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Survival prediction is highly valued in end-of-life care clinical practice, and patient

performance status evaluation stands as a predominant component in survival

prognostication. While current performance status evaluation tools are limited to their

subjective nature, the advent of wearable technology enables continual recordings of

patients’ activity and has the potential to measure performance status objectively. We

hypothesize that wristband actigraphy monitoring devices can predict in-hospital death

of end-stage cancer patients during the time of their hospital admissions. The objective

of this study was to train and validate a long short-term memory (LSTM) deep-learning

prediction model based on activity data of wearable actigraphy devices. The study

recruited 60 end-stage cancer patients in a hospice care unit, with 28 deaths and 32

discharged in stable condition at the end of their hospital stay. The standard Karnofsky

Performance Status score had an overall prognostic accuracy of 0.83. The LSTM

prediction model based on patients’ continual actigraphy monitoring had an overall

prognostic accuracy of 0.83. Furthermore, the model performance improved with longer

input data length up to 48 h. In conclusion, our research suggests the potential feasibility

of wristband actigraphy to predict end-of-life admission outcomes in palliative care for

end-stage cancer patients.

Clinical Trial Registration: The study protocol was registered on ClinicalTrials.gov

(ID: NCT04883879).

Keywords: palliative care, performance status, survival prediction, prognostic accuracy, wearable technology,

deep learning, long short-term memory networks, actigraphy
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INTRODUCTION

Accurate survival prediction is highly valued in the clinical
practice of end-of-life care. It enables better communication
and preparation for impending death, helps avoid futile medical
treatment, and facilitates optimal palliative care quality for
patients, families, and physicians altogether (1–3). Several
validated prognostic tools are available, including Palliative
Prognostic Score (PaP) (4–6), Palliative Prognostic Index
(PPI) (7–9), Prognosis in Palliative care study (PiPS) score
(10, 11), and Glasgow Prognostic Score (12, 13). These scoring
systems employ a combination of subjective clinical parameters
and/or objective biomarkers to generate survival predictions.
Among the parameters used by these prognostic tools, the
evaluation of patient performance status (PS) stands as a
predominant component. Commonly used PS assessment tools
include Karnofsky Performance Status (KPS) (14), Eastern
Cooperative Oncology Group (ECOG) Performance Status
(15), and Palliative Performance Scale (PPS) (16). However,
applications of these evaluation tools are subjective in nature
and require trained healthcare professionals for assessments.
These characteristics inevitably lead to issues including
intraobserver or interobserver variability (17, 18), overestimating
or underestimating (19), discontinuous evaluations of activity
status, as well as inconvenient implementation in contexts
without healthcare professionals.

With the advent of wearable activity monitoring technology,
we are now granted convenient and objective methods for the
evaluation of patient functional status. Wearable monitors also
enable constant documentation of a patient’s activity status
which could be retrospectively examined and validated. Because
of these benefits, monitoring technologies have been applied
in different research areas and yielded valuable information
on the relationship between activity status and diseases in
clinical fields of gynecology (20), surgery (21), pulmonary (22),
nephrology (23), and psychology (24). In addition, a study
by Gresham et al. also applied objective PS evaluation in a
group of advanced cancer patients, which identified correlations
between objective activity data of patients and clinical outcomes
of adverse events, hospitalization, and overall survival (25).
However, no previous study had employed objective PS data for
survival prognostication.

In this study, wearable actigraphy devices were applied in a
group of end-stage cancer patients for objective measurement
of their activity status. We hypothesized that the objective
activity data recorded by the wearable devices contained
information to help predict in-hospital death of end-stage
cancer patients on their hospital admissions. A deep-learning-
based prediction model was developed to analyze activity
data and suggest survival outcomes of patients. Furthermore,
the prognostic accuracy of the proposed activity monitoring
and survival prediction model was compared to a current
PS evaluation tool, KPS, and a complex prognostic tool,
PPI. Finally, we explored and described the applicability,
potential, and limitations of the objective activity data recorded
by wearable devices as a simple prognostic parameter in
clinical settings.

MATERIALS AND METHODS

Study Setting, Participants, and
Procedures
The study was conducted in the hospice care unit of Taipei
Medical University Hospital (TMUH) from December 2019 to
December 2020. Patients with terminal illnesses were admitted
to the unit for palliative care and management of pain and
other symptoms. Participants aged > 20 years who had at least
one diagnosis of end-stage solid tumor diseases and consented
to receive hospice care were recruited. Patients with diagnoses
of leukemia or carcinoma of unknown primary, patients with
evident signs of approaching death upon admission, patients
with no vital signs upon admission, or patients who continued
to receive aggressive treatment were excluded from this study.
After admission to the hospice care unit, patients and their
caregivers were first visited and assessed by registered hospice
specialist doctors and nurses. If the patient met the criteria
mentioned above, they would be invited to participate in the
study. Participants would only be recruited once the informed
consent was signed by themselves or their legally authorized
representative. The study was approved by the ethical committee
of the Taipei Medical University-Joint Institutional Review Board
(TMU-JIRB No. N201910041).

Clinical data including age, gender, diagnosis, and
comorbidities were collected after successful recruitment.
Patients were asked to wear a wristband actigraphy device on
their hands without intravenous lines. The wearable actigraphy
devices (model no. XB40ACT, K&Y lab, Taipei, Taiwan) used
in this study is a tiny gadget that weighs 7 g with dimensions of
44∗19∗8mm and has been previously validated (26) and applied
in a sleep quality study among cancer patients (27). The monitor
collects three-dimensional data of gravitational acceleration,
angular change, and spin change of the patient’s hand motion
every second and transforms them into three statistical
parameters: physical activity, angle, and spin. Participants were
instructed to wear the devices throughout their hospital stay
except showering time because they were not water-resistant.
The information was also forwarded to their caregivers.

Subsequently, subjective PS assessments using the KPS and
prognostic evaluations using the PPI were done by two trained
specialists. The KPS system is an established tool designed for PS
evaluation. The score collaboratively takes ambulation, activity,
evidence of disease, self-care, the requirement of assistance, and
progression of disease into consideration with a scale that ranges
from normal activity (100) to death (0) (14). In addition to
PS assessments, we applied a complex prognostic tool based
on evaluations of PS and other clinical symptoms, namely PPI,
starting from July 16, 2020. We were only able to conduct
the PPI assessments due to the participation of an additional
specialist, who undertook extra work derived from evaluations
of patients’ clinical symptoms. PPI considers PS and clinical
symptoms of oral intake, edema, dyspnea at rest, and delirium,
to generate an overall prognostication. According to the original
study, the results range from 0 to 15, and a PPI > 6.0 estimates
a survival time of fewer than 3 weeks (7). The same group of
specialists conducted all KPS and PPI assessments to ensure
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FIGURE 1 | The basic architecture (A) and data pre-processing and architectural flow (B) of the Long Short-Term Memory model. Symbol x and h represent the input

and output values of the LSTM cell. Symbol c represents the value of the memory cell in each LSTM cell. Subscript t represents the time step.

interpersonal consistency. After the initial consultation, patient
activity data recorded by the actigraphy devices would be synced
and uploaded every 2–3 days until the patient was discharged
from the hospital. Survival outcomes were documented as either
death or discharged in stable condition at the end of each patient’s
hospital stay.

Data Pre-processing and LSTM-Based
Deep Learning Model
The data collected by the actigraphy device is a time series
with three features: physical activity, angle, and spin. The issue
of variations in each patient’s data length was managed by
zero paddings until the maximum length of the time series
was reached. To avoid vanishing gradients in the deep learning
model, we opted for an average value of 20 timesteps and
shortened the time series to <500 timesteps.

In this study, we trained a long short-term memory (LSTM)-
based deep learningmodel to predict the clinical status of patients
at discharge, which was either death or discharged in stable
condition. Recurrent neural networks (RNN) is a deep learning
method well-suited to deal with time series structure (28, 29).
However, the vanishing gradient problem of RNN made the
tool suboptimal for long time-series data (30) for which the
LSTM, a particular type of RNN, was used to resolve the issue.
Compared to RNN, the LSTM architecture is more resistant to
vanishing gradients and allows robust processing of long time-
series data (31, 32). The performance of LSTM has been validated

in disciplines of economic, financial, stock market forecasting,
and even stress forecasting using survey data and physiology
parameters. In these studies, LSTM demonstrated lower error
rates (33), lower variance (34), and higher accuracy (34, 35)
than other analytical methods. A study by Umematsu et al. also
showed that LSTM could generate satisfactory results based on
objective data measured by wearable devices and phones (35).

Figure 1A showed the basic architecture of the LSTM model.
Symbol x and h represent the input value and the output value of
the LSTM cell, respectively. The value in the memory cell in each
LSTM cell is c. The subscripts of x, h, and c represented different
time points. Each LSTM cell contains an input gate, forget
gate, and output gate. The input gate determines whether the
neuron writes input values into the memory cell. The forget gate
determines whether the memory cell formats memory values.

The output gate determines whether the neuron reads the values
in the memory cell. The hyperbolic tangent function (tanh)

and sigmoid function (σ) are activating functions in LSTM.
In this study, the prediction model was based on the LSTM
cell to process the three-dimensional time-series data. Data

pre-processing and model architecture flows were presented in
Figure 1B. The model consisted of an LSTM layer, a dense layer

wrapped with TimeDistributed, a flatten layer, and a dense layer.
Parameters were adjusted according to different model structures
and are presented in the results section. It should be noted that
the model was designed to generate survival predictions based
solely on activity data of patients, therefore, demographic and
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TABLE 1 | Patient demographics and characteristics at baseline visit.

Characteristics (N = 60) Value

Age, years

• Mean 72.9

• SD 12.2

• Range 45–94

Sex, N (%)

• Male 37 (61.67%)

• Female 23 (38.33%)

Primary tumor site, N (%)

• Gastrointestinal system 26 (43.33%)

• Lung 12 (20.00%)

• Genitourinary system 10 (16.67%)

• Gynecological system 5 (8.33%)

• Breast 3 (5%)

• Head and neck 2 (3.33%)

• Central nervous system 2 (3.33%)

Patients with comorbidities, N (%) 46 (76.67%)

Length of hospital stay, days

• Median (IQR) 10 (5–15)

Patient status at discharge

• Death 28 (46.67%)

• In stable condition 32 (53.33%)

KPS (N = 59) Death Discharged in stable condition

• KPS < 50% 23 (38.98%) 5 (8.47%)

• KPS ≥ 50% 5 (8.47%) 26 (44.07%)

PPI (N = 20) Death Discharged in stable condition

• PPI > 6.0 8 (40.00%) 0 (0.00%)

• PPI ≤ 6.0 1 (5.00%) 11(55.00%)

clinical data of patients (such as comorbidities) were not utilized
by the model.

Statistical Analysis
Patient characteristics were summarized using descriptive
statistics. The clinical outcomes of participants were determined
at the end of their hospital stay as binary results: death (1)
or discharged in stable condition (0). We adopted a validated
cutoff value of 50% for KPS (36) and a cutoff value of 6.0
for PPI as suggested by the original study (7). A receiver
operating characteristic (ROC) curve analysis was also conducted
to identify optimal cutoff values based on our dataset. The
predictive accuracy of KPS and PPI were presented as sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), overall accuracy, and the area under the receiver
operating characteristic (ROC) curve (AUC). Additionally, an
exploratory analysis was conducted to investigate the predictive
correlation between KPS and the LSTM model. Correlation
between the two variables was calculated using the Pearson
correlation coefficient. Statistical analyses were computed using
Python version 3.6 and R software version 4.0.2.

FIGURE 2 | The Receiver Operating Characteristic curve of Karnofsky

Performance Status (blue) and Palliative Prognostic Index (green).

RESULTS

Demographics of Study Population
From December 11, 2019, to December 10, 2020, 60 patients
admitted to the hospice care unit of TMUHwere eligible for study
recruitment and consented to participate. Patient characteristics,
information on KPS and PPI, and their clinical outcomes at
discharge were presented inTable 1. The mean age was 72.9 years
old (SD 12.2), and 62% were male. Gastrointestinal tumors were
the most commonmalignancies, followed by lung, genitourinary,
gynecological, breast, head and neck, and CNS cancers. Seventy
seven percent of participants had one or more comorbidities,
consisting of hypertension, diabetes mellitus, hyperlipidemia,
coronary artery diseases, cerebral infarctions, and others. The
median length of hospital stay of patients was 10 (IQR 5-15)
days. Twenty eight (47%) patients died at the end of their hospice
care stay, whereas 32 (53%) patients were discharged from the
hospice care unit in stable condition. It should be noted that
one case was discharged against medical advice and deemed as
discharged in stable condition. KPS assessments were available
or 59 participants, with 28 of them having a KPS score < 50%
at admission. PPI assessments were available for 20 participants,
with 8 of them having a PPI score > 6.0 on admission.

Prognostic Accuracy of KPS and PPI
The absolute numbers of the true positive, false positive, false
negative, and true negative of KPS and PPI assessments are
presented in Table 1. True positive was defined as participants
with KPS< 50% or PPI> 6.0 at baseline visit and death at the end
of their hospital stay. The predictive performance of KPS score
based on binary outcomes had an overall predictive accuracy of
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FIGURE 3 | The representative activity pattern of patients with clinical outcomes of death (A) and discharged in stable condition (B). The red points on the graph

indicated that the patient had taken off the device.

83.1% (95% CI 71.0–91.6%), sensitivity of 82.1% (95% CI 63.1–
93.9%), specificity of 83.9% (95% CI 66.3–94.5%), PPV of 82.1%
(95% CI 63.1–93.9%), NPV of 83.9% (95% CI 66.3–94.5%), and
AUC of 0.902. The predictive performance of PPI score based
on binary outcomes had an overall predictive accuracy of 95.0%
(95% CI 75.1–99.9%), sensitivity of 88.9% (95% CI 51.8–99.7%),
specificity of 100% (95% CI 71.5–100%), PPV of 100% (95% CI
63.1–100%), NPV of 91.7 (95% CI 61.5–99.8%), and AUC of
0.960. The discrimination thresholds identified by the ROC curve
analysis correlated with the cutoff values we initially adopted for
both KPS and PPI (Figure 2).

Activity Dataset Description and Splitting
The representative activity pattern recorded by the wearable
wristband was shown in Figure 3. Figure 3A belonged to a
participant who died at the end of the hospital stay, while
Figure 3B belonged to a participant who was discharged in
stable condition. Although activity data of patients were recorded
throughout their hospital stay, the LSTM-based predictionmodel
only employed data of the initial 48 h for prognostic applicability
in clinical settings. After excluding recordings with tracking
interruption or data volume of fewer than 48 h, the final dataset
included activity data of 44 participants, with 21 deaths and
23 discharged in stable condition at the end of hospital stay,
respectively. The maximum length of data after zero-padding
is 9,640.

All data was fed into the model after data pre-processing;
thus, sampling rates and strides were not defined. We first
conducted a preliminary analysis to investigate the feasibility and
performance of the model. In the preliminary analysis, the data

TABLE 2 | Details of the dataset for the preliminary and final LSTM models.

Training

dataset

Validation

dataset

Testing

dataset

Total

Preliminary model

Discharged in stable

condition

15 (34.09%) - 8 (18.18%) 23

Death 15 (34.09%) - 6 (13.64%) 21

Total 30 - 14 44

Final model

Discharged in stable

condition

16 (36.36%) 4 (9.09%) 3 (6.82%) 23

Death 14 (31.82%) 4 (9.09%) 3 (6.82%) 21

Total 30 8 6 44

were divided into a training dataset and a testing dataset at a ratio
of 7:3. The number of LSTM units for the preliminary model is
64, with a batch size of 8. We further divided data into training,
validation, and testing datasets at a ratio of 7:2:1 in the final
LSTM model to detect the possibility of overfitting. The number
of LSTM units for the final model was 256, with a batch size of 16.
The epochs of the preliminary and final model were 50 and 100,
respectively. Both models adopted adam as the optimizer and the
mean absolute error was used as the loss function. Dataset of the
preliminary and final models are presented in Table 2.

Training of LSTM Survival Prediction Model
Based on the activity data recorded in the initial 48 h after
admission, the preliminary model yielded an accuracy of 0.8667
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FIGURE 4 | Confusion matrices of the preliminary prediction model. (A): Confusion matrix of the testing dataset, with normalization. (B): Confusion matrix of the

testing dataset, without normalization.

in the training dataset and 0.7143 in the testing dataset. The
confusion matrix visualized the differences between model
prediction and the ground truth. The variables used for the
original and normalized confusion matrices were the same.
In the normalized form of confusion matrices, the sum of
each row is 1.0 and represents the correct prediction in terms
of probability. Figures 4A,B illustrate the confusion matrices
with normalization and without normalization, respectively. The
sensitivity, specificity, PPV, NPV, and AUC of the model on the
testing dataset were 0.8333, 0.625, 0.625, 0.8333, and 0.7292,
respectively. These satisfactory results indicated the feasibility
of LSTM in classifying time series data collected by wearable
actigraphy devices without any physiological information.

The dataset was further sliced into training, validation, and
testing data in the final model with appropriate parameters. The
training accuracy increased to 0.9667, and the validation accuracy
and testing accuracy were 0.75 and 0.8333, respectively. After
increasing the LSTM units from 64 to 256, the performance of
the model on the testing dataset was greatly improved. Confusion
matrices of the final model were shown in Figures 5A,B. The
sensitivity, specificity, PPV, NPV, and AUC of the model on the
testing dataset were 1.0, 0.6667, 0.75, 1.0, and 0.8333, respectively.

The Impact of Data Length on LSTM Model
Performance
Since activity data of the initial 48 h yielded favorable results,
we further explored the performance of the model based on a
shorter time series. The input data of the preliminary model and
the final model were reduced from 48 to 24 h with the same
parameters. The maximum length of data after zero-padding is
6,460. After reducing the time interval, the prognostic accuracy
of both preliminary and final models decreased. The comparison
of model performance based on 48 and 24 h is demonstrated in

Table 3. The finding indicated decreasing classification accuracy
of the models with reducing time length of the input data.

DISCUSSION

The study proposed and examined the use of a wearable
actigraphy device for survival prediction among end-stage cancer
patients. Compared to the subjective PS evaluation by KPS, our
results indicated that objective activity data recorded by the
wearable devices also provided favorable prognostic accuracy
when employing the LSTM model. The wearable actigraphy
device employed in this study is a lightweight and low-cost
device, and based on the results, provides convenient activity data
for survival prediction in end-stage cancer patients. The findings
of this study suggest implementing the wearable technology and
the survival prediction model in end-of-life care to facilitate
decision-making for clinicians and better preparation for patients
and their families.

PS evaluation can inform patients’ clinical condition and
treatment decisions in end-of-life care. However, subjective
evaluation tools like KPS are seldomly used as a single predictor
for patient survival; one of the reasons is the potential risk
of measurement bias due to their subjective nature (37). As a
result, studies examining the applicability of objective activity
evaluation, such as measurements by wearable technology, are
being conducted to investigate the usability of activity data
for survival prediction. While several studies have identified
associations between activity data of cancer patients and their
clinical outcomes, such as unplanned healthcare encounters (38),
adverse events, hospitalizations, and survival (25), no previous
studies have utilized the activity data to build a prediction model
that suggests survival outcomes. To our knowledge, this is the
first study that applied objective activity data of patients in a
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FIGURE 5 | Confusion matrices of the final prediction model. (A) Confusion matrix of the testing dataset, with normalization. (B) Confusion matrix of the testing

dataset, without normalization.

TABLE 3 | Model performance with different input data lengths.

Model Training ACCa Validation ACC Testing ACC Sensitivity Specificity PPVb NPVc AUCd

Preliminary model 48 h 0.8667 N/A 0.7143 0.8333 0.625 0.625 0.8333 0.7292

Preliminary model 24 h 0.8333 N/A 0.6429 0.6667 0.625 0.5714 0.7143 0.6458

Final model 48 h 0.9667 0.75 0.8333 1.0 0.6667 0.75 1.0 0.8333

Final model 24 h 0.9333 0.625 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

aACC: accuracy.
bPPV: positive predictive value.
cNPV: negative predictive value.
dAUC: area under the receiver operating characteristic curve.

deep-learning model to provide survival outcome predictions in
the end-stage cancer population.

In this study, while KPS had comparable performance,
PPI yielded a nearly impeccable result regarding prognostic
accuracy. However, it should be noted that the accuracy
of these prognostic tools, either KPS or PPI, relies heavily
on the judgment of an experienced clinical practitioner. In
comparison, the activity monitoring and survival prediction
model proposed by this study, requires no clinical expertise but
a wearable wristband. The advantage introduces two clinical
implications: first, automatically-generated survival predictions
can lessen healthcare practitioners’ workload in clinical settings,
and second, enable end-of-life care at places outside hospitals,
such as hospice at home. The result also suggested that
integrating activity evaluation and clinical parameters in a
survival prediction model might facilitate better prognostic
accuracy, and subsequent analysis should be conducted to
investigate the feasibility of such a combination.

The activity data of only the initial 24 and 48 h since patients’
hospital admission was employed to provide timely survival
prediction and enable practicable use in the clinical settings.
Activity recordings fewer than 24 h were not analyzed due to the

consideration of circadian rhythm (39). Circadian rhythms are
part of the body’s internal clock and are approximately 24 h a
cycle. However, studies have shown that circadian rhythms can
be disrupted bymultiple factors, including the states of cancerous
diseases (40); thus, we employed activity analysis of both 24 and
48 h to include at least a cycle of the circadian rhythm. Our
findings showed that the predictions based on activity data of 48 h
yielded better prognostic accuracy than 24 h in both preliminary
and final models. While the better performance of the model
may be attributed to the increasing length of data (41), the
inclusion of at least a cycle of circadian rhythms might also serve
as a constructive factor. Future studies examining the impact of
circadian rhythm on activity data of end-stage cancer patients are
thus warranted.

Though the study offers promising results of the deep-
learning-based survival prediction model, the study still
encompasses a few limitations. First, the issue of data
discontinuity was noticeable. Probable causes include battery
charging requirements and the non-waterproof characteristics
of the device, as these monitors were removed during the
showering time. Although the issue of data discontinuity and
different data lengths were handled by data pre-processing,
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future studies with better activity tracking devices and data
quality are warranted. Second, the study was designed to
provide patients’ outcomes at the end of their hospital stay,
either death or discharged in stable condition. Even though
the survival time varied among participants regardless of their
final survival outcomes, the proposed model only informed
binary survival outcomes rather than the estimated survival
time. Finally, we failed to adopt PPI assessments at the
beginning of the study and thus, only applied the tool to the last
20 participants.

In conclusion, the study presented a wearable activity
monitoring and survival prediction model for end-stage cancer
patients in hospice care settings. Our survival prediction model
provided satisfactory prognostic accuracy of patients’ binary
survival outcomes, death or discharged in stable condition, by
using activity data of the initial 24 or 48 h on their hospital
admission. The prognostic accuracy of the model was time-
dependent, with models using activity data of 48 h yielding better
results than those of 24 h. The automatically-generated survival
prediction by the LSTM deep-learning model demonstrated
feasibility in clinical settings and may benefit end-of-life care in
settings without healthcare professionals.
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