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abstract

PURPOSE To examine the overlap of homologous recombination deficiency (HRD) and microsatellite instability
high (MSI-H) status, and to dissect driver versus bystander status of BRCA1/2mutations (BRCAm) in this context.

METHODS A pan-cancer comprehensive genomic profiling cohort (n = 213,199) was examined for overlap
between BRCAm and MSI-H status. BRCA1/2 variant zygosity was examined and correlated with MSI-H status,
tumor mutational burden, and genome-wide loss of heterozygosity (gLOH). Clinical histories of two patients with
prostate cancer with co-occurring BRCAm and MSI-H are described.

RESULTS HRD and MSI-H phenotypes were generally mutually exclusive events (P , .001). BRCAm that co-
occurred together with high tumor mutational burden or MSI-H were predominantly monoallelic bystander al-
terations. In breast, ovarian, and pancreatic cancers, very fewBRCAm occurred in the context of MSI-H; however,
in prostate cancer, 12.8% of BRCA1 and 3.4% of BRCA2 alterations co-occurred with MSI-H. In these BRCA-
associated cancers, co-occurringBRCAmwere generally monoallelic and were not associatedwith elevated gLOH.
Two patients with prostate cancer with co-occurring BRCAm and MSI-H showed resistance to poly (ADP-ribose)
polymerase inhibition but sensitivity to subsequent anti–programmed cell death protein 1 therapy.

CONCLUSIONMSI-H status and HRD are generally mutually exclusive phenomena across cancer types, but may
rarely co-occur, especially in prostate cancer. AlthoughMSI-H samples had a higherBRCAm prevalence relative
to microsatellite-stable tumors, these BRCA1/2 mutations were generally monoallelic and were not associated
with elevated gLOH. Our findings suggest that most BRCAm coexisting with microsatellite instability are likely
bystander events that may not result in sensitivity to poly (ADP-ribose) polymerase inhibitors.
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INTRODUCTION

Personalized medicine relies on a patient’s or a tumor’s
genomic profile to guide therapy selection and optimize
outcomes. The number of targeted cancer therapies on
the basis of the genomic profile has increased in recent
years.When genomic profiling identifiesmultiple potential
therapeutic options, this presents a diagnostic dilemma
where the optimal initial choice of systemic therapy may
be unclear.

Previous reports have identified a potential co-
occurrence of BRCA1/BRCA2 mutations
(BRCAm), a target for poly (ADP-ribose) polymerase
inhibitors (PARPi), and microsatellite (MS) insta-
bility high (MSI-H), a biomarker of immune
checkpoint blockade (ICB) response.1,2 However,
these reports have not assessed whether such
BRCA1 or BRCA2 mutations resulted in functional
homologous recombination deficiency (HRD) or
PARP inhibitor sensitivity.3,4 Since MSI-H tumors

often harbor thousands of mutations across the
exome, some of these BRCA mutations may rep-
resent monoallelic bystander events that leave the
second copy of BRCA intact and do not result in
PARPi sensitivity.

Here, we explored the overlap of microsatellite insta-
bility (MSI) with a scar-based measure of HRD,
genome-wide loss of heterozygosity (gLOH), across
multiple tumor types and examined the allelic status of
BRCAm in these samples. gLOH signatures are used
clinically in ovarian cancer for identifying patients who
may respond to PARPi and have been previously re-
ported to associate with biallelic BRCA1/2 alterations
across tumor types.5,6 We report that BRCAm in MSI-H
cancers are usually monoallelic and not associated
with HRD signatures. We also present the clinical
experience of two patients with prostate cancer with
co-occurring BRCAm and MSI and their outcomes to
consecutive PARPi and ICB agents.

ASSOCIATED
CONTENT

Appendix

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on May 9,
2022 and published at
ascopubs.org/journal/
po on June 30, 2022:
DOI https://doi.org/10.
1200/PO.21.00531

1

http://ascopubs.org/journal/po
http://ascopubs.org/journal/po
http://ascopubs.org/doi/full/10.1200/PO.21.00531
http://ascopubs.org/doi/full/10.1200/PO.21.00531


METHODS

Comprehensive Genomic Profiling

Comprehensive genomic profiling for all classes of alter-
ations in at least 324 genes was performed on all-comers
during routine clinical care using hybrid capture-based
next-generation sequencing in a Clinical Laboratory Im-
provement Amendments–certified laboratory as previously
described (Foundation Medicine Inc, Cambridge, MA).7

Tumor mutational burden (TMB), gLOH, and MS status
were called as previously described.5,8,9 Gene alteration
status was categorized as biallelic (deleterious mutation
with loss of heterozygosity [LOH] of the wild-type allele,
homozygous deletion, or two or more deleterious variants),
monoallelic (heterozygous deleterious mutation with
wild-type second allele), or wild-type (no BRCA variants in
either allele).10 Zygosity was determined as previously
described.10 For each sample, we created a genome-wide
copy number profile with circular binary segmentation and
a Gibbs sampling Markov Chain Monte Carlo algorithm, on
the basis of log-ratios to a process-matched control and
allele frequencies at over 3,500 single nucleotide
polymorphisms.7,10 To determine zygosity, we model every
possible variant allele count and somatic/germline status
using the modeled purity and variant allele fraction. For the
modeled variant allele count and germline status, the
goodness of fit is measured using a two-tailed binomial test;
only samples with a. 99% fit are given a status, otherwise
they are modeled as unknown status. Modeling was limited
to samples with . 30% tumor purity and to samples that
pass signal:noise copy number metrics; most unknown
calls were a result of purity requirements. Homologous
recombination repair (HRR) genes include ATM, BARD1,
BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, FANCL,
PALB2, RAD51B, RAD51C, RAD51D, and RAD54L. Ap-
proval for this study, including a waiver of informed consent
and Health Insurance Portability and Accountability Act
waiver of authorization, was obtained from the Western

Institutional Review Board (protocol No. 20152817). The
two patients with prostate cancer treated with olaparib and
pembrolizumab were approved by Johns Hopkins Uni-
versity institutional review board (with a waiver of informed
consent for a retrospective study).

Statistical Analyses

Proportions were compared using a univariate Fisher’s exact
test with 95% binomial CIs. Continuous distributions were
compared using aMann-WhitneyU test. Multiple hypothesis
correction used the false-discovery rate method.

RESULTS

Overlap of BRCAm and MSI-H

We examined a cohort of 213,199 real-world cancer pa-
tients profiled with comprehensive genomic profiling.
Consistent with previous reports, BRCAm were observed at
a higher frequency in MSI-H cases relative to MS-stable
cases (19.7% [678/3,446] in MSI-H and 5.3% [11,056/
208,971] in MS-stable; odds ratio [OR] = 4.4; P , .001).
When examining a scar-based measure of HRD
(gLOH . 16%), however, MSI-H and gLOH-high cancers
were found to be mutually exclusive (Fig 1A; OR = 0.18;
P , .001), with only 0.07% [148 of 213,199] of samples
showing co-occurrence of both events across the data set.
This mutual exclusivity was observed consistently across
most malignancies (Fig 1B), with strong mutual exclusivity
observed in endometrial, ovarian, stomach, colorectal, and
prostate cancers (all OR , 0.10, all P , .001).

MSI leads to the accumulation of numerous genome-wide
mutations, particularly insertion/deletion events and to a
high TMB (median 31.3 muts/Mb in MSI-H) compared
with 3.8 muts/Mb for MS-stable samples. We hypothe-
sized that the higher prevalence of BRCAm was a result of
accumulated bystander mutations in the context of high
TMB. Consistent with this hypothesis, BRCAm frequency
increased in a stepwise fashion with increasing TMB
strata (Fig 1C), with BRCAm occurring in 8.8% of cases

CONTEXT

Key Objective
Do BRCAm occurring in the context of microsatellite instability high (MSI-H) status result in homologous recombination

deficiency (HRD) and poly (ADP-ribose) polymerase inhibitor (PARPi) sensitivity?
Knowledge Generated
MSI-H and HRD were identified as mutually exclusive phenomena, with BRCAm in MSI-H samples being predominantly

monoallelic alterations. Two patients with prostate cancer with co-occurringBRCAm andMSI-H were PARPi insensitive but
responded to anti–programmed cell death protein 1 agents.

Relevance
BRCA1/2 mutations (BRCAm) and MSI-H represent actionable biomarkers that can guide precision medicine strategies in

multiple cancers. Our findings demonstrate that BRCAm occurring in MSI-H cancers may not result in HRD or sensitivity to
PARPi and imply that such patients should be treated preferentially with anti–programmed cell death protein 1 agents
rather than PARPi.
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FIG 1. MSI-H and HRD are mutually exclusive phenomena. (A) HRD (gLOH ≥ 16%) and MSI-H were mutually exclusive in a pan-cancer analysis.
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JCO Precision Oncology 3

PARP Inhibitor Insensitivity in BRCA1/2-Mutant MSI-High Cancers



with TMB 30-40 muts/Mb and in 18.4% of cases with
TMB. 70 muts/Mb. Similar results were observed in MS-
stable samples, with elevated rates of BRCAm in higher
TMB strata (Appendix Fig A1) and APC, another tumor
suppressor gene (Appendix Fig A2). In these higher TMB
cases, a larger relative proportion of BRCA alterations
were monoallelic, implying they are likely bystander
mutations (Figs 1C and 1D). Monoallelic alterations were
linked to TMB (Spearman rho = 0.98) while biallelic
mutation frequency remained stable (Spearman rho =
0.12). Across TMB strata and diseases, monoallelic
BRCAm were associated with low gLOH scores (Fig 1E;
Appendix Fig A3), suggesting that they do not result
in HRD.

PARP inhibitors are currently approved for the treatment of
advanced ovarian, breast, pancreatic, and prostate cancers
in the setting of BRCA1/2 mutations.11-14 To understand
how often MSI co-occurs with BRCAm, we examined the
overlap of the two biomarkers in these diseases (Fig 2A).
Although very few BRCAm cases were MSI-H in breast and
ovarian cancers (, 2%) and only modest rates of overlap
were seen in pancreatic cancer (1.4% BRCA1, 3.8%
BRCA2), 12.8% of BRCA1 and 3.4% of BRCA2 alterations
co-occurred with MSI-H in prostate cancer. When ex-
panded to include the full set of 14 HRR genes approved as
a companion diagnostic for olaparib use in prostate
cancer,12 the overlap was even more dramatic with 46.3%
of MSI-H prostate cancer samples harboring at least one

FIG 1. (Continued). and P values were capped at 1E-15. P values were multiple hypothesis corrected. (C) BRCA1/BRCA2 mutation prevalence
binned on the basis of sample TMB (orange line). Predicted monoallelic (red) and biallelic (blue) BRCAm prevalence was plotted on the same axes.
(D) Fraction of BRCAm predicted as monoallelic (red) and biallelic (blue) in each TMB bin; analyses were limited to samples where allelic status
could be determined. (E) gLOH distribution for biallelic BRCAm, monoallelic BRCAm, and BRCA1/2 wild-type samples in each TMB bin. CRC,
colorectal cancer; CUP, carcinoma of unknown primary; gLOH, genome-wide loss of heterozygosity; HRD, homologous recombination deficiency;
MSI-H, microsatellite instability high; NSCLC, non–small-cell lung cancer; OR, odds ratio; TMB, tumor mutational burden.
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HRR gene mutation (Appendix Fig A4). In cases of overlap
of the two biomarkers, BRCAm were predominantly
monoallelic (Fig 2B) and were associated with lower gLOH
(Fig 2C) compared with biallelic BRCAm, suggesting that
these alterations occurring in the context of MSI did not
result in HRD.

Clinical Outcomes in Two Patients With Prostate Cancer

With BRCAm/MSI-H Overlap

We also report the outcomes of two patients with metastatic
castration-resistant prostate cancer (CRPC) with concur-
rent MSI-H status and BRCA1/2mutations. Neither patient
had a prostate-specific antigen (PSA) response upon PARP
inhibitor treatment, whereas both showed PSA responses to
subsequent programmed cell death protein 1 (PD-1) in-
hibition of variable durations (Fig 3).

Patient 1 (Fig 3A) was a 72-year-old African American man
who presented with a PSA level of 43.4 ng/mL and metastatic
pelvic and retroperitoneal lymphadenopathy. His prostatic
biopsy revealed Gleason 4 + 5 = 9 adenocarcinoma with
cribriform morphology, and immunohistochemistry analysis
demonstrated loss of MLH1 and PMS2 proteins, with intact
MSH2 and MSH6 proteins. Germline DNA analysis was un-
remarkable. Genomic analysis from the prostate biopsy
showed a somatic BRCA1 mutation (p.Q1111fs*5, without
LOH) and aMLH1mutation (p.T206fs*23, with LOH). He also
had somatic mutations in PTEN (p.T319fs*1), CTNNB1
(p.T41A), NF1 (p.K1386fs*20), RNF43 (p.G659fs*41), CIC
(p.P1116fs*45), JAK1 (p.P430fs*2), CSF1R (p.E317fs*55),
and the classic TMPRSS2-ERG fusion. His tumor was char-
acterized as MSI-H, with a TMB of 20 mutations/Mb. The
gLOH score was low (2.9%), suggesting a lack of homologous
recombination repair deficiency. The patient was treatedwith a
combination of androgen deprivation therapy plus abiraterone
but eventually developed metastatic CRPC. He then received
enzalutamide, with a transient response to this agent. By
month 2, he had developed disease progression with a PSA
level rising to 50 ng/mL. Because of the pathogenic BRCA1
mutation, he was started on olaparib 300mg orally twice daily,
resulting in stabilization of his bone disease despite a con-
tinued rise in his PSA. His PSA level continued to rise to
314 ng/mL by month 5. Imaging showed progressive bone
metastases and new liver metastases, and his olaparib therapy
was stopped. At that time, his treatment was switched to
pembrolizumab 200 mg intravenously once daily every
3 weeks, which resulted in a rapid PSA reduction accom-
panied by a partial radiographic remission of his liver lesions
and an improvement in his bone pain. His response to PD-1
inhibition lasted approximately 13months andwas followed by
a subsequent progression of his bone and liver metastases.
Chemotherapy with docetaxel was initiated.

Patient 2 (Fig 3B) was a 54-year-old White man who
presented with high-risk localized prostate cancer and a
PSA level of 3.7 ng/mL. He underwent prostatectomy,
which revealed Gleason 5 + 4 = 9 adenocarcinoma with

ductal features. Immunohistochemistry analysis demon-
strated loss of MSH2 and MSH6 proteins, with intact ex-
pression of MLH1 and PMS2 proteins. Germline genetic
testing was unremarkable. Genomic analysis from the
prostatectomy specimen showed a somatic BRCA2 mu-
tation (p.N1784Kfs*3, without LOH) and a MSH2 homo-
zygous deletion (ie, biallelic loss). He also had somatic
mutations in MSH6 (p.F1088fs*5), JAK1 (p.K860fs*16),
KMT2D (p.P2354fs*1), NOTCH1 (p.D1815fs*1), SPEN
(p.R807fs*3), AXL (p.H292fs*1), LRP1B (p.C1859fs*1),
RECQL4 (p.V155fs*1), and TP53 (p.R273C). His tumor
was MSI-H, with a TMB of 34 mutations/Mb. After surgical
resection, the patient developed a postoperative bio-
chemical recurrence and was treated with salvage pelvic
radiotherapy plus concurrent androgen deprivation ther-
apy. Unfortunately, his disease rapidly progressed to CRPC
with bone involvement. He received abiraterone, followed
by enzalutamide, with transient control of his disease. By
month 4, his PSA level had reached 35 ng/mL despite
enzalutamide treatment. Because of the pathogenic
BRCA2mutation, he was started on olaparib 300 mg twice
daily, but his disease continued to progress. Ten months
after initiation of olaparib, his PSA level had reached
124 ng/mL despite PARP inhibitor treatment, and imaging
tests showed bone scan progression. Olaparib exposure was
stopped, and the patient was placed on pembrolizumab
200 mg intravenously once daily every 3 weeks, which
resulted in a PSA reduction accompanied by a stabilization of
his bonemetastases. His clinical benefit fromPD-1 inhibition
lasted about 16 months, followed by another PSA elevation
and eventual progression of his bone metastases. He was
subsequently referred for clinical trial participation.

DISCUSSION

Our study identified MSI-H status and HRD as mutually ex-
clusive phenomena across cancer types. Although MSI-H
samples had a higher BRCA1/2 mutation rate relative to MS-
stable samples across cancers, the resulting BRCAmutations
were generally monoallelic and were not associated with el-
evated gLOH. These findings suggest that many BRCAm
occurring in the context of MSI are likely bystander events that
may not result in sensitivity to PARP inhibitors. Accordingly, two
patients with BRCAm/MSI-H prostate cancer derived no
benefit from PARP inhibitor treatment but subsequently
responded favorably to pembrolizumab. Interestingly, the
probability of a BRCA mutation being attributable to MSI is
highest in prostate cancer relative to other BRCA-associated
malignancies. Thus, this diagnostic and therapeutic dilemma
may occur most commonly in the context of prostate cancer.

A recent Memorial Sloan Kettering Cancer Center report
suggests that patients with BRCA2 mutations were more
susceptible to ICB.15 Interestingly, the benefit was only
observed in patients who were not typically rich in HRD (ie,
melanoma, small-cell lung cancer), whereas patients with
HR-associated tumors (breast, prostate, pancreatic, or
ovarian) did not derive benefit from ICB. Our results
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indicate that most of the BRCA1 and BRCA2 deleterious
alterations in HR indications are biallelic and sensitive to
PARP inhibitors, but the small subset that is present in
highly mutated tumors or tumors carrying MSI-H are
monoallelic and insensitive to PARPi but responsive to ICB.

Currently, most clinical-grade genomic assays do not
report the status of both BRCA alleles nor do they report
gLOH scores (or other measures of HRR deficiency)
except in the setting of ovarian cancer.5 Thus, if a cli-
nician encounters a genomic report that shows both
MSI-H status and BRCA mutation, it is difficult to de-
cipher if that cancer is driven primarily by HRR defi-
ciency or mismatch repair deficiency. Our data suggest

that such patients should be treated preferentially with
PD-1 inhibitors rather than a PARP inhibitor (in cases
where both therapies have US Food and Drug Admin-
istration approval).

This study was limited by the small number of patients with
combined BRCAm/MSI-H status who received PARP in-
hibitor treatment, and we do not know if our anecdotal
findings in prostate cancer apply to other malignancies.
Therefore, our clinical recommendations should be inter-
preted with caution. We encourage the international
community to collectively study the outcomes of PARP and
PD-1 inhibitors among patients with the combinedBRCAm/
MSI-H phenotype.
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FIG A1. Association of TMB with BRCAm frequency in MS-stable tumors (A) BRCA1/BRCA2 mutation
prevalence binned on the basis of sample TMB (orange line) in MS-stable samples. Predicted monoallelic (red)
and biallelic (blue) BRCAm prevalence was plotted on the same axes. (B) Fraction of BRCAm predicted as
monoallelic (red) and biallelic (blue) in each TMB bin; analyses were limited to samples where allelic status
could be determined. (C) gLOH distribution for biallelic BRCAm, monoallelic BRCAm, and BRCA1/2 wild-type
samples in each TMB bin. gLOH, genome-wide loss of heterozygosity; MS, microsatellite; TMB, tumor mu-
tational burden.
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