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Infrared temperature measurement is a common form of mass screening for febrile illnesses such as COVID-
19 infection. Efficacy of infrared monitoring is debated, and external factors can affect accuracy. We deter-
mine that outside temperature, wind, and humidity can affect infrared temperature measurements and par-
tially account for inaccurate results.
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Infrared imaging systems (IRIs) and non-contact IR thermometers
(NCITs) have been used for mass screenings during outbreaks of the
SARS, Ebola, Dengue, and Influenza H1N1 viruses.1−3 Across the
United States, entry screening procedures for COVID-19 infection
have been implemented according to the CDC guidelines, including a
brief questionnaire and temperature measurement. There is evi-
dence, however, that screening for fever is inadequate in the detec-
tion of infected individuals and preventing spread.2,4

Firstly, in patients admitted for COVID-19 infection, fever was
only present in 43.8%. Fever developed in 88.7% of patients during
hospitalization, however, indicating a significant lag between infec-
tion and fever and that some patients may never become febrile.5

Next, screening methods vary. During the pandemic, NCITs and
IRIs were widely adopted due to the ability to measure temperature
without physical contact. Infrared cameras measure temperature
radiation from the body across a plane from multiple points.3 NCITs
are less costly than IRIs, but only measure temperature radiation
from a single point. However, both IRIs and NCITs are less accurate
than tympanic thermometers for fever detection as accuracy depends
on distance from the subject and the angle of measurement.6

Because IRIs and NCITs measure skin temperature to determine
core temperature, discrepancies may be found between measured
and actual values due to the physiologic thermoregulatory
responses.3,4,6−8 Segments of the face have unequal heat distribution,
with the inner canthi and external auricle having the highest correla-
tion with core temperature.2,6,9 Measurements are also affected by
exposure to direct sunlight7 and physical exertion.8

In a review of infrared imaging use during pandemics, Perpetuini
et al. reported significant difference in measured temperatures obtained
by IRI versus oral temperatures. Even with specific cutoff values and
correctional algorithms, the sensitivity for detecting fever ranged from
70% to 93% between studies, indicating other factors may influence
measurements.3 In a controlled study of 92 volunteers, Dzien et al
found that in cold environments, infrared body temperature was lowest
and varied the most immediately upon entering an establishment, but
trended towards normal with time inside.4 Therefore, we hypothesize
that environmental factors account for the discrepancy in reported sen-
sitivities due to a direct effect on infrared temperature measurements.
We attempted to determine correlations between infrared body tem-
perature and environmental factors including outside temperature,
humidity, weather, and wind velocity.

METHODS

Between March 9th and March 15th, 2021, every patient and visi-
tor entering a medical center in Louisville, Kentucky was asked a brief
screening questionnaire and screened for fever with one of two NCITs
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Table 1
Summary statistics of infrared body temperature measurements by group. IQR, inter-
quartile range

IR Temperature (n) Mean Std. Dev. Range IQR

Experimental (3351) 35.8°C 0.51 5.6 0.67
Control (1079) 36.1°C 0.47 3.3 0.72
Total (4430) 35.8°C 0.52 5.6 0.67
Outside Temperature 13.2°C 5.4 18.9 10.6
Wind Velocity 5.4 m/s 2.6 10.3 4.5
Relative Humidity 49.3% 19.4 74.0 27.0
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which were used in tandem and interchangeably. [Extech IR200
(Extech Instruments, Waltham, Massachusetts, USA), Visiofocus PRO
06480 (Tecnimed, Varese, Italy)] All monitors were calibrated prior
to use per company standards.

Data were recorded in hourly intervals. Data were analyzed by
entrance used and the distance from outside, and collectively with
comparisons between the shorter distance group (labelled experi-
mental) and the control group which had the furthest indoor dis-
tance.

Continuous weather data were recorded via the National Weather
Service from the closest location to the medical facilities, 4.62 miles
away. Outside temperature, precipitation (on a scale from strong sun-
shine to heavy rain), relative humidity, and wind velocity were ana-
lyzed as continuous variables using STATA IC/16.1. Frequency data
were reported in mean, range, and standard deviation. Correlations
were determined using Student’s T test with a 95% confidence inter-
val and multivariate linear regression with controls for collinearity.

This study was approved by the institutional IRB and determined
exempt as no identifiable health information were recorded.
RESULTS

Over the course of one week, 4430 patients and visitors were
screened at the entry booths. Average body temperature was 35.8°C
[32.1-37.7 § 0.52°C]. No patients or visitors were turned away for
fever.

The distance between outside and the screening booths were 9.4
meters, 11.3 meters, 12.2 meters in the experimental group and 32.0
meters in the control group. Mean infrared body temperature meas-
urements were 0.34°C higher [P < .001, CI 0.31-0.38] in the control
group. Overall skew was right shifted in the experimental group
(0.148) but not the control. Summary statistics are included in Table 1.
Table 2
Multivariate linear regression: Effect of environmental factors on infrared body temperature

Experimental

VARIABLES Infrared Temperature
Outside Temperature (°C) 0.0203**

(0.00201)
Wind Velocity (m/s) -0.0222**

(0.00397)
Relative Humidity (%) -0.112*

(0.0546)
Precipitation 0.00278

(0.00475)
Distance from Outside (m) -0.0397**

(0.00686)
Constant 36.08**

(0.0916)
Observations 3,351
R-squared 0.050
The average outside temperature during hours when subject data
was collected was 13.2°C [3.9-22.8, § 5.4]. The average relative
humidity was 49.3% [19-93% § 19.4%]. Average wind velocity was
5.4 m/s [0-10.3 § 2.6]. Wind gusts were excluded from the regression
as they were significantly colinear with wind velocity. Weather
ranged from partly cloudy to heavy rain.

Outside temperature had a positive linear correlation with infra-
red body temperature. Relative humidity negatively correlated with
body temperature measurements in the experimental group but not
the control group. The most significant environmental effects
occurred with screening booths closer to the outside door, indicating
that distance inside lessened the environmental effects on NCIT
measurements. Furthermore, the average infrared temperature was
higher and the standard deviation was lower in the control group,
indicating both more accurate and more precise measurements with
a further inside distance to screening. Precipitation did not correlate
with infrared temperatures to a statistically significant degree. Multi-
variate linear regression is presented in Table 2.
DISCUSSION

The average measured infrared body temperatures indicate that
NCITs are not an adequate screening tool for fever. Despite the preva-
lence of COVID-19 and other febrile infections, not a single febrile
subject was detected or denied entrance.

Our data agree with a growing body of literature that infrared
body temperature screening is not an adequate screening
technique.2,4,10,11 To our knowledge, our study is the first to quantify
the effects of environmental factors on infrared body temperature
measurements in a large population.

While the correlation with environmental factors was statistically
significant, the coefficient and R2 were not high enough to calculate
an equation for correction, indicating that many other factors also
influence temperature measurements. However, the linear correla-
tions were significant enough that environmental effects could cause
a normal temperature measurement in a truly febrile subject.

Our study had several limitations. First, we did not have a gold
standard temperature measurement to compare with our recorded
data. Because of this, it is possible that there were no febrile subjects
in our sample population. Secondly, all outside temperatures during
the study period were lower than physiologic body temperature,
which could impact our results and implications for warmer climates.
Furthermore, there were no periods of strong sunshine, which could
have similar implications. Lastly, we used just 2 of the more than 200
measurements. Standard errors in parentheses. **P < .01, *P < .05

Control Total

Infrared Temperature Infrared Temperature
0.0165** 0.0186**
(0.00354) (0.00176)
-0.0226** -0.0248**
(0.00660) (0.00342)
-0.0184 -0.131**
(0.0891) (0.0467)
0.0139 0.00298
(0.00829) (0.00414)

0.0155**
(0.000809)

35.92** 35.53**
(0.110) (0.0573)
1,079 4,430
0.024 0.107
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available infrared screening tools. This study may not be applicable to
all available devices. Future study could be performed in warmer cli-
mates to determine if correlations remain.
CONCLUSION

Infrared temperature measurement by non-contact infrared ther-
mometer underestimates body temperature and may be inadequate
in detecting fever. A statistically significant correlation exists
between infrared body temperature and outside temperature, rela-
tive humidity, and wind velocity, but not precipitation. These effects
could cause a normal result in a truly febrile subject, but the effects
were reduced with a greater physical distance from outside to the
measurement area.
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