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Abstract: The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in
Brassica crops. Glucosinolates are known to be part of the defence system of Brassica crops against
Xcc infection. They are activated upon pathogen attack by myrosinase enzymes. Their hydrolytic
products (GHPs) inhibit the growth of Xcc in vitro. However, the mechanisms underlying this
inhibition and the way Xcc can overcome it are not well understood. We studied the transcriptomic
reprogramming of Xcc after being supplemented with two chemically different GHPs, one aliphatic
isothiocyanate (allyl-ITC) and one indole (indol-3-carbinol), by RNA-seq. Based on our results,
the arrest in Xcc growth is related to the need to stop cell division to repair damaged DNA and
cell envelope components. Otherwise, GHPs modify energy metabolism by inhibiting aerobic
respiration and increasing the synthesis of glycogen. Xcc induces detoxification mechanisms such
as the antioxidant defence system and the multidrug efflux system to cope with the toxic effects
driven by GHPs. This is the first time that the transcriptomic reprogramming of a plant pathogenic
bacterium treated with GHPs has been studied. This information will allow a better understanding
of the interaction of a plant pathogen mediated by GSLs.

Keywords: black rot; plant–pathogen interaction; plant secondary metabolites; isothiocyanate;
Brassicaceae

1. Introduction

Xanthomonas campestris pv. campestris (Xcc) is a Gram-negative, aerobic, vascular, and
motile bacterium with a single flagellum, which causes the disease identified as black rot in
Brassica crops [1]. Xcc enters in the plant through the stomas, the hydathodes, and wounds.
Once inside, the pathogen travels through the vascular system, invading the xylem and
colonising the mesophyll. Disease symptoms are developed in the host plants in warm and
humid conditions [2]. The infection is characteristic because it causes V-shaped necrotic
lesions in the edges of leaves and necrosis and darkening of the veins of the leaves and
the vascular tissue of the stem. As the disease progresses, wilting and necrosis throughout
the plant occur [3]. Eleven races of Xcc have been recognised so far, defined based on their
interaction with different Brassica cultivars following a gene-for-gene model [4–6]. Races 1
and 4 are the most pathogenic and widespread, accounting for 90% of the black rot in
the world [4].

After the recognition of Xcc, the immune system of Brassica plants triggers various
layers of defence, such as the synthesis of PR proteins and RLK receptors, the induction of
defence hormones, an antioxidant response, and the synthesis of the secondary metabolites,
glucosinolates (GSLs) [7]. GSLs are secondary metabolites found exclusively in Brassicaceae
plants. Resistance to Xcc is related to the amount of GSLs in plants. The induction of the
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synthesis of GSLs confers a resistance to Xcc in Brassica oleracea [8]. A relationship was
discovered [9] between the disease severity caused by Xcc and the GSL content in the
Brassicaceae species cress (Lepidium sativum), salad rocket (Eruca sativa), and broccoli
(B. olerecea L. var. italica). The modification of the content of specific GSLs affects the
resistance to Xcc. After testing the genotypes of B. oleracea with a high and low content of the
GSLs sinigrin, glucoiberin, and glucobrassicin, glucobrassicin clearly diminished the spread
of Xcc in leaves; on the contrary, sinigrin and glucoiberin produced no clear effect [10].

GSLs are stored inactive in vacuoles. After tissue breakdown caused by injuries, pests,
or necrotrophic pathogens, the glucosidases termed myrosinases convert GSLs into toxic
products [11]. The toxicity significantly depends on the chemical structure. This ultimately
relies on the structure of the original GSL and the presence of specific proteins in the host.
Among the toxic products derived from GSLs, isothiocyanates (ITCs) are produced by
default. The generation of nitriles and epithionitriles needs the presence of epithiospecific
proteins, which modulate the activity of myrosinases [12]. GSL hydrolytic products (GHPs)
have antimicrobial activities in vitro against plant pathogens [11–13]. Among them, ITCs
are the most toxic, even at low concentrations [14]. Different evidence in vitro supports
the antimicrobial activity of GHPs on Xcc growth [13,15,16]. The inhibition of growth is
dependent on the concentration of GHP and on the race under study [13].

The concentration of GSL in B. oleracea modulates disease resistance to Xcc in plants [10].
GHPs can inhibit the growth of Xcc cultures [13]. The mechanisms through which GHPs
exert their toxicity and the methods through which Xcc can overcome them are not quite
understood. It has been effectively established that ITCs inhibit the growth of bacteria.
Other effects include the inhibition of quorum sensing and the prevention of the formation
of biofilms in the species Escherichia coli, Pseudomonas aeruginosa, and Listeria monocyto-
genes [17,18], as well as the induction of the stringent response [19] and of the oxidative
stress response in Campylobacter jejuni [20]. ITCs can affect bacterial cell membrane integrity
in a dose-dependent manner [21,22]. All these effects depend on the chemical structure of
the ITC and on the bacteria under study. Apart from the inhibition of growth, information
on the effects of other GHPs different from ITCs on bacteria is scarce. The effect of ITCs
employing bacteria that are pathogenic for humans has been studied. Considering the
prominent role of GSLs in plant defence, the response of plant pathogens under exposure
to GHPs should be considered. Therefore, we aimed to study the reprogramming of Xcc
race 1 transcriptome after exposure to two chemically different GHPs, one aliphatic ITC
and one indole to provide further insights into the role of GHPs in the immune system of
plants by considering the response of an important plant pathogen of Brassica crops.

2. Results
2.1. Bacterial Growth

The growth of bacteria supplemented with different concentrations of GHPs was mon-
itored during the log phase. The differences between the GHP-treated samples and the con-
trols were significant at 4 and 6 h (Figure 1A,B). Both GHPs inhibited the growth of Xcc in a
similar manner. A sublethal concentration of 100 µM was selected for further experiments.
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Figure 1. Growth of Xanthomonas campestris pv. campestris (Xcc) in a LB medium supplemented with different concentrations
of (A) AITC and (B) I3C, monitored during the logarithmic phase for 6 h. (C) From top to bottom, 1/10 dilution series of
Xcc supplemented with no GHP, AITC (100 µM), and I3C (100 µM) grown in LBA medium.

2.2. GO Analysis

To provide a general overview of the results, a GO analysis with all the annotated tran-
scripts was conducted for each comparison (GHPs vs. the control and AITC vs. I3C) with
GO-Tool2. We provide a description of the most important features found in the category of
biological process (BP). An analysis of the whole transcripts resulted in 147 significantly en-
riched GO terms (p < 0.05 and −1 < log2 fold change > 1), from which 11 were induced and
136 were repressed in the comparison AITC vs. the control. The most significantly induced
terms were the energy reserve metabolic process (GO:0006112), the glycogen metabolic
process (GO:0005977), DNA-strand elongation (GO:0022616), DNA ligation involved in
DNA repair (GO:0051103), tRNA methylation (GO:0030488), the fructose 6-phosphate
metabolic process (GO:0006002), and protein transport by the Sec complex (GO:0043952).
Among the most significantly repressed GO terms were those related to the urea cycle
(for example, GO:0000050), ATP hydrolysis coupled proton transport (GO:0015991) and
the purine and pyrimidine nucleotide biosynthetic process (GO:0009174, GO:0009145).
Other significant terms were related to the small molecule metabolic process (GO:0044281),
aerobic respiration (GO:0009060), gluconeogenesis (GO:0006094), and the hexose metabolic
process (GO:0006094, GO:0019319).

The GO analysis of I3C vs. the control produced 209 significant GO terms, of which
206 were repressed and 3 induced. The induced GO terms included sulphate transport
(GO:0008272), sulphate transmembrane transport (GO:1902358), and protein transport by
the Sec complex (GO:0043952). The list of repressed terms is similar to that detected in the
comparison AITC vs. the control. In the comparison of AITC vs. I3C, all GO terms (173)
displayed a higher expression in Xcc treated with AITC than with I3C. Among them, we
observed terms related to purine and pyrimidine synthesis, aerobic respiration, the urea
cycle, or ATP hydrolysis.

2.3. Differentially Expressed Genes

The number of DEGs was lower in response to AITC than in response to I3C compared
to the control (220 vs. 314, respectively; Supplementary Tables S1 and S2). The majority
of the DEGs in the I3C vs. the control treatment were downregulated. Forty-four genes
were commonly induced by both treatments and eleven were repressed (Figure 2A,B). In
the comparison of AITC vs. I3C, 177 DEGs were induced in response to AITC and 26 were
induced in response to I3C (Figure 2C).

DEGs were classified into KEGG categories to better describe their function. The log2
fold change of DEGs cited in the text is shown in Figures 3–5 for the comparisons of AITC
vs. the control and I3C vs. the control. In Figure 3, we show the DEGs related to the cell
cycle, chaperones, and genetic information processing. DEGs ftsX and ftsZ, which control
the cell cycle, were repressed by I3C. DnaK was repressed by both GHPs. Several DEGs
related to DNA repair were induced by both GHPs. Translation factors rpoA, infB, and
fusA were repressed by I3C (Figure 3).
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Figure 2. Venn diagrams showing overlapping (A) upregulated differentially expressed genes (DEGs)
and (B) downregulated DEGs between the comparisons of AITC vs. the control and I3C vs. the
control. (C) Number of upregulated DEGs by AITC or I3C in the comparison of AITC vs. I3C. DEGs
were identified based on a false discovery rate ≤ 0.05 and −1 ≤ log2 fold change ≥ 1.

DEGs glgx, glgz, glgb1, glgb2 malQ, maK, and glgE controlling the synthesis of
glucans were induced by one or both GHPs (Figure 3). TreA and treS were induced by both
GHPs and they are related to the metabolism of trehalose (Figure 3).

Figure 3. Log2 fold change of DEGs classified into KEGG categories of cell cycle, chaperones, genetic information processing,
and starch and sucrose metabolism in the comparisons of AITC vs. the control and I3C vs. the control. Solid colours of the
bars indicate a false discovery rate ≤ 0.05. A description of DEGs is provided in Supplementary Tables S1 and S2.

I3C treatment inhibited DEGs related to glycolysis, the TCA cycle, and oxidative phos-
phorylation (Figure 4). Both treatments induced DEGs controlling alcohol dehydrogenases.
AITC induced DEGs related to the synthesis of acetyl-CoA and its conversion into CO2 by
formate dehydrogenases (Figure 4).
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Figure 4. Log2 fold change of DEGs classified into KEGG categories of glycolysis-gluconeogenesis, acetyl-CoA metabolism,
citrate cycle and energy-oxidative phosphorylation in the comparisons AITC vs. the control and I3C vs. the control.
Solid colours of the bars indicate a false discovery rate ≤ 0.05. A description of DEGs is provided in Supplementary
Tables S1 and S2.

Both treatments induced DEGs controlling the synthesis of the cell envelope (Figure 5)
including transporters of lipids and proteins. Multidrug transporters and antioxidant
enzyme-related DEGs were induced by both GHPs (Figure 5). I3C induced the signal
transduction factors cqss and phs as well as pdeA and repressed cheB2 (Figure 5).

Figure 5. Log2 fold change of DEGs classified into KEGG categories of cell wall, lipid metabolism, detoxification, and signal
transduction in the comparisons of AITC vs. the control and I3C vs. the control. Solid colours of the bars indicate a false
discovery rate ≤ 0.05. A description of DEGs is provided in Supplementary Tables S1 and S2.

Primers were designed to verify twelve DEGs using RT-qPCR (Supplementary Table S3).
Only three DEGs presented significant differences among treatments (Figure 6). Generally
speaking, the results are in good accordance with the expectations from the RNA-seq data
(Figure 6), unless for DEGs ftsX, eno and sdha. Therefore, discussion of RNA-seq results
related to these DEGs should be viewed with caution.
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Figure 6. Relative expression patterns of twelve genes from Xanthomonas campestris pv. campestris treated with glucosinolate
hydrolysis products and the control. Data are the average of three biological replicates ± SE. Letters at the top of the bars
represent significant differences among treatments at p-value < 0.05.

The growth of Xcc was arrested in the log phase after exposure to AITC and I3C in
a dose-dependent manner. The inhibition of growth has been proven before in different
systems of bacteria GHPs [11,13,21] but the mechanisms underlying this effect are still
unclear. In our GO analysis, one of the most remarkable results was the inhibition of
the synthesis of nucleotides by both GHPs. Nucleotides are needed for RNA and DNA
synthesis, and they serve as the main energy carriers in cellular metabolism. Consequently,
processes related to the transfer of information and the obtaining of energy in Xcc cells
suffered modifications. We also highlight that both GHPs modified the synthesis and
transport of components of the cell envelope. In the following sections, we will discuss
the possible causes of growth arrest, the consequences of the depletion of the synthesis
of ribonucleotides, and the modification of the cell envelope and the connection among
these features.

3. Discussion
3.1. Transfer of Information in the Cell

FtsZ and ftsX were repressed by I3C. FtsZ is a key gene in the SOS-independent and
-dependent DNA damage checkpoint [23]. FtsZ is the prokaryotic homolog of tubulin and
is the first component of the cell division apparatus, which localises the division site. Once
localised, ftsZ polymerises into the Z ring and provides a scaffold upon which ftsX and
other components are recruited, forming the divisome. The inactivation of components
of the divisome causes an arrest in cell division [24]. The SOS response is employed by
bacteria upon DNA damage to ensure cell division is delayed, providing the cell with
enough time for DNA repair. AITC overexpressed dnaE and I3C overexpressed dnaN,
radA, and recX, which are related to DNA repair by homologous recombination (HR).
Double-strand breaks can be repaired by HR, which requires the availability of an intact
DNA template or by non-homologous end joining (NHEJ) if no intact template is available.
Both GHPs induced ligD, which is part of NHEJ. DnaE, dnaN, radA, and recX are part of
the SOS response; therefore, both treatments delayed cell division to ensure the repair of
DNA by activating the SOS response. The chaperone dnaK (Hsp70) was repressed by both
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GHPs. The downstream chaperonin of dnaK, groL2, was repressed by I3C. Proteins that
interact with dnaK involve a broad range of cellular functions including recombination
and repair, translation, and ribosomal structure in E. coli [25]. Additionally, ftsZ is as strong
dnaK binder. Therefore, bacteria retard cell division to ensure a proper repair of DNA
through dnaK inhibition. The treatment of C. jejuni with the ITC BITC induced dnaK and
groL2, which can respond to the need for protein refolding [20]. Protein refolding can be
achieved through the induction of chaperone htpG (hsp90) by AITC.

RpoA was repressed and lrp was induced by I3C. Both DEGs are related to transcrip-
tion. RpoA codifies the subunit α of the RNA polymerase. Lrp is a leucine-responsive
regulatory protein and is a global regulator affecting the expression of many genes and
operons in E. coli including the majority of genes expressed upon entrance into the station-
ary phase [26]. The translation was downregulated by I3C in the GO analysis. InfB and
fusA were repressed by I3C. InfB is the translation initiation factor IF-2 and fusA is the
elongation factor G [27]. Lrp and fusA can be activated under a stringent response. A strin-
gent response is modulated by the alarmone (p)ppGpp upon starvation and in response to
imbalances in the outer membrane biogenesis [28]. I3C repressed gppA, which is involved
in the hydrolysis of pppGpp to ppGpp. By inhibiting gppA, the ratio pppGpp/ppGpp in-
creases, which can provoke a higher inhibition of replication elongation [29]. AITC induced
dksa. It encodes a transcription factor that binds directly to the RNA polymerase and,
together with (p)ppGpp, modulates the stringent response of bacteria [30]. The conjugation
of ITC with amino acids may promote a stringent response by the depletion of free amino
acids in fungi and bacteria [21]. The genes responsible for the synthesis of (p)ppGpp (spoT,
relA) were not significantly different from the control in any of the treatments (data not
shown). With our evidence, we cannot conclude that a stringent response was activated in
Xcc upon treatment with AITC and I3C. The growth arrest caused by both GHPs seems
to be related to the need of repair DNA. Following [31], AITC is mutagenic on E. coli
DNA, and this capability is likely related to the formation of thiobarbituric acid reactive
substances and ROS. Therefore, our results suggest that the genotoxicity of both GHPs is
caused in part by damage to the DNA, similar to what occurs in bacteria pathogenic to
humans. Other typical responses of bacteria to ITCs, such as the activation of the stringent
response, could not be confirmed with our data.

3.2. Energy Metabolism

Several DEGs related to glycogen and trehalose metabolism were differentially ex-
pressed by both GHPs. Both induced the debranching glycogen enzyme glgx; the branching
enzymes glgz, glgb1, and glgb2; the maltosyl transferase enzymes malQ, maK, and glgE;
and two DEGs related to trehalose metabolism, treA and treS. TreS transforms trehalose
into maltose in a reversible reaction. Maltose can then be incorporated into α-glucans
by the action of maK, malQ, glgE, and glgB [32]. TreA splits trehalose into glucose that
can subsequently be taken up by the phosphotransferase-mediated uptake system. The
accumulation of periplasmic trehalose increases under conditions of high osmolarity. In this
case, trehalose is directed to the production of glucose and glycogen. Different in vivo and
in vitro experimental evidence linked the E. coli stringent response with increased glycogen
content and an enhanced expression of glg genes at the onset of the stationary phase [33].

In the general GO analysis, both treatments inhibited the aerobic respiration. In the
comparison of AITC vs. I3C, this inhibition was stronger with I3C than with AITC. I3C
inhibits DEGs related to glycolysis, the TCA cycle, and oxidative phosphorylation (Figure 7).
AITC induces the conversion of glycerol to glyceraldehyde-3-phosphate, the production of
acetyl-CoA from pyruvate, and its use in formate synthesis and decarboxylation (Figure 7)
with the obtaining of NADH. Formate is produced in significant amounts under anaerobic
and microaerobic conditions in E. coli and may perform a significant role in the antioxidative
stress defence in the stationary phase [34]. The regeneration of NAD+ in both cases is
produced through fermentation by the induction of the alcohol dehydrogenases adh1 and
XCC2730 by I3C and AITC, respectively.
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Figure 7. Schematic diagram representing DEGs integrated in the KEGG categories of glycolysis-
gluconeogenesis, acetyl-CoA metabolism, citrate cycle, and energy-oxidative phosphorylation. DEGs
highlighted in red are downregulated by I3C, whereas those highlighted in blue and green are
upregulated by I3C and AITC, respectively. A description of DEGs is provided in Supplementary
Tables S1 and S2.

ITCs damage mitochondria membranes and consequently inhibit oxygen-dependent
respiration and ATPase activity in eukaryotic cells [35]. Similarly, in E. coli, treatment with
2-(4-hydro-xyphenyl) ethyl ITC decreased the cellular content of ATP. In the microaerophile
C. jejuni, the inhibition of O2 respiration by ITCs provokes an upregulation of fumarate
and nitrate respiration [20]. Our results suggest that both GHPs inhibit the growth of Xcc
and provoke the entrance into a state of low energy, inducing several genes (lrp, glg genes)
that are normally activated when bacteria enter the stationary phase. The inhibition of O2
respiration may be a response to damage in the cell membrane, similar to what occurs in
the mitochondrial membrane in eukaryotic cells.

3.3. Cell Envelope

Several DEGs induced by both GHPs were related to the cell envelope. The envelope
of Gram-negative bacteria contains two membranes: the inner membrane surrounds the
cytoplasmic components and the outer membrane separates the cell from its environment.
These two membranes surround the periplasm, which contains the peptidoglycan cell wall.
The outer membrane contains phospholipids in the inner leaflet and lipopolysaccharides
in the outer leaflet [36]. The Lpt complex mediates the transport of lipopolysaccharides
and its insertion and assembly at the outer membrane [37]. LptD, which is part of the Lpt
complex, was induced by AITC.

Outer membrane proteins and lipoproteins are synthesised as pre-proteins in the
cytoplasm and then secreted across the inner membrane by the SEC translocase that
transports unfolded proteins. SecD and secF, parts of the Sec complex, were induced by
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both GHPs. LolC and bamb were induced by AITC. LolC is an ABC transporter that
mediates the transfer of lipoproteins to the outer membrane [38]. The Bam complex is
responsible for the assembly of β-barrel proteins into the outer membrane.

MrcA, nlpD, and tolB were induced by I3C. MrcA codifies for a membrane D-D
carboxypeptidase, which possesses peptidoglycan glycosyltransferase activity and affects
the degree of cross-linking of cell wall peptidoglycans [39]. NlpD is a membrane protein
and a key regulator of the initiation of the stationary phase and stress response in E. coli [39].
TolB is a periplasmic protein interacting with Pal, the peptidoglycan-associated lipoprotein
anchored to the outer membrane. Mutants of tolB promoted both envelope stress and
deformation of the membrane. This causes the inhibition of the electron transport chain,
energy production, and the formation of the membrane potential necessary for nutrient
import in E. coli [40].

AITC induces the transport of lipopolysaccharides to the outer membrane. I3C in-
duces the cross-linking of peptidoglycan and both induce the transport of lipoproteins to
the outer membrane. All these movements can respond to the need of repairing the cell en-
velope. Accordingly, AITC provokes damage on the cell membrane in E. coli in addition to
affecting the hydrophobic character of lipopolysaccharides of their outer membrane [21,22].
Agreeing with this hypothesis, I3C induced accC and fabA, which participate in the Type
II fatty acid synthesis of bacteria. AccC is part of the acetyl-CoA carboxylase complex,
which initiates the synthesis. FabA is responsible together with fabB for the synthesis
of unsaturated fatty acids in E. coli [41]. E. coli and S. aureus treated with the antibiotic
naringenin induced fabA to increase unsaturated fatty acids to increase membrane fluid-
ity [42]. Therefore, the modification of the synthesis of lipids can be produced to increase
the fluidity of the cellular membrane.

Synthesis and the transport of components of the cell envelope were induced by both
GHPs, suggesting that components of the cell envelope were damaged, in agreement with
the genotoxic mechanisms of ITCs in eukaryotic cells [43,44]. Damage in cell membranes
can cause the inhibition of O2 respiration.

3.4. Detoxification and Biofilm Formation

The conjugation of ITCs with glutathione represents a principal metabolic route of
detoxification [21]. GST enzymes catalyse the conjugation of GSH to the electrophilic cen-
tres of ITCs. The resulting conjugates are more water soluble and can be further metabolised
and excreted. Similarly, a GST-encoding gene was identified as being upregulated after the
treatment of P. aeruginosa with the ITC iberin [45]. Agreeing with these results, gst1 was
induced in Xcc treated with AITC. ITCs can disrupt redox homeostasis and increase the
content of ROS in cells [11]; consequently, antioxidant defences increase upon treatment
with ITCs. Xcc treated with AITC induced several antioxidant enzymes: oxyR, katE, sodC1,
sodC2, ahpC. KatE, ahpC, and oxyR are involved in the detoxification of hydrogen perox-
ides, whereas sodC1 and sodC2 are involved in the detoxification of superoxides. KatE
and sodC2 were also induced by the indole I3C.

Xcc treated with GHPs induced multidrug efflux system components in a specific
manner. MexE and mdtB were induced by AITC, whereas macB was induced by I3C. Efflux
systems may promote the extrusion of GHPs from the cell [21]. Therefore, Xcc-induced
detoxification mechanisms such as the antioxidant defence system and the multidrug efflux
system to cope with the toxic effects driven by both chemicals.

Several ITCs including AITC inhibit the biofilm formation of the human pathogens P.
aeruginosa, S. aureus, and L. monocytogenes [17]. The inhibition of biofilms is presumably
due to interferences in bacterial viability, motility, and surface properties. I3C induced
pdeA, which catalyses the hydrolysis of cyclic-di-GMP (c-di-GMP) to 5′-pGpG. c-di-GMP is
a global bacterial second messenger that modulates surface adaptation, biofilm formation,
cell cycle progression, and virulence [46]. I3C inhibited cheB2. The inhibition of this
chemotaxis gene causes modifications in the mobility of E. coli [47]. Therefore, by inducing
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the hydrolysis of c-di-GMP and inhibiting cheB2, I3C probably modifies biofilm formation,
which may have consequences for the pathogenicity of the bacteria.

4. Materials and Methods
4.1. Bacteria Culture and GHP Treatment

Xcc race 1 strain HRI3811 was provided by Warwick HRI (Wellesbourne, U.K.). Bac-
teria colonies were plated on Petri dishes containing potato dextrose agar (PDA) (Sigma-
Aldrich, St. Louis, MO, USA) and incubated at 30 ◦C for 24 h. A loop of bacterial growth
was then subcultured in Luria Bertani medium (LB) (Sigma-Aldrich, St. Louis, MO, USA)
overnight in a shaker at 30 ◦C and in the dark. This was employed as a pre-inoculum to
monitor the growth of Xcc. The following day, 1 mL of pre-inoculum was supplemented
with 2 mL of fresh media, then 10 µL of GHPs dissolved in DMSO was added to the
medium to reach a final concentration of 0, 25, 50, 75, 100, and 125 µM. Allyl-ITC (AITC)
(36682) and indol-3-carbinol (I3C) (I7256-5G) were obtained from Sigma-Aldrich (St. Louis,
MO, USA). The turbidity of the control and the treated samples was monitored over six
hours, taking measurements every second hour using a microplate spectrophotometer
(Spectra MR; Dynex Technologies, Chantilly, VA, USA) at 600 nm. Bacteria were cultivated
in 12-well plates at 30 ◦C with continuous shaking during the whole experiment. The
control bacteria were monitored by employing identical conditions. Three repetitions were
carried out for each treatment. To characterize the phenotype of growth, we took an aliquot
of the samples treated with 100 µM of each treatment and made 1/10 dilutions that were
cultured in LBA medium.

4.2. RNA Isolation, Library Preparation, and Sequencing

Bacteria supplemented with both GHPs (100 µM) and controls were grown as de-
scribed in the previous section. After four hours of log-phase growing, the bacteria were
precipitated by centrifugation to perform RNA extractions. Each treatment was repeated
twice. RNA was extracted with an RNAspin Mini RNA isolation kit (GE Healthcare, Little
Chalfont, UK) according to the manufacturer’s protocol. RNA quantity and quality were
assessed using a NanoDrop Spectrophotometer (NDS) before proceeding with RNA-seq.
To remove any traces of genomic DNA, the RNA was treated with DNase following the
manufacturer’s instructions. Two repetitions were performed for each treatment.

RNA sequencing was performed with GenXPro’s pipeline (GenXPro GmbH, Frankfurt,
Germany). Briefly, the ribosomal RNA was depleted using RiboMinus Bacteria Probe Mix
v2 (Thermo Fisher). The remaining RNA was used to generate RNA-seq libraries using the
NEBNextUltra RNA Library Prep Kit for Illumina, according to the manual. The samples
were sequenced using an Illumina HiSeq 2000 version 4 chemistry (Illumina, Inc., San
Diego, CA, USA). The reads were trimmed for low quality and adapter residues were cut
off. The reads were de novo assembled using Cap3, and the contigs were then BLASTed
vs. the bacterial database (ENSEMBL). The transcripts were quantified after mapping the
reads to the annotated contigs. The statistical analysis was performed using the DEseq R
package according to [48].

4.3. Functional Analysis

To provide a general overview of the results, a GO analysis with all the annotated
transcripts was conducted for each comparison (GHPs vs. the control and AITC vs. I3C)
with GO-Tool2. The likelihood of a specific GO term was calculated using Fisher’s exact
test. The analysis was based on the R-package TopGO. Only those GO terms with a
p-value < 0.05 and −1 < ratio > 1 were considered in the discussion.

Transcripts with a false discovery rate (FDR) < 0.05 and−1 < log2 fold change (FC) > 1
were considered to be differentially expressed genes (DEGs) between treatments. DEGs
were localised into KEGG pathways (https://www.genome.jp/kegg/pathway.html, 29 Jan-
uary 2021) to discover interconnections among them. Annotations and relationships among
DEGs were deduced employing the genome of Xcc ATCC 33913 as the reference.

https://www.genome.jp/kegg/pathway.html
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4.4. Quantitative Reverse-Transcription-PCR (RT-qPCR) Validation

Xcc was cultured as described above with the corresponding GHPs at a concentration
of 100 µM. The procedure for RNA extraction was the same as that followed in the RNA
sequencing analysis. Three replicates were performed for each treatment. All primer pairs
used are listed in Table S3. One microgram of total RNA was reverse-transcribed using
the GoScript™ reverse-transcription system and random oligos (Promega, Madison, WI,
USA). RT-qPCR was performed in a 20µL reaction with the Fast Start Universe SYBR
Green Master (ROX) mix (Roche Molecular Systems Inc., Pleasanton, CA, USA), follow-
ing the manufacturer’s instructions. The DNA gyrase subunit B transcript was used as
housekeeping gene [49]. RT-qPCRs were carried out on a 7500 Real-Time PCR System
(Applied Biosystem, Forster City, CA, USA), and the primer efficiency was calculated using
LingRegPCR software [50]. Efficiencies were used to calculate the relative gene expression
using the ∆∆Ct method [51]. The statistical significance was calculated using Fisher’s least
significant difference (LSD) at the 0.05 level of probability to compare the relative gene
expression in the GHP-treated samples vs. the control.

5. Conclusions

We conducted a study on the transcriptomic reprogramming of Xcc after being supple-
mented with one aliphatic ITC and one indole. Both treatments retarded the growth of the
bacteria compared to the control. At the transcriptomic level, the cell division was stopped
by activating the SOS response through dnaK chaperone inhibition. The transcriptomic
reprograming of the cell envelope was carried out by Xcc treated with both GHPs by
inducing the transport of lipopolysaccharides and lipoproteins to the outer membrane and
increasing the cross-linking of peptidoglycan. An arrest in Xcc growth seems to be related
to the need to stop cell division to repair damaged DNA and cell envelope components.
GHPs modified energy metabolism by inhibiting the aerobic respiration. As Xcc growth is
slower, the need for energy is lower and cell resources are mobilised to synthesise glycogen.
Xcc-induced detoxification mechanisms such as the antioxidant defence system and the
multidrug efflux system to cope with the toxic effects driven by GHPs. This is the first time
that the transcriptomic response of a plant pathogenic bacteria to treatment with GHPs
derived from the secondary metabolites, GSLs, has been studied. This information will
allow us to better understand the interaction of plant pathogens mediated by GSLs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081656/s1, Table S1: Upregulated differentially expressed genes in the comparisons
AITC vs. Control and I3C vs. Control. Table S2: Downregulated differentially expressed genes in the
comparisons AITC vs. Control and I3C vs. Control. Table S3: Primers used for RT-qPCR.
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