Individuals infected with TB can either clear the bacteria, become latently infected or develop
active TB disease. There is also a possibility of reactivation of TB in latently infected subjects. The reasons for this can be HIV co-infection, treatment
with check-point inhibitors such as anti-PD-1, therapies such as anti-TNF for rheumatoid arthritis, etc. HLA-DR* activated cells are low in healthy

and latently infected individuals and T

reg

suppression is good. However, in active TB, HLA-DR*CD4" T cells expand and T,_-mediated suppression

reg

becomes poor. The T, suppression pathways that are rendered inactive in TB are the PD-1/PD-L1 and p-chemokine-CCR5-dependent. The reason for
their becoming inactive could be possible counter-regulation by IL-2, IL-17A, IFN-y and IL-22 that are secreted by the expanded HLA-DR*CD4* T

cells.
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in juvenile idiopathic arthritis, as in TB [64], due to
expansion of activated CD69*HLA-DR* T, cells which

were T, suppression-resistant [95].

Mechanisms that underpin T__dysregulation in TB

reg
Evidence for altered expression of cell surface
molecules on T ; that are important for engaging with
T, cells

T, cells suppress via a variety of contact dependent and
independent mechanisms (Fig. 1). Some of the key mol-
ecules shown to be involved in promoting T, suppression
include CTLA-4, PD-1, CD39, CD73, PD-L1, LAG3, etc.
Several lines of data show some of these molecules, e.g.
PD-1, PD-L1, CD39, CD73 and LAGS3, are altered in TB.
PD-1 and PD-L1 expression is elevated in CD4* T cells
from TB subjects compared to healthy controls [96]; CD39
and CD73 are increased in lung parenchymal CD4* T
cells of Mtb-infected mice [97] and LAG3 is increased in

Emerging patterns of regulatory T cell function in tuberculosis

granuloma of macaques with active TB compared to those
with latent TB [98]. However, the function of these mol-
ecules has not been specifically studied in the context of
T, suppression in TB. Our study of transcriptomic and
functional analysis of cells from pulmonary TB patients
provides evidence for a role for PD-1/PD-L1 and f
chemokine/C-C chemokine receptor type 5 (CCR5) inter-
actions [64]. We identified that in TB the expanded subset
of HLA-DR* T cells is resistant to T, -mediated sup-
pression while HLA-DR™ T cells remain sensitive; a cel-
lular population comprising both these subsets (HLA-DR*
and HLA-DR") was rendered resistant to T, -mediated
suppression, indicating the function of HLA-DR" effectors
to be dominant in this mixture [64]. To probe the under-
lying mechanisms, we captured HLA-DR™ and total
(HLA-DR" and HLA-DR") cell fractions from subjects with
confirmed treatment-naive pulmonary TB [diagnosed by
presence of acid-fast bacilli (AFB) in sputum and Genexpert
positivity (Fig. 3a)] and analysed the transcriptome of
these cells through RNA sequence analysis over time

(a) Donor | Age | Gender | Sputum AFB | Genexpert MTB | TB diagnosis
1 60 M Positive Not detected Positive TotalToff | HLADR-Teff
2 55 M Positive Not detected Positive T 2 24h 96h | 2h 1 24h | S6h
3 30 M Positive Detected Low Positive IL17A 278464
CSF2
4 26 M Positive Detected High Positive 1L22 96718
— - — . IFNy /5 46465394531 5.80443) 37734
5 48 M Positive Detected Medium Positive f}"“‘"es_ and TNFa ol B
LTA/TNFB 15.00325(8.47732]5 5817¢
CCL3L3 d
(b) CCL3 574792 5 61295(6.2351 543212
CD3*CD4'CD45RA" ccLd
SEMG from CD127"CD25° Teff 2893 3345 353'155
active g‘;;?l C(:jr‘(l‘-ip[:IB%HLA- Archived at baseline (Ohr) and TGFp £
pulmonary TB an -DR) activated with anti-CD3/CD28 CD40LG 3.95782 390243
atients for 2, 24 and 96 hrs
’\)lvithout Collsiifacs IL2RA/CD25 39596 A &
treatment CD3*CD4"'CD45RA" markers CD38 2901
—> CD127"'CD25"HLA- HLA-DRA 13.70296] 251047
DR- Teff HLA-DRB 13.88552) 262443
RNA extracted at 0, 2, 24 CD46 594
and 96hr post activation. CD164 5.83707]
l CD274 6 25015
TNFSF10/TRAIL s o764
RNA-Seq analysis (75bp Other cell surface markers| =
single end on lllumina HRAEL - z
NextSeq500 TRAF3 270563 3
Generation of DEG FASLG ’ d
Mining of Generation of a list by comparing SEMAT7A 6141346 51 30764 5
refined refined list of expression at 2, 24 " TNFRSF8/CD30 3
h . g Quality control of 6
DEG listfor DEG applying and 9B hrpost . oo4s and RNASeq T iption f FOXP3 340188 3.56261] 4.56951 7
functionally cut-off of log2 activation with & actors
p data analysis. EOMES 274817 8
relevant fold change of expression at
genes. +/- 2.5, p<0.05 baseline or Ohr Marker for proliferation TYMS 5 um- 9

Fig. 3. T, suppression resistant total T ;and T, suppression sensitive HLA-DR™ T cells have distinct expression patterns with respect to certain
cytokines and cell surface receptors. (a) A brief summary of clinical details of treatment naive pulmonary tuberculosis (TB) donors, including sputum
acid fast bacilli (AFB) and Genexpert test results. (b) An outline of methodology used for sorting and archiving of total and HLA-DR*-depleted
(HLA-DR) T ; cell populations for RNA-Seq analysis, as described previously [64]. Briefly, total T ; (comprising HLA-DR* and HLA-DR" cells) and
HLA-DR" Teff were sorted by flow cytometry from 5 pulmonary TB patients. RNA was isolated from both cell fractions at 0, 2, 24 and 96 h post-
activation with anti-CD3/CD28 mitogenic beads and subjected to sequencing using the Illumina NEXTSeq 500 platform (see [64]). Activation-
induced longitudinal changes in gene expression was first determined relative to the unstimulated control using a cut-off of P < 0-05, log, fold change
(FC). Next, genes differentially expressed with time were compared between the total (ng—resistant) versus HLA-DR™ (ng—sensitive) T cells. (c) The
database of essential genes (DEG) list was mined for genes implicated in T cell function. A summary of these results is shown. The numbers in boxes
denote log, FC for expression at 2,24 and 96 h compared to unactivated cells at baseline for each cell fraction. For further details on procedure and
complete DEG list please see reference 64.
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post-activation with anti-CD3/anti-CD28 (Fig. 3b). Gene
expression analysis of each cell fraction post-activation
relative to the unstimulated control allowed identification
of longitudinal changes, while comparison of the two frac-
tions highlighted differentially expressed genes [64]. Of
the 193 and 89 differentially expressed genes identified in
the HLA-DR™ and total T,; fractions, respectively, at 2 h
post activation, elevated expression of PD-L1 and
B-chemokines were noted to be significantly elevated in
HLA-DR™ T, -sensitive T, (Fig. 3c). Through blocking
studies, we confirmed the functional significance of both
pathways in T, -mediated suppression of HLA-DR™ T
effectors, pointing to the importance of these pathways in
maintaining Treg—mediated homeostasis in TB [64]. Our
findings are summarized in Fig. 2. PD-1/PD-LI interactions
and P-chemokine/CCR5 interactions have been previously
implicated in promoting T, ,-mediated suppression [99,100].
C-C motif chemokine ligand (CCL)3 and CCL4 secreted
by T, serve as chemoattractants for T cells, and T
cells from mice deficient in CCL3 and CCL4 fail to migrate
and conjugate with T, cells [100]. Moreover, T, from
type 1 diabetes patients are deficient in CCL3 and CCL4,
and this compromises their ability to suppress [100].
Apart from differences in PD-L1 and p-chemokine levels
(Fig. 2), our transcriptome analysis of T, -sensitive
HLA-DR™ and suppression-resistant HLA-DR™ cells identi-
fied several additional cell surface markers [CD46, TNF-
related apoptosis inducing ligand (TRAIL), TNF
receptor-associated factor (TRAF)1, TRAF3, FAS ligand
(FASLG), CD30 and semaphorin 7A (SEMA7A)] (Fig. 3¢),
some of which have previously been implicated in T,
function [101-104]. Engagement of complement receptor
CD46 results in suppression of bystander CD4* T cells
via an IL-10-dependent mechanism [101,102]. CD46 cross-
linking also suppresses mycobacteria-specific CD4* T cell
responses [105]. TRAIL is a regulator of T cell activation;
its absence leads to autoimmunity and reduction in T,
frequencies, while its presence dampens Thl responses and
boosts T, [103]. TRAF1 inhibits Th2 differentiation [106];
TRAF3 controls proximal T cell activation events and its
absence in mice leads to elevated thymus derived T, cell
frequencies [104]; FASLG is a marker for T cell activation
and is expressed on Thl cells [107,108]; and SEMA7A
and CD30 have been implicated in Thl and Th17 dif-
ferentiation [109,110]. However, a role for these pathways
impacting T function in TB remains to be elucidated.

Evidence for exaggerated expression of cytokines that
counterbalance T, function

It is well recognized that proinflammatory cytokines can
suppress the generation and function of T, cells. By
directly comparing the transcriptome of T, -resistant
HLA-DR* effector CD4* T cells isolated from TB subjects
with that of the T, -sensitive fraction depleted of HLA-DR*

CD4* T cells, we provide the first evidence that HLA-DR*
T from TB express a number of proinflammatory
cytokines, including IL-2, IFN-y, colony stimulating fac-
tor-2 (CSF2), IL-17A and IL-22 ([64], Fig. 3c). This exag-
gerated cytokine profile was noted in T, stimulated with
both Mtb antigen as well as polyclonal stimulation [64]
and could be possibly responsible for counter-regulation
of T, -mediated suppression pathways, as summarized in
Fig. 2. Both IFN-y and IL-17A, although crucial for Mtb
control [111,112], are also recognized to counter-regulate
T,., development and function and their exaggerated expan-
sion, therefore, could be one mechanism for T resistance
to Treg control [113-115].

Signal strength

A third potentially important consideration in the mecha-
nisms that underpin how activated, HLA-DR* T effectors
become resistant to T, cells may be linked to the quality
and strength of the primary signal that activates effector
cells. The strength of the activating signal shapes the nature
of the immune response, with high signal strength leading
to Thl and low signal strength to Th2, Tfth and memory
T cell differentiation (reviewed in [116,117]). Previous stud-
ies show that effectors activated by a very strong signal
strength become refractory to suppression mediated by
T, cell co-culture of human CD25~ T and autologous
CD25" T, resulted in suppression only when stimulated
with soluble anti-CD3 (weak TCR signal) and not when
activated with plate-bound anti-CD3 (strong TCR signal)
[118]. Whether this is pertinent in the context of TB
remains to be tested. What has been demonstrated from
mouse studies is that persistently activated CD4* T cells
specific for the secretory Mtb antigen early secretory anti-
genic target 6 (ESAT6), which is expressed in abundance
throughout infection, fail to confer protection, whereas
CD4" T cells specific for an Mtb antigen that has more
controlled expression, e.g. antigen 85B (Ag85B), can confer
greater protection [119]. The failure of ESAT6-specific cells
to confer protection was linked to the fact that these cells
are more exhausted and terminally differentiated; i.e. express
higher killer cell lectin-like receptor subfamily G member
1 (KLRG1), lower CCR7, CD127 and CD62L, compared
to Ag85B-specific cells [119]. Whether Treg-resistant
HLA-DR* T; cells isolated from TB subjects arise due to
persistent antigen stimulation and bear markers of exhaus-
tion remains to be confirmed.

Summary and future directions

It appears now from studies in animal models and humans
that in TB the role of T, both nT, and antigen-specific,
has several dimensions. While T, might delay the appear-

ance of protective Th responses, especially during the early
stages of infection, their function in the chronic stage of
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TB disease is consistent with their known primary func-
tion that is linked to control of exaggerated inflammation
which, if unchecked, can contribute to disease pathology
[120,121]. The immune response in TB is clearly disor-
dered, and the theme of balance between protective and
pathogenic responses has been visited in the past [122].
In fact, a balance between Th1/Th17 and immune-regulatory
responses is associated with better clearance of Mtb infec-
tion [123]. In this context, the expansion of HLA-DR*
T, cells in TB is a probable marker for inflammation
associated with enhanced disease risk [124]. It has now
been demonstrated that this expanded subset exhibits
resistance to suppression mediated by natural T, cells
[64]. The putative role of proinflammatory cytokines (IFN-
Y, IL-17A, IL-2, CSF2 and IL-22), B-chemokines and PD-1/
PD-L1 interactions in modulating T, resistance to T,
suppression in TB has been identified (Fig. 2). This calls
for further analysis of the mechanisms that are important
in maintaining balance between inflammation and immune-
regulation in TB.
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