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Abstract

Approaches based on linear mixed models (LMMs) have recently gained popularity for modelling population
substructure and relatedness in genome-wide association studies. In the last few years, a bewildering variety of different
LMM methods/software packages have been developed, but it is not always clear how (or indeed whether) any newly-
proposed method differs from previously-proposed implementations. Here we compare the performance of several
LMM approaches (and software implementations, including EMMAX, GenABEL, FaST-LMM, Mendel, GEMMA and MMM)
via their application to a genome-wide association study of visceral leishmaniasis in 348 Brazilian families comprising
3626 individuals (1972 genotyped). The implementations differ in precise details of methodology implemented and
through various user-chosen options such as the method and number of SNPs used to estimate the kinship
(relatedness) matrix. We investigate sensitivity to these choices and the success (or otherwise) of the approaches in
controlling the overall genome-wide error-rate for both real and simulated phenotypes. We compare the LMM results to
those obtained using traditional family-based association tests (based on transmission of alleles within pedigrees) and
to alternative approaches implemented in the software packages MQLS, ROADTRIPS and MASTOR. We find strong
concordance between the results from different LMM approaches, and all are successful in controlling the genome-wide
error rate (except for some approaches when applied naively to longitudinal data with many repeated measures). We
also find high correlation between LMMs and alternative approaches (apart from transmission-based approaches when
applied to SNPs with small or non-existent effects). We conclude that LMM approaches perform well in comparison to
competing approaches. Given their strong concordance, in most applications, the choice of precise LMM
implementation cannot be based on power/type I error considerations but must instead be based on considerations
such as speed and ease-of-use.
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Introduction

Recently, linear mixed models based approaches have been

proposed as appealing alternatives to principal component based

approaches when adjusting for population substructure in genome-

wide association studies of apparently unrelated individuals [1–4].

These methods build upon work originally described in the animal

breeding literature, and subsequently developed in the human

genetics literature, in which a genetic effect of interest (e.g. the

number of copies of a particular allele at a particular test SNP) is

included as a fixed effect in a regression model, with an additional

random effect also included to model genetic correlation between

individuals. The covariance structure for the random effect is

generally assumed to correspond to that implied by a polygenic

model, incorporating the genetic relationship (kinship) between

each pair of individuals. Although use of this linear mixed model

(LMM) was originally proposed for pedigrees with known relation-

ships [5–10], this approach has recently gained popularity for use

with samples of unknown or uncertain relationship [1–3,11–13],

including apparently unrelated samples who may nevertheless

display distant levels of common ancestry. For this purpose, the

kinship coefficients between all pairs of individuals modelling either

close or distant relatedness are estimated (prior to fitting the linear

mixed model) on the basis of genome-wide genotype data, rather

than being fixed at their known theoretical values.

Fitting a full linear mixed model for each SNP in turn across the

genome is computationally challenging. These computational

considerations have led to the development of several faster
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approximations for constructing tests of the fixed SNP effects of

interest in the linear mixed model [1,2,9,10,14]. These approx-

imate tests have been implemented in various software packages

including MERLIN, GenABEL, EMMAX, TASSEL, FaST-

LMM, Mendel and MMM. The MMM [15] and FaST-LMM

[4] packages, in common with the package GEMMA [16], also

provide fast implementations of an exact (rather than an

approximate) model, which in principle can lead to a small

increase in power [15,16], depending on the true underlying level

of relatedness.

A limited comparison of several LMM implementations, via

application to real and simulated data from Genetic Analysis

Workshop 18 (GAW18) [17], was performed by Eu-ahsunthorn-

wattana et al. [18]. In the GAW18 data, which comprised 959

Mexican-American individuals from 20 families, the LMM

implementations investigated performed rather similarly to one

another in terms of the association test statistics and p-values

achieved; however, no formal quantification of power or type 1

error was performed. Eu-ahsunthornwattana et al. [18] also

investigated the performance of the various LMM implementa-

tions when applied naively to longitudinal traits (repeated

measures) available in GAW18, simply by treating each measure-

ment as if it came from a separate person and expanding out the

genetic data set accordingly (resulting in an expanded data set

containing many apparent twins, triplets, quadruplets etc.,

depending on how many measurements are available for each

person). Although this approach is not strictly ‘correct’ (as it does

not distinguish between correlations in trait values due to genetic

factors and correlations due to non-genetic within-individual

factors), Eu-ahsunthornwattana et al. found this procedure

generated only minimal inflation in the resulting distribution of

genome-wide test statistics.

Here we expand the investigation of Eu-ahsunthornwattana et

al. [18] to perform a more comprehensive comparison of LMM

approaches (involving a larger number of software implementa-

tions) and to conduct a formal investigation of power and type 1

error. We also compare the LMM approaches to traditional

family-based approaches (‘within-family association tests’ based on

the transmission of high-risk alleles within pedigrees [19–23]), and

to alternative previously-proposed approaches based on extending

standard case/control tests (such as the Armitage trend test) to

allow for either known [24,25] or known and unknown [26]

relatedness. The programs compared (see Table 1) differ in the

precise details of the methodology implemented (such as whether

an LMM approach is used, and, if so, whether an exact method or

an approximation is used) and through various user-chosen

options such as the specific method and number of SNPs used

to estimate the kinship matrix. We investigate the sensitivity to

these choices and the success (or otherwise) of the approaches in

controlling the overall genome-wide error-rate in both real and

simulated data (into which artificial simulated disease loci have

been inserted).

The approaches are compared via application to real and

simulated data derived from a genome-wide association study of

visceral leishmaniasis (VL) in 348 Brazilian families comprising

3636 individuals (1970 with both genotype and phenotype data).

This Brazilian family data set was used (together with a larger

Indian case/control data set) by Fakiola et al. [13] to identify, at

genome-wide levels of significance, a replicable association

between variants in the HLA region on chromosome 6 and

visceral leishmaniasis. Although in [13] the HLA locus (analysed

using the LMM package MMM [15]) did not achieve genome-

wide levels of significance in the Brazilian data set alone (p-value

~2|105), this locus was the only one to show strong evidence of

association in both Brazilian and Indian data sets, and achieved

convincing replication in a separate Indian cohort.

Results

Estimation of kinship coefficients using genome-wide
SNP data

Before embarking on a detailed comparison of different

methods, we explored the use of different SNP sets (containing

different numbers of SNPs) for estimating pairwise kinship

measures, in order to identify a robust set of SNPs that could be

used for subsequent comparisons. We considered using either the

full genome-wide set of SNPs (545,433 SNPs), a ‘pruned’ set of

50,129 SNPs selected to have minor allele frequencies w0:4 and

chosen to be in approximate linkage equilibrium via the --indep

50 5 2 command in PLINK [27]), or a ‘thinned’ set of 1900

evenly-spaced SNPs that were selected from the ‘pruned’ SNPs

based purely on physical position using the software package

MapThin (http://www.staff.ncl.ac.uk/richard.howey/mapthin/).

In addition to exploring the kinship estimates provided by various

LMM software packages, we also investigated those provided by

the software packages PLINK [27] and KING [28]. KING

implements two different kinship estimation methods: KING-

homo (KING_H), which assumes population homogeneity, and

KING-robust (KING_R), which provides robust relationship

inference in the presence of population substructure.

A comparison of the kinship estimates output by different

software packages based on the pruned set of SNPs is shown in

Figure 1 (similar results were seen for the full and thinned SNP

sets, data not shown). Although the scale on which the kinship

estimates are measured differs between different packages, the

measures themselves are highly correlated, particularly those from

EMMAX-BN, FaST-LMM, GenABEL, GEMMA and MMM.

Kinship measures from EMMAX-IBS and PLINK were also quite

well correlated, although they tended to differ slightly from those

in the previous group. Kinship measures are used within the LMM

framework to structure the variance/covariance matrix of the

genetic random effect (see Methods). Thus, the scale of measure-

ment (i.e. whether the kinship measure actually reflects an estimate

of the kinship per se, or a rescaled measure such as twice the

Author Summary

Recently, statistical approaches known as linear mixed
models (LMMs) have become popular for analysing data
from genome-wide association studies. In the last few
years, a bewildering variety of different LMM methods/
software packages have been developed, but it has not
always been clear how (or indeed whether) any newly-
proposed method differs from previously-proposed imple-
mentations. Here we compare the performance of several
different LMM approaches (and software implementations)
via their application to a genome-wide association study of
visceral leishmaniasis in 348 Brazilian families comprising
3626 individuals. We also compare the LMM results to
those obtained using alternative analysis methods. Overall,
we find strong concordance between the results from the
different LMM approaches and high correlation between
the results from LMMs and most alternative approaches.
We conclude that LMM approaches perform well in
comparison to competing approaches and, in most
applications, the precise LMM implementation will not
be too important, and can be chosen on the basis of speed
or convenience.

Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 2 July 2014 | Volume 10 | Issue 7 | e1004445

http://www.staff.ncl.ac.uk/richard.howey/mapthin/


kinship) should not be too important, as any rescaling will be

compensated for by a similar rescaling of the estimated genetic

variance parameter s2
g (see Methods). Kinship estimates from both

KING methods tended to differ most from the other methods,

with the frequent output of negative kinship estimates (compared

to most other methods for which the kinship estimates are

bounded at 0) among the less related individuals. This was more

pronounced for KING_R than for KING_H. We consider later

the possible implications of these (rather small) differences in

estimated kinships for subsequent association testing.

Within any given method, we found the kinship measures (for

each pair of individuals) and p-values obtained (in the real data set)

based on the full SNP set to be very similar to those based on the

pruned set, whereas those calculated based on the thinned set were

less similar (see Figure S1). The performance of the different SNP

sets in terms of controlling the genome-wide type 1 error rate (i.e.

controlling the genomic inflation factor l [29] to the desired level

of l~1) in the real data set is shown in Figure 2 (see Figure S2 for

full QQ plots). All packages performed well when using the full or

pruned set of SNPs (l= 0.99–1.00), but performance deteriorated

when the thinned set was used (l mostly about 1.08–1.10). This

was most pronounced for GenABEL (GRAMMAR-Gamma), for

which l was 1.16. Our intuition is that, although 1900 SNPs may

be sufficient to accurately model close relationships (such as full sib

or parent-offspring), many more SNPs will be required to

accurately model distant relationships within pedigrees (such as

cousins, second cousins, third cousins etc.) or even more distant

relationships between pedigrees. Results obtained using theoretical

kinships were inflated for all methods (l&1:11), suggesting the

presence of additional relatedness/population structure that is not

well accounted for by known family relationships. Regardless of

the method or SNP set used, adjustment always resulted in

substantially lower inflation than was seen (l= 1.23) in unadjusted

analysis.

Listgarten et al. [30] proposed an automated method, FaST-

LMM-Select, to select the most appropriate set of SNPs to use for

kinship estimation when testing for association in a LMM

framework. The method proceeds by ordering SNPs according

to their linear regression p-values and then constructing kinship

matrices with an increasing number of ordered SNPs, until the first

minimum genomic control factor l is obtained. We investigated

this strategy within the FaST-LMM package using either the full

or pruned set of SNPs as a starting point (see Figure S3). We found

that the first minimum genomic control factor (achieved using 3–

10 ordered SNPs) was generally higher than the desired value of

l~1, the genomic control factor subsequently decreased to

considerably less than 1, and then increased back to 1 once all

(pruned or full) SNPs had been included.

The automated version of FaST-LMM-Select available as an

option within the current version of the FaST-LMM package uses

a slightly different strategy involving k-fold cross-validation [31],

with the ordering of SNPs and calculation of genomic control

factors as varying numbers of SNPs are included in the kinship

calculation carried out within the training data (and then used to

predict the test data) within each cross-validation fold. The final

number of SNPs to be used in the kinship calculation for the entire

data set is that which minimizes the mean-squared error summed

over all folds. (See FaST-LMM documentation and [31] for more

Table 1. Summary of methods/software packages investigated.

Package/method
and version Approach Kinship estimation method Reference(s)

EMMAX emmax-intel-
20120210.tar.gz

LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[1]

FaST-LMM v2.04 LMM (approximate or exact) Kinship matrix estimated internally using user- supplied set of SNPs,
using SNPs selected through FaST-LMM-Select procedure, or set to
theoretical/estimated values calculated externally

[4] [30] [31]

GEMMA v0.91 LMM (exact) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[16]

GenABEL v1.7-6 (FASTA) LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[9] [39]

GenABEL v1.7-6
(Grammar-Gamma)

LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[14] [39]

GTAM (implemented
in MASTOR v0.3)

LMM (approximate) Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[8]

Mendel v13.2 LMM (approximate or exact) Kinship matrix estimated internally using theoretical pedigree
relationships, estimated within estimated pedigree clusters
(using all SNPs), or fully estimated (using all SNPs)

[35]

MMM v1.01 LMM (approximate or exact) Kinship matrix estimated internally using user-supplied set of
SNPs, or set to theoretical/estimated values calculated externally

[15]

FBAT v2.0.4 Transmission of alleles within
pedigrees

Method by definition uses ‘known’ (theoretical) pedigree
relationships

[21] [23]

MASTOR v0.3 Retrospective quantitative trait
version of MQLS

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[25]

MQLS v1.5 Adjusted version of
retrospective case/control
test

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[24]

ROADTRIPS v1.2 (RM test) Adjusted version of
retrospective case/control
test

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships). Further correction based on
genome-wide set of SNPs applied internally.

[26]

doi:10.1371/journal.pgen.1004445.t001
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details). Lippert et al. [31] found this procedure to show some

advantage over using all SNPs (including a large number of

presumably irrelevant SNPs) in simulations that included popu-

lation stratification (but not familial relatedness) of quantitative

phenotypes in randomly ascertained individuals. Application of

this automated procedure to the real disease phenotype in our

highly ascertained set of Brazilian pedigrees resulted in no SNPs

selected for calculation of kinships when applied to the full SNP

set, or two SNPs selected when applied to the pruned SNP set,

resulting in a genomic control value of l~1:17 when these two

SNPs were used to adjust for relatedness in the subsequent

association analysis. We conclude that, at least for our data set,

there is no particular advantage in using the FaST-LMM-Select

procedure, indeed this procedure seems to work less well than

simply using all pruned or full SNPs for estimating pairwise

kinships. For the remainder of the manuscript we therefore focus

on results obtained using the pruned set of SNPs to estimate

kinships (apart for genome-wide analysis in the program Mendel,

which by default always uses the entire set of SNPs that has been

read in).

Comparison of LMM and alternative analysis approaches
We compared the performance of the different LMM and

alternative approaches listed in Table 1 through their application

to real and simulated data derived from the Brazilian family data

set of Fakiola et al. [13]. The simulation scenarios (see Methods)

included a binary disease trait influenced by either two strong (sim-

D1) or two weak (sim-D2) genetic effects or a quantitative trait

(sim-Q) influenced by two strong genetic effects. In all cases the

genetic effects were governed by two SNPs (rs9271252 and

rs233722) located on chromosomes 6 and 12 respectively. In

addition to the effects at rs9271252 and rs233722, we also allowed

for 22 weaker ‘polygenic’ effects caused by genotype at the 100th

SNP on each autosomal chromosome. Where applicable, we used

either the default analysis options within each program, or else

explored the use of different options as indicated below. The

program FaST-LMM uses either maximum likelihood (ML) or

restricted maximum likelihood (REML). (In early versions of

FaST-LMM the default was ML but in later versions the default

became REML). After some experimentation, we deemed the ML

option to be the most reliable in the presence of strong genetic

effects, and have therefore used ML for all results presented here.

The success of the various approaches in controlling the overall

genome-wide type 1 error rate (i.e. controlling the genomic

inflation factor [29] l to the desired level of l~1) is shown in

Table 2. All methods that made use of estimated kinships

performed well, apart from Mendel when estimation was restricted

only to estimated pedigree clusters (which gave l~1:10) and

MQLS, for which use of estimated kinships (in the 1972 genotyped

individuals) appeared to result in slightly deflated genomic

inflation factors. For all other methods, use of estimated kinships

reduced the genomic inflation factor to around 1, compared to a

value of l~1:23 in the real data (and up to 1.43 in the simulated

data) when performing an unadjusted analysis. Methods that used

only theoretical kinships based on ‘known’ pedigree information

performed well in the simulated data sets, but were less successful

at controlling inflation for the real data set, suggesting that our real

data contains additional, more complicated, relatedness or

population substructure that is not accounted for by known family

relationships.

The Brazilian populations studied here are believed to be long-

term (w200 years) admixtures of Caucasian, Negroid and Native

Indian ethnic backgrounds, as confirmed in recent analysis of a

subset of our families [32]. The discrepancy between the genomic

inflation factors seen in our real and simulated data results suggests

that our (relatively simplistic) simulation scenarios have not been

able to fully mimic the underlying population structure existant in

the real data; although our simulation strategy (see Methods) was

designed to generate trait correlations that reflect close familial

relationships, we did not specifically endeavour to generate

correlations due to population stratification or more distant/

cryptic relationships. To investigate the relative contributions of

phenomena such as admixture/population stratification/cryptic

relationships to the inflation observed in our real data when using

theoretical (pedigree-based) kinships, we applied the ADMIX-

TURE program [33] to our pruned set of SNPs to estimate

ancestry proportions (assuming 3 ancestral populations) in each

individual. Although the variation in ancestry proportion estimat-

ed within each individual was quite large (standard deviation

&0:08{0:15 depending on ancestral population) there was no

evidence (Pw0:14) for a relationship between estimated ancestry

proportion and disease status, suggesting that the inflation in test

statistics observed when using theoretical kinships is more likely to

be due to unmeasured cryptic relationships and/or subtle

population substructure, than to population substructure or

admixture directly related to the Caucasian, Negroid and Native

Indian ethnicities. This conclusion was supported by the fact that

logistic regression analysis allowing for the ancestry proportions as

covariates resulted in a genomic control inflation factor of 1.17,

only slightly reduced from the unadjusted genomic control

inflation factor of 1.23.

We also used as covariates in a logistic regression analysis the

first nine coordinates obtained from a multidimensional scaling

(MDS) analysis of the pruned SNPs in PLINK (having considered

between one and ten coordinates, nine was the number that

minimised the genomic control inflation factor). The resulting

genomic control inflation factor was 1.08, considerably smaller

than the unadjusted inflation factor of 1.23, but still not perfectly

controlled. Inclusion of MDS coordinates as covariates, similar to

including principal components scores, might be expected to

account for more subtle levels of population substructure than are

accounted for by the use of the ADMIXTURE program (and may

possibly also indirectly account for relatedness), which perhaps

explains the greater success of this procedure. However the fact

that LMM approaches based on estimated kinships still do better

(with respect to controlling l) than does the MDS approach

suggests there may still be levels of known or cryptic relatedness

that are not well-captured by these first nine coordinates.

An intuitive overview of the expected power provided by the

different (real and simulated) data sets can be obtained from Figure

S4, which shows Manhattan plots from a FaST-LMM analysis of a

single replicate of real or simulated data. The real phenotype data

shows a noticeable signal in the HLA region on chromosome 6,

consistent with the main finding in [13], while for all simulated

traits the primary associated regions are correctly identified

without any obvious false signals. A formal comparison of power

and type 1 error for the different analysis methods using 1000

simulation replicates is shown in Figure 3. All methods apart from

an unadjusted analysis show acceptable levels of type 1 error

(although note that the type 1 error rate for FBAT appears to be

slightly conservative). In terms of power, all LMM approaches

(including GTAM and Mendel) and MASTOR show similar

performance, apart from MMM which shows slightly higher

power than other methods for detection of loci involved in the

(strong) simulated quantitative trait. ROADTRIPS and MQLS

show slightly lower power than the LMM approaches, while the

approaches implemented in FBAT appear to be considerably less

powerful than those implemented in the LMM and other packages

Accounting for Relatedness in Genome-Wide Association Studies
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(even allowing for FBAT’s slightly conservative levels of type 1

error). The lower power of FBAT is likely to be caused by the

smaller effective sample size (357 cases compared to 357 ‘pseudo’

controls in FBAT, versus 357 cases compared to 1613 genuine

controls in the LMM and other alternative approaches), due to the

way the FBAT test statistics are constructed. These results are

consistent with a visual examination of the Manhattan plots

obtained from the different methods using either the real data or a

single replicate of the simulated data (Figure 4, Supplementary

Figures S5–S6), with FBAT achieving much lower levels of

significance around the true or simulated phenotype-associated

SNPs than do the other methods. (The results from all LMM

methods not displayed in Figure 4 and Supplementary Figures S5–

S6 were indistinguishable from FLMM_E, data not shown).

Although the LMM (and several alternative) approaches show

similar overall levels of power, an interesting separate question is

the degree of concordance between the different methods with

respect to the association signals detected. In the real data set we

found the p-values obtained at each SNP from the different LMM

methods to be highly concordant (Figure S7), while the

concordance between the LMM methods and alternative

approaches (Figure S8) is high for all methods other than FBAT

Figure 1. Comparison of kinship estimates (pruned SNPs) using different software packages. Plots above the diagonal show a
comparison of kinship measures, with correlations between the kinship measures indicated below the diagonal. EM_BN = EMMAX (Balding-Nichols),
EM_IBS = EMMAX (IBS method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised relationship matrix, GA = GenABEL,
GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, KING_H = KING with homogeneous population
assumption, KING_R = KING with robust estimation.
doi:10.1371/journal.pgen.1004445.g001
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(although lower than is observed among methods within the LMM

class). The test implemented in FBAT is statistically uncorrelated

with that implemented in the LMM and other alternative

approaches, therefore it is not surprising that little concordance

is seen between the test statistics achieved at the vast majority of

(presumably null) SNPs. Figure S8 also shows that methods that

use phenotype information from non-genotyped family members

(MQLS3626 and RT3626, which use all 3626 individuals

regardless of whether or not they have genotype data) are most

similar to each other and less similar to methods that use

information only from the genotyped individuals.

The high concordance between the different LMM methods

(and, to a slightly lesser extent, between LMM methods and all

methods other than FBAT) is also seen for the simulated (weak

disease) trait (Figure S9); similar results were found for the other

simulated traits and other LMM methods (data not shown). A

formal comparison of the concordance between ‘top hits’ identified

by the different methods in the simulated data (1000 simulation

replicates, comparison restricted to true and null simulated regions)

is shown in Table 3. Using EM_BN as reference, the concordance

between the top SNPs identified is seen to be extremely high for all

other methods except FBAT, suggesting again that all methods

except FBAT provide essentially the same inference.

Feeding externally estimated kinship coefficients into
LMMs

Most LMM packages (although not Mendel) allow a separation

between the ‘estimation of kinships’ step and the ‘association

testing’ step. This is convenient as it allows the user to read in

theoretical or estimated kinships as desired, and to consider using

an alternative package for estimating kinships to the one used for

the actual association testing. We investigated performing an

analysis in FaST-LMM (exact calculation), but with the kinships

estimated from various different software packages (see Figure S10

and Table S1). Use of the ‘wrong’ kinship estimates (chosen to be

inversely related to the theoretical kinship value) resulted in very

similar results to unadjusted analyses (l= 1.23 in the real trait,

1.12 in the simulated strong disease trait, and 1.43 in the simulated

quantitative trait). Results based on kinship estimates from

KING_R and KING_H were very similar to those obtained

using FaST-LMM’s own realised relationship matrix (FLMM-R)

for all traits, and provided good control of the genome-wide error

rate (l&1) in spite of the unusual pattern in KING’s estimated

kinships that had been noted in Figure 1. Estimation of kinships

using PLINK was less satisfactory, leading to inflated genomic

control factors in both real and simulated data sets. This is

consistent with previous results [28] suggesting that PLINK

Figure 2. Genomic control factors obtained using different software packages and different strategies for modelling kinships.
PLINK = analysis in PLINK with no adjustment made for relatedness. Other methods/software packages are listed in Table 1 (see Table 2 for
abbreviated names of methods). Pedigree = theoretical kinships based on known pedigree relationships used to adjust for relatedness. Thinned =
kinships based on 1900 ‘thinned’ SNPs used to adjust for relatedness. Pruned = kinships based on 50,129 ‘pruned’ SNPs used to adjust for
relatedness. Full = kinships based on 545,433 SNPs used to adjust for relatedness.
doi:10.1371/journal.pgen.1004445.g002
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performs less well than KING for relationship estimation.

Interestingly, although KING_R has been shown to have an

advantage over KING_H in non-homogeneous populations when

the goal is relationship estimation for its own sake [28], this

advantage is not apparent here, where the goal is instead to adjust

for potentially different levels of relatedness, from close family

relationships to more distant relationships (perhaps mimicking

population membership), while performing association testing.

Computational efficiency and ease-of-use
Given that many of the software implementations we investi-

gated (and in particular all the various LMM implementations)

showed similar levels of power and type 1 error, and gave rather

similar inference in terms of localisation of signals and {log10

p-values achieved, an important practical consideration when

deciding what implementation to use is the ease-of-use and

computational efficiency. Ease-of-use is necessarily somewhat

subjective as it depends on a user’s prior experience and

software/operating system preferences. Computational efficiency

can, in theory, be examined more objectively, however, in

practice, the total time required to perform an analysis is

dependent on the computer architecture available (in particular

the ability of the system and of any given program to allow multi-

threading), demands of competing users and the availability of

(and ability of any given program to make use of) facilities for

parallel processing e.g. a multi-node compute cluster. These

considerations make it hard to perform a genuine ‘head-to-head’

comparison between different packages. In Table S2 we present an

approximate comparison (carried out on the same machine,

without use of parallel processing) together with some comments

concerning ease-of-use. Since many groups (including ourselves)

use PLINK [27] to perform initial quality control of genome-wide

association data, we considered programs that could use PLINK

files directly (or with just a few easily-implemented transformation

steps) to be the easiest to use, while those programs that required

more extensive data transformation, creation of additional input

files and/or external estimation of kinships were considered

harder.

With respect to computational speed, as a rule of thumb we

found Mendel (theoretical kinships), FaST-LMM (approximate)

and GenABEL (GRAMMAR-Gamma) to be the fastest LMM

implementations, taking between 3 minutes and a quarter of an

hour on our system to analyse 545,433 SNPs in 1972 genotyped

individuals. These were closely followed by EMMAX and MMM

(approximate) which took around half an hour, GenABEL

(FASTA), GEMMA, FaST-LMM (exact) and MMM (exact)

which typically took 1–2 hours, Mendel (estimated kinships) which

took around 2.5 hours, and GTAM which took around 4 hours.

Of the non-LMM methods, FBAT, MQLS and MASTOR were

the fastest, taking a few hours to perform the analysis, while

ROADTRIPS was the slowest, taking several days. Inputting

estimated (rather than theoretical) kinships into MQLS increased

the time taken to around 4 days (and appeared to over-correct the

genomic inflation, see Table 2), while an analysis inputting

estimated (rather than theoretical) kinships into ROADTRIPS was

still running (with analysis completed for only 38,926 of the desired

545,433 SNPs) after more than 2 months. Neither MQLS nor

ROADTRIPS were designed for analysis of unrelated individuals

and so are most likely optimised for reading in and working with

relatively sparse kinship matrices (in which individuals from

different pedigrees are assumed to have kinships equal to 0); to

force the programs to consider estimated kinships between all

individuals we had to recode the pedigree names to pretend that

everyone comes from the same pedigree, which most likely

considerably increases processing and memory requirements.

Analysis of longitudinal phenotypes
Eu-ahsunthornwattana et al. [18] investigated a strategy for

analysing longitudinal traits (repeated measures) in a linear mixed

model framework simply by treating each measurement as if it

came from a different individual, and expanding out the genetic

data set accordingly (resulting in an expanded data set containing

many apparent twins, triplets, quadruplets etc., depending on how

many measurements are available for each person). We investi-

gated this strategy in the current data set using a single replicate of

data (498 individuals) simulated under either a longitudinal (sim-

L20) or longitudinal polygenic (sim-P20) model (see Methods).

Results (Table 4) showed that EMMAX, FaST-LMM and

GEMMA were successful in maintaining the genomic inflation

factor to about 1, whereas GenABEL (FASTA) and MMM

showed some inflation, particularly in the polygenic longitudinal

simulation, and GenABEL (GRAMMAR-Gamma) showed strong

deflation. Comparison of the concordance in {log10 p-values

achieved by the different methods (data not shown) indicated that,

although the results from different methods were highly correlated

(in terms of the top SNPs identified), the actual p-values achieved

were very different, consistent with the differences seen in overall

distribution of test statistics.

Analysing each repeated measure as if it comes from a different

individual treats our data set as a larger ‘pseudo data set’

containing many apparent twins/triplets/quadruplets (actually, in

this case, 20-tuplets). Although less satisfactory than a proper

longitudinal analysis that takes into account correlations due to

both relatedness between individuals and repeated measures

within individuals [34], our intuition was that the LMM

framework would absorb the effect of repeated measures within

individuals into the genetic component of variance estimated,

resulting in an overall correct distribution of test statistics. For

EMMAX, FaST-LMM and GEMMA, this intuition appears to

have been correct. Although for GenABEL (FASTA) and MMM

the resulting distribution of test statistics is inflated, the linear

relationship between the observed and desired test statistics means

that test statistics following the desired distribution could be

obtained simply by dividing the observed x2 test statistics by the

observed genomic control inflation factor, in an approach akin to

standard genomic control [29].

We also investigated a ‘proper’ longitudinal analysis imple-

mented within the R software package longGWAS [34]. QQ plots

from longGWAS (data not shown) indicated acceptable genomic

control inflation factors (l~1:00 and 0.97 for sim-L20 and sim-

P20 respectively). A comparison of longGWAS with our (improp-

er) approach using FaST-LMM (data not shown) indicated that

the results (in terms of the {log10 p-values obtained at each SNP)

from longGWAS and FaST-LMM were highly correlated for both

sim-L20 and sim-P20. Although the ‘proper’ analysis implemented

in longGWAS might be considered theoretically most appealing,

we note that longGWAS was considerably slower than FaST-

LMM, taking approximately 19 hours (in comparison to 5.5

minutes for FaST-LMM), when run in parallel for each of 22

chromosomes. If run as a single process (all chromosomes), this

translates to about 9.5 days for longGWAS versus 7.6 hours for

FaST-LMM. Thus, given the satisfactory performance of FaST-

LMM, and the high correlation between the results obtained from

FaST-LMM and those from longGWAS, from a practical point of

view, FaST-LMM (or possibly EMMAX or GEMMA) would seem

the more attractive option.
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Another program that can, in theory, implement a ‘proper’

longitudinal analysis is the lmekin function within the R package

coxme. We found this function to be computationally infeasible for

analysis of genome-wide data, but application to a selected set of 2423

SNPs (of different effect sizes) in the sim-L20 data suggested that the

results were very similar to those obtained from GenABEL (FASTA),

EMMAX, FaST-LMM, GEMMA and MMM. However, we were

unable to get lmekin to give meaningful results (most results were

‘‘NA’’) when applied to the sim-P20 data. We also speculated that a

‘proper’ longitudinal analysis should, in theory, be implementable in

the package Mendel [35], through making use of Mendel’s ability to

include household effects. (Effectively one would trick Mendel into

fitting the correct model by designating all ‘individuals’ (with each

timepoint considered as a separate individual) to be members of a

single pedigree, with the individuals corresponding to separate

timepoints within a single real individual designated as belonging to

the same household). We attempted to fit this model in Mendel for our

sim-L20 and sim-P20 data sets, but were unable to obtain reliable

Table 2. Genomic control inflation factors achieved in real data or in a single replicate of the simulated data sets.

Trait analysed

Method Description Kinships used Real disease (VL)
Simulated strong
(sim-D1)

Simulated weak
(sim-D2)

Simulated
quantitative
(sim-Q)

Unadjusted Standard linear or logistic
regression

None 1.23 1.12 1.04 1.43

EM_BN EMMAX (Balding-Nichols kinships) Estimated 0.99 0.99 1.00 0.99

EM_IBS EMMAX (IBS kinships) Estimated 0.99 0.99 1.00 1.00

FLMM_A FaST-LMM (approximate
calculation)

Estimated 0.99 0.99 1.00 1.00

FLMM_E FaST-LMM (exact calculation) Estimated 1.00 0.99 1.01 1.00

GA_FA GenABEL (FASTA) Estimated 0.99 0.99 1.00 0.99

GA_GRG GenABEL (GRAMMAR-Gamma) Estimated 0.99 0.99 1.00 1.00

GMA_C GEMMA using centred
genotypes

Estimated 1.00 0.99 1.01 1.00

GMA_S GEMMA using standardised
genotypes

Estimated 1.00 0.99 1.01 1.00

GTAM GTAM (implemented in
MASTOR)

Pedigree 1.20 1.00 0.99 0.99

Mendel_T Mendel with theoretical
kinships

Pedigree 1.11 1.00 0.99 0.99

Mendel_P Mendel with kinships estimated
within estimated pedigree clusters

Estimated 1.10 1.00 0.99 0.99

Mendel Mendel with fully estimated
kinships

Estimated 1.03 0.99 1.00 1.00

MMM_E MMM (exact calculation) Estimated 1.00 0.99 1.01 1.00

MMM_G MMM (GLS approximation) Estimated 0.99 0.99 1.00 0.99

FBATaffa FBAT (transmissions to affecteds
only)

Pedigree 1.02 1.01 1.00 –

FBATboth FBAT (transmissions to all
individuals)

Pedigree 1.01 1.00 1.01 1.00

MASTOR MASTOR (implemented in
MASTOR)

Pedigree 1.15 1.00 0.99 0.99

MQLS1972a MQLS (using 1972 genotyped
individuals)

Pedigree 1.15 1.01 0.99 –

MQLS3626a,b a,bMQLS (using all 3626
individuals with or without
genotype data)

Pedigree 1.16 – – –

MQLS1972_E MQLS using 1972 genotyped
individuals and estimated
kinships

Estimated 0.94 0.90 0.91 –

RT1972a ROADTRIPS (using 1972
genotyped individuals)

Pedigree &
estimated

1.00 1.00 0.99 –

RT3626a,b ROADTRIPS (using all 3626
individuals with or without
genotype data)

Pedigree &
estimated

1.00 – – –

aFBATaff, MQLS and ROADTRIPS are only applicable to binary traits and so do not have results in the ‘Simulated quantitative’ column.
bIn the simulated data sets, MQLS and RT could only be based on the 1972 individuals with simulated phenotypes, and so no simulated trait results are displayed in the
MQLS3626 and RT3626 rows.
doi:10.1371/journal.pgen.1004445.t002

Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 8 July 2014 | Volume 10 | Issue 7 | e1004445



Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 9 July 2014 | Volume 10 | Issue 7 | e1004445



results. (If included, household effects were continually estimated at 0,

and, regardless of whether or not household effects were included, the

SNP association tests showed highly inflated significance values, with

no correct localisation of true sim-L20 signals as had been seen for

FaST-LMM (Figure S4) and little correlation between {log10 p-

values from Mendel and those from these other packages). We

speculate that the algorithm used by Mendel may be adversely affected

by the presence of many highly-related individuals (e.g. repeated

measures that in actuality pertain to a single individual), causing the test

statistics generated to be unreliable.

Discussion

Here we have demonstrated, through simulations and applica-

tion to real data, that linear mixed model approaches such as those

implemented in the packages GenABEL, EMMAX, FAST-LMM,

Figure 3. Power and type 1 error of different methods. Powers (left hand plots) are defined as the proportion of replicates (out of 1000) in
which both simulated disease loci are detected, with ‘detection’ corresponding to any SNP within 40 kb of the simulated disease locus reaching the
specified p-value threshold. Type 1 errors (right hand plots) are defined as the proportion of null SNPs (out of 20,000 = 20 null SNPs times 1000
simulation replicates) that reach the specified p-value threshold. Horizontal dashed lines indicate the target p-value thresholds (i.e. the expected type
1 error rates).
doi:10.1371/journal.pgen.1004445.g003

Figure 4. Manhattan plots for the real phenotype using FaST-LMM exact and alternative software packages. The points marked in red
denote the confirmed significant region from Fakiola et al. (2013). FLMM_E = FaST-LMM using exact calculation, MQLS1972 = MQLS using 1972
genotyped individuals, RT1972 = ROADTRIPS using 1972 genotyped individuals, FBATaff = FBAT using transmissions to affecteds only,
FBATboth = FBAT using transmissions to both affecteds and unaffecteds. Results from all other LMM methods were indistinguishable from FLMM_E
and so are not shown.
doi:10.1371/journal.pgen.1004445.g004

Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 10 July 2014 | Volume 10 | Issue 7 | e1004445



Table 3. Concordance between top SNPs identified by different methods.

Mean (standard deviation) in 1000 replicates of proportion of top t SNPs within null and true regions that overlap with top t
SNPs from EM_BN

Trait Methoda t = 5 t = 10 t = 15 t = 20 t = 25

sim-D1 Unadjusted 0.991 (0.042) 0.990 (0.030) 0.981 (0.033) 0.975 (0.032) 0.973 (0.027)

EM_IBS 0.999 (0.017) 0.999 (0.009) 0.997 (0.015) 0.997 (0.013) 0.996 (0.012)

FLMM_A 1.000 (0.009) 1.000 (0.003) 1.000 (0.007) 1.000 (0.004) 1.000 (0.003)

FLMM_E 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004)

GA_FA 0.998 (0.018) 1.000 (0.005) 0.999 (0.011) 0.999 (0.008) 0.998 (0.008)

GA_GRG 0.998 (0.021) 0.999 (0.011) 0.996 (0.017) 0.998 (0.010) 0.998 (0.008)

GMA_C 0.998 (0.021) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004)

GMA_S 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004)

GTAM 0.998 (0.022) 0.995 (0.022) 0.990 (0.025) 0.988 (0.022) 0.987 (0.020)

Mendel 0.997 (0.025) 0.996 (0.019) 0.991 (0.024) 0.989 (0.021) 0.989 (0.018)

MMM_E 0.991 (0.041) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004)

MMM_G 0.993 (0.036) 1.000 (0.003) 1.000 (0.007) 1.000 (0.005) 0.999 (0.005)

FBATaff 0.684 (0.253) 0.790 (0.115) 0.773 (0.090) 0.771 (0.080) 0.760 (0.072)

FBATboth 0.859 (0.130) 0.844 (0.084) 0.811 (0.078) 0.795 (0.075) 0.777 (0.071)

MASTOR 0.993 (0.038) 0.994 (0.024) 0.989 (0.027) 0.985 (0.024) 0.985 (0.022)

MQLS 0.978 (0.062) 0.981 (0.040) 0.960 (0.043) 0.951 (0.041) 0.941 (0.038)

RT 0.981 (0.059) 0.984 (0.037) 0.962 (0.042) 0.952 (0.041) 0.942 (0.038)

sim-D2 Unadjusted 0.982 (0.060) 0.984 (0.041) 0.979 (0.039) 0.974 (0.040) 0.973 (0.036)

EM_IBS 0.997 (0.029) 0.997 (0.024) 0.995 (0.025) 0.994 (0.028) 0.994 (0.024)

FLMM_A 0.998 (0.027) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026)

FLMM_E 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GA_FA 0.992 (0.044) 0.998 (0.024) 0.997 (0.026) 0.996 (0.030) 0.996 (0.026)

GA_GRG 0.994 (0.038) 0.997 (0.026) 0.996 (0.027) 0.995 (0.030) 0.996 (0.026)

GMA_C 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GMA_S 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GTAM 0.988 (0.050) 0.990 (0.036) 0.983 (0.037) 0.982 (0.036) 0.982 (0.032)

Mendel 0.988 (0.051) 0.992 (0.033) 0.986 (0.035) 0.984 (0.036) 0.987 (0.031)

MMM_E 0.995 (0.037) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

MMM_G 0.998 (0.028) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026)

FBATaff 0.413 (0.255) 0.571 (0.201) 0.614 (0.157) 0.639 (0.128) 0.651 (0.102)

FBATboth 0.664 (0.246) 0.718 (0.146) 0.699 (0.111) 0.691 (0.099) 0.686 (0.088)

MASTOR 0.971 (0.075) 0.988 (0.038) 0.981 (0.038) 0.978 (0.039) 0.979 (0.033)

MQLS 0.934 (0.107) 0.962 (0.056) 0.942 (0.053) 0.928 (0.051) 0.917 (0.047)

RT 0.943 (0.099) 0.965 (0.055) 0.943 (0.053) 0.930 (0.052) 0.919 (0.047)

sim-Q Unadjusted 0.987 (0.049) 0.983 (0.038) 0.962 (0.040) 0.963 (0.034) 0.954 (0.033)

EM_IBS 0.998 (0.020) 0.998 (0.016) 0.993 (0.020) 0.994 (0.017) 0.993 (0.015)

FLMM_A 1.000 (0.000) 1.000 (0.000) 1.000 (0.004) 1.000 (0.005) 1.000 (0.004)

FLMM_E 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005)

GA_FA 1.000 (0.006) 0.999 (0.010) 0.998 (0.010) 0.998 (0.010) 0.996 (0.012)

GA_GRG 0.994 (0.034) 0.999 (0.010) 0.995 (0.018) 0.996 (0.014) 0.996 (0.012)

GMA_C 1.000 (0.009) 1.000 (0.007) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004)

GMA_S 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005)

GTAM 0.995 (0.032) 0.991 (0.028) 0.984 (0.030) 0.985 (0.024) 0.984 (0.022)

Mendel 0.998 (0.021) 0.996 (0.020) 0.987 (0.027) 0.988 (0.022) 0.988 (0.019)

MMM_E 0.899 (0.100) 0.999 (0.008) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004)

MMM_G 0.903 (0.100) 1.000 (0.003) 1.000 (0.003) 1.000 (0.004) 1.000 (0.003)

FBAT 0.906 (0.101) 0.896 (0.067) 0.869 (0.059) 0.844 (0.067) 0.814 (0.066)

MASTOR 0.998 (0.020) 0.992 (0.027) 0.984 (0.030) 0.984 (0.025) 0.983 (0.023)

aSee Table 2 for description of methods.
doi:10.1371/journal.pgen.1004445.t003
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GEMMA and MMM offer a convenient and robust approach for

family-based GWAS of quantitative or binary traits, are successful

in controlling the overall genomic inflation factor to an

appropriate level, and offer higher power than traditional

family-based association analysis approaches such as those

implemented in FBAT. Similar inference is also provided by

related and alternative approaches implemented in the software

packages Mendel, ROADTRIPS, MQLS and MASTOR, al-

though our results from analysis of the real data suggest that, for

Mendel, MQLS and MASTOR, care may need to be taken to use

estimated kinships based on SNP data rather than known pedigree

relationships, if one is to avoid any inflation in the test statistics.

Our current study focused mostly on family data in which

genuine close relationships between many individuals exist.

Nevertheless we found similar results with respect to the LMM

methods investigated (adequate control of type 1 error and

extremely similar performance in terms of power and concordance

between top findings) when applied to a subset of 462 founder

individuals from our pedigrees, selected to be approximately

unrelated to one another (see Figure S11 and Table S3). Therefore,

we believe that our results highlighting the concordance between

different LMM methods are equally relevant to researchers carrying

out genome-wide association studies of apparently unrelated

individuals as to researchers carrying out family-based studies.

Traditional methods for family-based association analysis make

use of pedigree relationships either (e.g. FBAT) through direct use of

known pedigree structure or else (e.g. MQLS, ROADTRIPS and

all LMM methods) through use of a covariance matrix that involves

the known kinship between each pair of individuals (the probability

that a randomly chosen allele at a locus in each individual is

identical by descent i.e. is a copy of a common ancestral allele,

under the assumption that the pedigrees are correctly specified and

all founders in a pedigree are completely unrelated i.e. share no

alleles identical by descent). The assumption that all founders in a

pedigree share no alleles identical by descent is clearly a fiction,

given human population history, while the assumption that all

pedigrees are correctly specified and unrelated to one another is also

likely to be violated in most real studies. The use of estimated

kinships based on SNP data rather than theoretical kinships based

on known pedigree relationships removes the reliance on these

untenable assumptions, and allows essentially the same analysis

approaches to be applied to apparently unrelated individuals (who

may nevertheless display distant levels of shared ancestry). The

question then arises as to what exactly these estimated kinships (or

related measures) are actually measuring? We consider a detailed

discussion of this issue to be beyond the scope of the current

manuscript, but we refer the reader to the more detailed expositions

given in [36] and [37] which discuss some differences between

different kinship measures as well as pointing out the difficulty of

directly modelling identity by descent in the absence of an explicit

pedigree. A key point when using estimated kinships to structure the

covariance matrix in an association analysis (as here) is that our goal

is not relationship estimation (close or distant) in its own right, but

rather to adjust our analysis for phenotypic correlations between

individuals due to genetic factors (usually assumed to be polygenic

effects) that would otherwise result in inflated association test

statistics. Therefore, one could argue that the extent to which the

estimated kinship measures do or do not reflect genuine relation-

ships between individuals (and how one should interpret such

relationships) is largely irrelevant; the important issue is whether or

not use of such kinships succeeds with respect to adequately

modelling phenotypic correlations between individuals. On that

note, in the analyses performed here we did not find large

differences between the results obtained using different kinship

measures, although use of the kinship measures output by PLINK

(as well as use of completely incorrect kinship measures) did perform

worse than the other kinship measures investigated.

The recent popularity of LMM approaches for the analysis of

apparently unrelated individuals [1–4] has been partly motivated

by a desire to correct for more complicated models of population

structure including population stratification, rather than (or in

addition to) correcting for relatedness between individuals.

Population stratification can be thought of as a type of relatedness

in that members of the same sub-population are effectively more

closely related to one another than to individuals in other sub-

populations, although it has been noted [36] that this sub-

population or ‘island model’ underlying the traditional view of

population stratification may be unduly simplistic. The observa-

tion that LMM approaches have sometimes worked better than

traditional principal component approaches at correcting for

apparent population structure [1] may reflect the fact that the

inflation seen in genome-wide test statistics (in the absence of any

correction) results not from population stratification under an

‘island model’ per se, but rather from more complicated

Table 4. Genomic control factors achieved in naive analysis of a single replicate of the simulated longitudinal data sets.

Trait analysed

Methoda Longitudinal (sim-L20) Longitudinal polygenic (sim-P20)

Unadjusted 20.82 21.53

EM_BN 1.01 1.01

EM_IBS 0.99 0.97

FLMM_A 1.01 1.01

FLMM_E 1.01 1.01

GA_FA 1.06 2.39

GA_GRG 0.66 0.47

GMA_C 1.01 1.01

GMA_S 1.01 1.01

MMM_E 1.01 3.52

MMM_G 1.01 3.52

aSee Table 2 for description of methods.
doi:10.1371/journal.pgen.1004445.t004
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population structure (involving distant ancestral relationships

between individuals). A recent paper by Wang et al. [38] showed

that, in the presence of cryptic relatedness between study subjects

(but no population stratification), both principal component and

LMM methods are valid (in the sense of generating test statistics

with the desired distribution under the null hypothesis), but LMM

approaches are more powerful for detecting association. In

contrast, in the presence of population stratification, neither

principal component nor LMM methods are strictly valid, but

LMM methods seem to display better overall performance.

An interesting finding of our current study was the fact that

longitudinal traits (repeated measures) could be successfully

analysed in an LMM framework simply by treating each

measurement as if it came from a separate person and expanding

out the genetic data set accordingly (resulting in an expanded data

set containing many apparent twins, triplets, quadruplets etc.). From

a practical point of view this is useful as analysis of an expanded data

set in standard LMM software is computationally convenient; we

found a ‘proper’ analysis using software such as longGWAS [34] to

be prohibitively slow when applied to our data set.

A caveat to all the results presented here is that they relate to

genotypes derived from a single data set, our Brazilian family study

of visceral leishmaniasis [13]. (Although the results in terms of the

performance and power of different methods were comparable

across both real and simulated data sets, even in the simulated data

all genotypes were held fixed and only phenotypes were re-

simulated). However, we have good reason to believe that the high

concordance between different LMM implementations seen here

(as well as their performance from when applied naively to

longitudinal data) will hold more generally for genetic studies of

diverse phenotypes carried out in diverse human populations. We

observed essentially the same pattern of results described here

when we applied a more limited set of LMM implementations to

GWAS data from Genetic Analysis Workshop 18 (959 Mexican-

American individuals from 20 families, with real and simulated

phenotypes) [18] as well as when we applied these approaches to

GWAS data from 402 Aboriginal Australian individuals that

cluster loosely into 4 large nominal pedigrees (unpublished data).

Therefore, although it is possible that highly structured popula-

tions (such as those encountered in plant or animal breeding

experiments) may uncover subtle differences between the various

LMM approaches, for researchers carrying out complex genetic

disease studies in human populations, we anticipate there will be

little difference between the results seen from one approach over

another, and the choice of which method/software package to use

will be largely dictated by personal taste or convenience.

On this note, we point out that each package has its own

particular advantages (and disadvantages). These include the fact

that EMMAX, GEMMA and MMM allow the input of dosages

derived from imputed (in addition to real) genotypes; MMM has

the advantage of allowing the output of regression coefficients and

standard errors for the SNP effects on the (log) odds ratio scale,

making it convenient to compare or combine the results with

results from traditional case/control studies analysed via logistic

regression; GenABEL (GRAMMAR-Gamma) has the advantage

of scaling linearly with sample size, which makes it attractive for

the analysis of very large data sets; FaST-LMM has the advantage,

along with EMMAX and Mendel, of internally imputing missing

data at any (genetic or non-genetic) covariates, which can make it

convenient for implementing stepwise conditional analyses; and,

unlike most LMM implementations, ROADTRIPS, MQLS and

MASTOR have the advantage of using all phenotype information,

including that for individuals that have not been genotyped, which

can in theory generate a small increase in power.

One of the main differences between the different software

implementations we investigated was the time taken to perform the

analysis (not including the time required to re-format data into an

appropriate format for a given package). We were unable to do a

strict head-to-head comparison as the precise timings depend on a

number of factors including the computer architecture available

(in particular the ability of the system and of any given program to

allow multi-threading and/or parallel processing), however our

rough comparison (Table S2), assuming that kinships are to be

estimated on the basis of SNP data, implicated FaST-LMM

(approximate calculation), GenABEL (GRAMMAR-Gamma) and

EMMAX as generally the fastest implementations.

In conclusion, we recommend linear mixed model approaches

as a convenient and powerful approach for family-based GWAS of

quantitative or binary traits. We find these approaches to be

successful in controlling the overall genome-wide error rate and to

perform well in comparison to competing approaches.

Materials and Methods

Ethics statement
Ethical approval for the Belem Family Study was obtained

originally from the local ethics committee at the Instituto Evandro

Chagas, Belém, Para, Brazil. Approval for continued use of the

Belem Family Study samples, and for collection and use of the

samples from Natal, has been granted from the local Institutional

Review Board at the Universidade Federal do Rio Grande do

Norte (CEP-UFRN 94–2004), nationally from the Comissão

Nacional de Ética em Pesquisa (CONEP: 11019), and from the

Ministerios Cencia e Tecnologia for approval to ship samples out

of Brazil (portaria 617; 28 September 2005). Informed written

consent for sample collection was obtained from adults, and from

parents of children v18 years old.

Subjects and genotyping
Sample collection and genotyping of the Brazilian subjects used

here is described in detail in [13]. In brief, we ascertained 348

families comprising 65 families collected from sites around Belém

and 283 families collected from sites around Natal in north east

Brazil. All families were ascertained on the basis of containing

multiple individuals that had been diagnosed with clinical visceral

leishmaniasis. DNA from 2159 family members was genotyped at

the Wellcome Trust Sanger Institute using the Illumina Human660-

Quad chip. Extensive quality control checks were employed to

retain only high quality samples [13], and to exclude samples whose

apparent relatedness (as assessed based on estimated genome-wide

average identity by descent, calculated using a subset of 11,177

high-quality autosomal SNPs via the –Z-genome command in

PLINK [27]) was incompatible with their known pedigree

relationships (and for whom such discrepancies could not be

resolved on further investigation). SNP quality control checks were

used to retain only a subset of the genome-wide SNPs that could be

expected to be of high quality. For the current investigation, we used

slightly more stringent SNP exclusion thresholds than had been used

in [13], namely SNPs were excluded if their minor allele frequency

was v0:01, if the Fisher information for the allele frequency

v0:98, if call rate v0:99, or if the p-value for a test of Hardy

Weinburg Equilibrium v10{6. These quality control checks

resulted in the retention of 1972 genotyped individuals (357 cases,

1613 controls and two individuals of unknown phenotype) from 308

families (244 from Natal, 64 from Belém), each genotyped at

545,433 autosomal SNPs.

For the majority of analyses considered here, we used either the

1972 genotyped individuals or else the entire set of 3626
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individuals (with or without genotype data) that are required to

define the ‘known’ (theoretical) pedigree relationships. For power

comparisons between LMM methods, we also investigated use of a

subset of 462 ‘founder’ individuals, chosen on the basis of

theoretical relationships and estimated kinships to be approxi-

mately unrelated to one another.

Generation of simulated phenotypes
We generated simulated phenotypes for the 1972 individuals

that had genome-wide SNP data available. We used two different

models for generating binary (disease) traits, one corresponding to

‘strong’ genetic effects (sim-D1) and one corresponding to ‘weak’

genetic effects (sim-D2), with the trait in both cases governed by

two SNPs (rs9271252 and rs233722) located on chromosomes 6

and 12 respectively. In addition to modelling genetic effects at

rs9271252 and rs233722, we allowed for 22 weaker ‘polygenic’

effects caused by genotype at the 100th SNP on each autosomal

chromosome. Each effect contributed multiplicatively to the

probability of developing disease. Thus, the mathematical model

for generating the simulated phenotype was

Penetrance~a P
24

j~1
bj

xj

where xj was a variable coded (0, 1, 2) according to the number of

copies of the risk allele possessed at causal SNP j (with j = 1

corresponding to rs9271252 and j = 2 corresponding to rs233722),

the baseline penetrance a was set to equal 0.017 for the ‘strong’

scenario and 0.022 for the ‘weak’ scenario, b1 was set to equal 2

for the ‘strong’ scenario and 1.6 for the ‘weak’ scenario, b2 was set

to equal 1.8 for the ‘strong’ scenario and 1.55 for the ‘weak’

scenario, and bj (j~3, . . . 24) was set to equal 1.1 under both

scenarios. Resulting penetrances greater than 1.0 were assigned to

equal 1.0.

We also simulated a model (sim-Q) for quantitative traits, again

governed by rs9271252 and rs233722 on chromosomes 6 and 12.

The traits were generated as a linear combination of the effect

from each of the strong and polygenic effect SNPs, with a normally

distributed error component, thus:

yi~azb1xi1zb2xi2z
X24

j~3

bjxijzEi

where xij was a genotype variable for person i at SNP j coded as

above, a represents the baseline trait and was set to 100, b1 was set

to 3, b2 to 2, bj (j~3, . . . 24) which correspond to polygenic

contributions for SNP i were set to 1, and Ei was a randomly

generated variable following a normal distribution with mean 0

and standard deviation 5.

We simulated a model (sim-L20) for longitudinal quantitative

traits (with k = 20 repeated measures for each individual) in a

rather similar manner, with individuals’ non-genetic variation

accounted for by another error term di:

yik
~azb1xi1zb2xi2z

X24

j~3

bjxijzdizEik

The baseline trait a remained 100, b1 was set to 5, b2 to 4, bj

(j~3, . . . 24) were set to 1.5, di was a random variable following a

normal distribution with mean 0 and standard deviation 4,

generated once for each individual. The residual error term Eik was

a randomly generated variable following a normal distribution

with mean 0 and standard deviation 2.

To make the analyses feasible whilst still maintaining the overall

degree of relatedness, the longitudinal data set was constructed

based on a subset of 498 individuals selected through stratified

sampling from the original data set, with number of individuals

randomly selected from each extended family approximately

proportional to their family size while also ensuring that every

family is represented by at least one individual. Phenotypes for

these 498 individuals were then generated 20 times to create the

final longitudinal data set.

In addition we simulated a purely polygenic longitudinal model

(sim-P20) in which the strong effects b1 and b2 did not exist, and

the 22 polygenic effects bj (j~3, . . . 24) were replaced by 402

polygenic effects bj (j~3, . . . 404) which were set to 0.75. In this

model, a was set to 20, di followed a normal distribution with

mean 0 and standard deviation 16, and Eik followed a normal

distribution with mean 0 and standard deviation 1.

We generated 1000 replicates of each simulated data set, apart

from the longitudinal and polygenic longitudinal data sets for

which we only simulated a single replicate. For visualisation of

results from a whole genome scan, we analysed only a single

replicate (replicate 1). For investigation of power, type 1 error and

concordance, to reduce computation time we analysed all 1000

replicates but only generated test statistics at 40 SNPs that lay

within 40 kb of the simulated disease loci (for evaluation of power)

and 20 SNPs that lay well outside the region of any simulated

disease loci (for evaluation of type 1 error). By default, the

programs Mendel and ROADTRIPS require all SNPs that are

being used to estimate genome-wide relatedness to also be read in

and tested for association; to perform the analysis of all 1000

replicates in reasonable time we therefore included the 50,129

‘pruned’ SNPs rather than the full genome-wide set of SNPs that

would normally be used by these programs.

Linear mixed models methods and software
All the LMM implementations evaluated here attempt to fit

either an exact or an approximate version of the standard linear

mixed model:

y~XbzQzE

where y~(y1,y2,:::,yn)T is a vector of responses (either quantita-

tive traits or binary traits coded 1/0 for case/control status) on n
subjects, X~(xij) is the n|J matrix of predictor variables to be

modelled as fixed effects, including variables representing genetic

and/or non-genetic covariates as well as a vector of variables x1

representing the genotypes at a particular SNP currently being

tested (generally coded as (0,1,2) according to the number of copies

of a particular allele possessed), b~(b1,b2,:::,bJ ) are regression

coefficients (to be estimated) representing the linear effects of

predictors on response, and Q and E are random effects assumed to

follow the distributions Q*N(0,2Ws2
g) and E*N(0,s2

eI) respec-

tively (where s2
g and s2

e are parameters to be estimated

representing genetic and environmental components of variance,

I is the n|n identity matrix and W is an n|n matrix of pairwise

kinship coefficients).

GenABEL (FASTA). The mmscore and polygenic functions

of the GenABEL package [39] together allow implementation of

the FAmily based Score Test Approximation (FASTA) method

proposed by Chen and Abecasis [9]. The FASTA method is also

implemented in the --fast-Assoc option of the MERLIN [40]
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package, however MERLIN calculates the kinship matrix W
internally on the basis of known (theoretical) kinships constructed

from known pedigree relationships, rather than allowing the

pairwise kinship coefficients to be estimated using genome-wide

SNP genotype data [12]. We therefore preferred to use GenABEL,

which can read in a user-specified matrix W constructed on the

basis of either theoretical or estimated kinship coefficients.

Rather than fitting the full linear mixed model y~XbzQzE
and estimating b, s2

g and s2
e by maximum likelihood for each SNP

across the genome, FASTA implements an ‘approximate’ two-

stage approach. At the first stage a reduced model is fitted, where

the regression coefficient b1 (corresponding to the effect at the

SNP currently under test) is assumed to equal 0. At the second

stage, a score statistic for testing the null hypothesis that b1 does

indeed equal 0 is constructed as:

TFA~
(½x1{E(x1)�TV{1½y{E(y)�)2

½x1{E(x1)�TV{1½x1{E(x1)�

where E(y) refers to an n-dimensional vector of fitted values of the

response from the reduced model, E(x1) refers to an n-

dimensional vector of unconditional expectations of genotype

scores at the test SNP (each element of which equals twice the

allele frequency of the particular allele being counted), and V
refers to the estimated variance/covariance matrix,

V~2Ws2
gzs2

eI , with sg and se taking their maximum likelihood

estimates as calculated under the reduced model. The score

statistic is calculated repeatedly using the appropriate n-dimen-

sional vector x1 for each test SNP (typically between 500,000 and

several million SNPs) across the genome, but the time-consuming

maximum likelihood step for estimating s2
g, s2

e and (b2,:::,bJ ) need

only be performed once, at the start.

GenABEL (Grammar-Gamma). The grammar function of

the GenABEL package [39] implements the GRAMMAR-

Gamma method proposed by Svishcheva et al. [14]. This method

can be considered as an extension of the original GRAMMAR

method [10,12] to produce a test that is essentially a fast

approximation to FASTA.

In GRAMMAR [10], similarly to FASTA, the first step is to fit a

reduced version of the full linear mixed model in which b1 is set to

0. Phenotype residuals ~yy~(~yy1,~yy2,:::,~yyn)T may be constructed as

~yyi~yi{E(yi) where E(yi) refers to the fitted value of the response

for person i from the reduced model. These residuals are then used

as the independent trait in a simple linear regression model:

~yyi~mz~bb1xi1zei

where the error term ei is assumed to be independently normally

distributed. Estimation of ~bb1 and testing of the null hypothesis that
~bb1~0 can be accomplished through maximum likelihood or least

squares approaches. Alternatively, a rapid test of ~bb1~0 can be

achieved [12,14] through construction of a score statistic:

TGR~
n(½x1{E(x1)�T ½~yy��)2

½x1{E(x1)�T ½x1{E(x1)�½~yy��T ½~yy��

where ~yy�~(~yy�1,~yy�2,:::~yy�n) are transformed version of the residuals

~yy�~s2
eV

{1~yy. Again, the time-consuming maximum likelihood

step for estimating s2
g, s2

e and (b2,:::,bJ ) (and thus for calculating

the transformed residuals ~yy�) need only be performed once.

In the original GRAMMAR publication [10], the assumption

was that pedigree relationships between individuals would be

known and so W would be constructed on the basis of theoretical

kinship coefficients. Subsequently it was suggested [12] that the use

of estimated kinship coefficients (estimated on the basis of genome-

wide SNP data) could perform as well or better. Regardless of

which kinship coefficients are used, GRAMMAR was found to be

conservative and to result in biased regression coefficients

representing the SNP effects of interest [12], and so it was

suggested that the final x2 test statistics should be ‘re-inflated’ by

multiplying by an appropriate estimated correction factor (in a

procedure analogous to the ‘deflation’ of x2 test statistics via

genomic control [29]) to result in a final test statistic with the

appropriate null distribution. This ‘genomic control corrected’

version of GRAMMAR was denoted GRAMMAR-GC by [12].

The GRAMMAR-Gamma method [14] is similar to GRAM-

MAR but, unlike GRAMMAR, produces unbiased SNP effect

estimates and test statistics that do not require any deflation. The

method involves calculating a GRAMMAR-Gamma correction

factor c (see [14] for details) that is used to adjust a new statistic

Tnew~
(½x1{E(x1)�TV{1½y{E(y)�)2

½x1{E(x1)�T ½x1{E(x1)�

which can be calculated from a standard linear regression analysis

of V{1½y{E(y)� on ½x1{E(x1)�. This results in a final

GRAMMAR-Gamma statistic TGRG = Tnew/c that can be shown

to be approximately equivalent to the FASTA statistic TFA.

Svishcheva et al. [14] argue that their GRAMMAR-Gamma

method has similar computational complexity to alternative

methods such as FASTA, EMMAX and FaST-LMM at stage 1,

while achieving computational savings over these methods at stage

2 (achieving a stage 2 computational complexity of O(sn), where n
is the sample size and s the number of SNPs to be tested).

EMMAX. Kang et al. [1] proposed a method that appears to

be essentially equivalent to the FASTA method proposed by Chen

and Abecasis [9], except for the following caveats:

1. In the approach of Kang et al. [1], there is no expectation that

the individuals will be closely related, indeed the method is

motivated as an alternative to principal component based

approaches when adjusting for population substructure in

genome-wide association studies of unrelated individuals. Thus,

the kinship coefficients used to construct W are not based on

any ‘known’ pedigree relationships but are estimated based on

genome-wide SNP data (using either a simple estimate based

on the proportion of alleles identical-by-state (IBS) measure, or

else an estimate that Kang et al. [1] describe as a Balding-

Nichols (BN) estimate), resulting in a procedure essentially

identical to that proposed by Amin et al. [12].

2. In the approach of Kang et al. [1], rather than applying the

method solely to quantitative traits as had been done previously

[9,10,12], the method is also proposed to apply to case/control

data (with the response coded as 0 or 1, but analysed as if it

were, in fact, a quantitative trait, i.e. assuming a normally

distributed random environmental/error term E). Kang et al.

argue that this is computationally more convenient than fitting

a generalized linear mixed model with a logit or probit link

function (which would be the usual way to analyse binary

response data) and should not result in increased type 1 error

for testing the null hypothesis.

3. Although not entirely clear from the description in Kang et al.

[1], it appears that, at the second stage, in contrast to [9], any
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covariates other than the SNP currently under test are re-

estimated i.e. the entire vector of fixed effect predictors

b~(b1,b2,:::,bJ ) is estimated, rather than fixing (b2,:::,bJ ) at

their estimated values from the first stage.

The method of Kang et al. [1] has been implemented in the

software package EMMAX. As pointed out by Lippert et al. [4],

EMMAX, along with its predecessor EMMA [41], achieves

additional computational efficiency (over and above that achieved

by simply estimating parameters s2
g and s2

e only once) by

reparameterising the likelihood in terms of a parameter

d~s2
e=s2

g (which is estimated only once) and by making clever

use of spectral decompositions. This results in a computational

complexity of O(n3zrn) at stage 1 (where r the number of

iterations i.e. the number of evaluations of the likelihood required)

together with a computational complexity of O(sn2) at stage 2,

resulting in a total computational complexity of O(n3zsn2zrn).

A similar approach to [1] and [9] was proposed by Zhang et al.

[2] and implemented in a software package TASSEL. The main

focus of the paper by Zhang et al [2] was to describe a clustering

algorithm that results in an approximation to the kinship matrix

with lower effective dimensionality, which can be used in place of

the full known or estimated kinship matrix. Similarly to EMMAX,

in TASSEL the values of s2
g and s2

e (as well as a cluster

membership variable C) are estimated under the null hypothesis

that b1~0 (at stage 1) and are then held fixed while estimating

b~(b1,b2,:::,bJ ) (at stage 2). The motivation for the clustering

approximation is to reduce computation time. However, existing

software packages (e.g. EMMAX and the mmscore and poly-

genic functions in GenABEL) that address the problem without

making such an approximation are not computationally prohib-

itively time consuming. Therefore it is unclear why use of this

approximation should be preferred. For this reason, given the

extreme similarity between the methods implemented in EMMAX

and TASSEL when no clustering is performed, we have not

included TASSEL in our comparisons.

FaST-LMM. Lippert et al. [4] developed a fast ‘exact’ LMM

implementation that, in common with EMMAX, reparameterises

the likelihood in terms of a parameter d~s2
e=s2

g, and also requires

only a single spectral decomposition at the first stage of the

algorithm, resulting in a total time complexity of O(n3zsn2zrsn).
This exact method is the default in the current (2.04) version of

FaST-LMM. (In previous versions the default was to use an

approximate method in which d is fixed to its value from fitting a

null model containing no fixed SNP effects, as is done in

EMMAX, TASSEL and FASTA, resulting in a reduced

complexity of O(n3zsn2zrn). This approximate method is now

available in FaST-LMM as an optional alternative to the exact

method). A further speed-up can be achieved in FaST-LMM by

restricting the number of SNPs used to construct the kinship

matrix W to a number less than the number of individuals.

FaST-LMM uses either maximum likelihood (ML) or restricted

maximum likelihood (REML). In early versions of FaST-LMM the

default was ML but in later versions the default became REML.

After some experimentation, we deemed ML to be the most

reliable and have used that for all results presented here.

GEMMA. Zhou and Stephens [16] implemented an exact

approach extremely similar to that of FaST-LMM in their package

GEMMA. Indeed, Zhou and Stephens themselves point out that

GEMMA should give essentially identical inference to FaST-

LMM in the same time complexity O(n3zsn2zrsn), but note that

the number of iterations (r) required to reach convergence in

GEMMA is expected to be slightly smaller than in FaST-LMM,

owing to the use of a more efficient optimization method.

GEMMA also has an attractive practical advantage of allowing the

input of imputed [42] genotype data, rather than real measured

genotype data, if desired.

MMM. Pirinen et al. [15] have implemented approximate

and exact approaches similar to the approximate and exact

approaches of FaST-LMM (and the exact approach of GEMMA)

in their package MMM. An advantage of MMM in comparison to

the other packages is that it allows the output of regression

coefficients and standard errors for the SNP effects on the (log)

odds ratio scale, making it convenient to compare or combine the

results with results from traditional case/control studies analysed

via logistic regression. In addition, MMM allows the input of

imputed genotype data rather than real measured genotype data,

if desired. MMM was used in the original analysis of the Brazilian

VL family data described in [13]. For more details on the

methodology implemented in MMM, see [15].

Mendel. An approximate (score test) LMM implementation,

suitable for analysis of GWAS data, has also been implemented in

the software package Mendel [35] (versions 13.0 and higher). A

slower (exact) LMM implementation is also available, but we only

considered the approximate test here. Mendel can a. calculate

kinship coefficients on the basis of known pedigree relationships, b.

use the full set of genome-wide SNP data to cluster people into

apparent pedigrees and then estimate kinship coefficients within

those pedigree clusters, or c. use kinship coefficients estimated for

all pairs of genotyped individuals on the basis of their full set of

genome-wide SNPs. The resulting tests should be conceptually

extremely similar to the LMM tests implemented in other software

packages such as EMMAX and FaST-LMM.

Alternative methods and software
FBAT. Traditional approaches for family-based association

analysis focus on the transmission of high-risk alleles through

pedigrees, in an approach that is closely related to traditional

linkage analysis. Indeed, the well-known transmission disequilib-

rium test (TDT) [19], which tests whether a particular allele is

transmitted preferentially from heterozygous parents to affected

offspring, was originally developed as a test of linkage in the

presence of association, rather than as a test of association per se.

In this context, by ‘linkage’ we mean the transmission from parent

to offspring of alleles in coupling at a test (marker) locus and an

unobserved causal locus, i.e. the phenomenon whereby alleles that

are in coupling (on the same haplotype) in the parent tend to be

transmitted together to the offspring, whereas by ‘association’ we

mean population-level correlation between alleles at the two loci

(usually referred to as linkage disequilibrium (LD)), i.e. the

tendency for alleles at the two loci to occur in coupling in the

founders of a pedigree.

The TDT was originally designed for the analysis of case/

parent trios (i.e. units consisting of an affected child together with

their parents) but has been extended to allow analysis of nuclear

families and larger pedigrees [20,21,23,43–46]. Here we focus on

the family-based association test (FBAT) [21,23], as implemented

in the FBAT software package. FBAT can be thought of as a

general class of test statistics of the form

S{E(S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p

where S~
P

ijTijXij and Xij is some genotype variable and Tij

some trait variable for offspring i in nuclear family j. The exact

form of FBAT thus depends on the genotype and trait coding
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used. Genotype is generally coded in allelic fashion with a variable

coded (0, 1, 2) according to the number of copies of the high-risk

allele possessed. The trait variable is constructed as Tij~Yij{mij

where Yij is coded 0/1 (for binary traits such as disease status) and

mij is an offset that can be chosen to consider transmissions to

affected offspring only (the default), or else to contrast transmis-

sions to affected offspring with transmissions to unaffected

offspring, either weighted equally (mij~0:5) or with mij chosen to

minimize the variance of test statistic. For quantitative traits, Yij

would generally correspond to the measured trait for offspring i in

nuclear family j, with mij set to equal the mean trait value or else

chosen to minimize the variance of test statistic.

Although, for binary traits, contrasting transmissions to affecteds

with transmissions to unaffecteds seems an attractive idea, in

practice this results in comparing the probability of transmission of

high-risk alleles to affected individuals (which is expected, under

the alternative hypothesis, to exceed 0.5) with an estimate of the

probability of transmission of high-risk alleles to unaffected

individuals (which is expected, under both null and alternative

hypotheses, to approximately equal 0.5, unless the effect of the risk

allele is large), rather than comparing the transmission probability

to affecteds with an assumed fixed value of 0.5. For complex

diseases, where the effects of risk alleles are likely to be modest

(allelic odds ratios in the order 1.2–1.5), this means that greater

power would be expected from the default offset that considers

transmissions to affected offspring only, without paying a penalty

for (imperfect) estimation of the expected 0.5 transmission

probability (along with a measure of uncertainty in the estimate)

from the data at hand.

By default, FBAT divides larger pedigrees into nuclear families

and constructs a test that corresponds to testing ‘linkage in the

presence of association’ [23]. The ‘-e’ option in FBAT allows the

alternative construction of a test for ‘association in the presence of

linkage’ [22], through use of an empirical variance/covariance

estimator that adjusts for the correlation among sibling genotypes

and for different nuclear families within a single pedigree. Use of

the ‘-e’ option is expected to give smaller test statistics (larger p-

values) than the default analysis, since it accounts for the fact that

the effective sample size is smaller when considering FBAT as a

test of association than as a test of linkage. Since, for complex

diseases, we are interested in maximizing the power for detection

of an effect, rather than in ensuring that the detection is genuinely

driven by association (rather than linkage) between alleles at our

test locus and the underlying unobserved causal locus, we use the

default option in all analyses presented here. From a practical

point of view, this means that any signal we detect may in fact be

marking a true effect that lies some distance away, rather than

necessarily being located in the immediate vicinity of the detected

signal.

ROADTRIPS and MQLS. Thornton and McPeek [26]

implemented a ‘RObust Association- Detection Test for Related

Individuals with Population Substructure’ in a package called

ROADTRIPS. ROADTRIPS can be thought of as an extension

of their previously-proposed Maximum Quasi-Likelihood Statistic

(MQLS) [24]. Both MQLS and ROADTRIPS construct adjusted

versions of standard case/control x2 (or Armitage Trend) tests,

adjusting for the known relatedness between individuals (that

would ordinarily cause an inflation in standard case/control tests)

through a kinship matrix that models the known pedigree

relationships. ROADTRIPS (but not MQLS) additionally makes

use of a covariance matrix based on estimated kinships (as

estimated from genome-wide SNP data) to further correct for

additional unknown relatedness and population stratification.

The ROADTRIPS test statistic takes the form:

(VT Y)2

ŝs2VTŶYV
*x2

1

Thornton and McPeek note that many commonly-used case/

control statistics can be coerced into this form. Here

Y~(Y1,Y2, . . . ,Yn)T is genotype vector at a test SNP for n
individuals (coded using an allelic coding), V is a vector of length n
coding for phenotype information (disease status) and known (or

externally estimated) relationships (see [26] for details of its

construction), ŝs2ŶY is an estimate of the null variance/covariance

matrix of Y (so that ŝs2VTŶYV is an estimate of null variance/

covariance of (VT Y)2), ŝs2 is an estimate of Var(Y) in an outbred

population and ŶY is an internally estimated matrix used to

simultaneously adjust for unknown relatedness/pedigree relation-

ship errors and population stratification.

MASTOR and GTAM. Recently, Jakobsdottir and McPeek

[25] proposed a retrospective approach (MASTOR) for analysis of

quantitative traits that can be considered essentially as a

quantitative trait version of MQLS. In common with MQLS,

kinships are assumed to be estimated on the basis of known

pedigree relationships, but in principle kinships estimated from

genome-wide SNP data could be read in instead. Jakobsdottir and

McPeek compared MASTOR to a previously-proposed LMM

method, GTAM [8], and found MASTOR to have some

advantages. The main advantage of MASTOR over GTAM

(and many other approaches) is that, in common with MQLS and

ROADTRIPS, MASTOR allows information to be gained from

individuals who are phenotyped but not genotyped. Both

MASTOR and GTAM are implemented within the MASTOR

software package. Although designed for analysis of quantitative

(rather than binary) traits, given that the spirit of recent LMM

approaches has been to apply approaches originally designed for

quantitative traits to binary traits (coded as 0 and 1), we

investigated the performance of MASTOR and GTAM when

applied to both binary and quantitative traits.

Calculation of kinship coefficients
The LMM approaches considered here, as well as methods such

as MQLS, ROADTRIPS, MASTOR and GTAM, all involve

modelling the relatedness between individuals through one or

more kinship matrices, constructed either on the basis of known

(hypothesized) pedigree relationships between individuals, or

through estimating kinships on the basis of genome-wide SNP

data (or from a subset of available genome-wide SNPs). The

precise algorithms used to estimate kinships on the basis of

genome-wide SNP data vary [36,37,47], although we have found

the kinship matrices from the different packages we considered to

be largely comparable (see Results). Most packages allow a

separation between the estimation of the kinship matrix step and

the analysis (incorporating the desired kinship matrix) step. This is

convenient as it allows a potentially different set of SNPs to be used

for estimating the kinship matrix as is used for genome-wide

association testing. It also means that kinships estimated using one

package can potentially be read in to another package at the

analysis stage, if desired. For the majority of analyses performed

here, we used the same software package (or a recommended

accompanying software package) to calculate the kinship matrix as

we used for subsequent association testing, and to estimate the

kinship matrix we used a subset of 50,129 ‘pruned’ SNPs with

minor allele frequencies w0:4 and ‘pruned’ to be in approximate
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linkage equilibrium via the - -indep 50 5 2 command in PLINK

[27]). (We found little difference between the results obtained

when using such a pruned set of SNPs and using the full genome-

wide set of SNPs, see Results).

We also explored the use of a smaller set of 1900 ‘thinned’ SNPs

to estimate kinships. This number was chosen to capitalise on the

speed-up that can be achieved in FaST-LMM by restricting the

number of SNPs used to construct the kinship matrix W to a number

less than the number of individuals. The ‘thinned’ SNPs comprised

an evenly-spaced subset of the ‘pruned’ SNPs selected based purely

on physical position using the software package MapThin (http://

www.staff.ncl.ac.uk/richard.howey/mapthin/). In addition we ex-

plored the use of the FaST-LMM-Select procedure [30], imple-

mented within the FaST-LMM package, that uses an iterative

procedure to select SNPs for inclusion in the construction of the

kinship matrix on the basis of their nominal association with

phenotype (as evaluated through a fixed effects linear regression

analysis). However, we did not find this procedure to be superior to

using either the pruned or the full set of SNPs (see Results).

Several alternative packages exist for estimating genetic

relationships from genome-wide SNP data, either for subsequent

use in LMM type analyses [48] or in order to infer pedigree

relationships as an end in itself [28]. We investigated use of the

kinship estimates output by the packages PLINK [27] and KING

[28], in comparison to those calculated internally by the various

LMM packages we had used. Another popular package is GCTA

[48]; we note that the realised relationship matrix (RRM) kinship

estimation approach used internally by FaST-LMM is theoreti-

cally equivalent to that used by GCTA.

Supporting Information

Figure S1 Comparison of estimated kinship measures and

2log10(p-values) obtained based on full, pruned and thinned

SNPs. (A) Estimated kinship measures (B) {log10 p-values

obtained. F = full set, P = pruned set, T = thinned set.

EM_BN = EMMAX (Balding-Nichols), EM_IBS = EMMAX

(IBS method), FLMM_C = FaST-LMM using covariance matrix,

FLMM_R = FaST-LMM using realised relationship matrix,

GA = GenABEL, GA_FA = GenABEL (FASTA), GA_GRG =

GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using

centred genotypes, GMA_S = GEMMA using standardised geno-

types, KING_H = KING with homogeneous population assump-

tion, KING_R = KING with robust estimation, MMM_E =

MMM using full mixed model (exact) calculation, MMM_G =

MMM using GLS approximation.

(TIF)

Figure S2 QQ plots of real VL phenotype GWAS results, using

different LMM software packages and different SNP sets for kinship

estimation. The black diagonal lines represent the line of equality.

The ‘‘theoretical’’ set used pedigree structure to derive theoretical

kinship coefficients. EM_BN = EMMAX (Balding-Nichols), EM_IB-

S = EMMAX (IBS method), FLMM_C = FaST-LMM using covari-

ance matrix, FLMM_R = FaST-LMM using realised relationship

matrix, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL

(GRAMMAR-Gamma), GMA_C = GEMMA using centred geno-

types, GMA_S = GEMMA using standardised genotypes,

MMM_E = MMM using full mixed model (exact) calculation,

MMM_G = MMM using GLS approximation, Unadj = unadjust-

ed analysis. For methods with two ways to estimate the kinships, the

same ‘‘theoretical’’ results were plotted twice. Unadjusted analysis

results were plotted once in each column only for comparison, and

did not use the kinship estimates for adjustment.

(TIF)

Figure S3 Performance of FaST-LMM-Select. Genomic control

factor (lGC ) achieved in analysis of the real disease phenotype as

different numbers of ordered SNPs are added in when calculating

the kinship matrix ( = realised relationship matrix, RRM). Method

implemented manually in FaST-LMM v2.0.

(TIF)

Figure S4 Manhattan plots for real and simulated data sets using

FaST-LMM. The points marked in red denote either the

confirmed significant region from Fakiola et al. (2013) (real

phenotype), or the regions close to the simulated strong/weak

effect SNPs (simulated phenotypes). real = real VL phenotype,

sim-D1 = simulated strong binary (disease) trait, sim-D2 =

simulated weak binary (disease) trait, sim-Q = simulated quanti-

tative trait, sim-L20 = simulated longitudinal quantitative trait

with 20 observations, sim-P20 = simulated polygenic longitudinal

quantitative trait with 20 observations.

(TIF)

Figure S5 Manhattan plots for the simulated weak binary

(disease) phenotype using FaST-LMM exact and alternative

software packages. The points marked in red denote the regions

close to the simulated weak effect SNPs. FLMM_E = FaST-LMM

using exact calculation, RT = ROADTRIPS, FBATaff = FBAT

using transmissions to affecteds only, FBATboth = FBAT using

transmissions to both affecteds and unaffecteds. Results from all

other LMM methods were indistinguishable from FLMM_E and

so are not shown. MQLS and RT gave identical results with either

1972 or 3626 individuals, as phenotypes could only be simulated

for the 1972 genotyped individuals.

(TIF)

Figure S6 Manhattan plots for the simulated strong binary

(disease) phenotype using FaST-LMM exact and alternative

software packages. The points marked in red denote the regions

close to the simulated weak effect SNPs. FLMM_E = FaST-LMM

using exact calculation, RT = ROADTRIPS, FBATaff = FBAT

using transmissions to affecteds only, FBATboth = FBAT using

transmissions to both affecteds and unaffecteds. Results from all

other LMM methods were indistinguishable from FLMM_E and

so are not shown. MQLS and RT gave identical results with either

1972 or 3626 individuals, as phenotypes could only be simulated

for the 1972 genotyped individuals.

(TIF)

Figure S7 Comparison of 2log10(p-values) using different

LMM software packages, real disease phenotypes. Plots above

the diagonal show a comparison of 2log10(p-values), with

correlations between the -log10(p-values) indicated below the

diagonal. The grey solid lines represents the line of equality; the

black dashed lines the linear regression line of the variable on the y

axis on the variable on the x axis. EM_BN = EMMAX (Balding-

Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-

LMM using approximate calculation, FLMM_E = FaST-LMM

using exact calculation, GA_FA = GenABEL (FASTA),

GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C =

GEMMA using centred genotypes, GMA_S = GEMMA using

standardised genotypes, MMM_E = MMM using full mixed

model (exact) calculation, MMM_G = MMM using GLS approx-

imation, Unadj = unadjusted analysis.

(TIF)

Figure S8 Comparison of 2log(p-values) using LMM and

alternative software packages, real disease phenotypes. Plots above

the diagonal show a comparison of 2log10(p-values), with

correlations between the 2log10(p-values) indicated below the

diagonal. The grey solid lines represent the line of equality; the
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black dashed lines the linear regression line of the variable on the y

axis on the variable on the x axis. FLMM_E = FaST-LMM using

exact calculation, MQLS1972 = MQLS using 1972 genotyped

individuals, MQLS3626 = MQLS using all 3626 individuals with

or without genotype data, RT1972 = ROADTRIPS using 1972

genotyped individuals, RT3626 = ROADTRIPS using all 3626

individuals with or without genotype data, FBATaff = FBAT using

transmissions to affecteds only, FBATboth = FBAT using trans-

missions to both affecteds and unaffecteds, MQLS_E = MQLS

using estimated (rather than theoretical) kinships.

(TIF)

Figure S9 Comparison of 2log(p-values) using LMM and

alternative software packages, simulated weak binary (disease)

phenotype. Plots above the diagonal show a comparison of

–log10(p-values), with correlations between the –log10(p-values)

indicated below the diagonal. The grey solid lines represent the

line of equality; the black dashed lines the linear regression line of

the variable on the y axis on the variable on the x axis. The colours

denote: red = the two weak effect SNPs, magenta = SNPs within

500 kb of the weak effect SNPs, blue = 22 polygenic SNPs, green

= SNPs within 500 kb of the polygenic SNPs, black = all other

SNPs. Because the black/green/blue SNPs were plotted before

the magenta/red SNPs, they may be obscured by the latter.

FLMM_E = FaST-LMM using exact calculation, MQLS =

MQLS using 1972 or 3626 individuals, RT = ROADTRIPS

using 1972 or 3626 individuals, FBATaff = FBAT using transmis-

sions to affecteds only, FBATboth = FBAT using transmissions to

both affecteds and unaffecteds. MQLS and RT gave identical

results with either 1972 or 3626 individuals, as phenotypes could

only be simulated for the 1972 genotyped individuals.

(TIF)

Figure S10 Comparison of 2log10(p-values) obtained from

FaST-LMM using alternative kinship estimates, real disease

phenotypes. Plots above the diagonal show a comparison of

–log10(p-values), with correlations between the –log10(p-values)

indicated below the diagonal. The grey solid lines represents the

line of equality; the black dashed lines the linear regression line of

the variable on the y axis on the variable on the x axis.

KING_H = KING homogeneous method, KING_R = KING

robust method, Ped = theoretical kinship estimates based on

pedigree information, FLMM_R = FaST-LMM’s own realised

relationship matrix, Unadj = unadjusted, Wrong = misspecified

kinships, chosen to be inversely related to the true kinship value.

(TIF)

Figure S11 Power and type 1 error of different LMM methods

applied to 462 Brazilian founders. Powers (left hand plots) are

defined as the proportion of replicates (out of 1000) in which both

simulated disease loci are detected, with ‘detection’ corresponding

to any SNP within 40 kb of the simulated disease locus reaching

the specified p-value threshold. Type 1 errors (right hand plots) are

defined as the proportion of null SNPs (out of 20,000 = 20 null

SNPs times 1000 simulation replicates) that reach the specified p-

value threshold. Horizontal dashed lines indicate the target p-value

thresholds (i.e. the expected type 1 error rates).

(TIF)

Table S1 Genomic control factors achieved in analysis of the

real data, or a single replicate of the simulated data, when feeding

externally estimated kinships into FaST-LMM.

(PDF)

Table S2 Computational speed and ease of use of various

packages.

(PDF)

Table S3 Concordance between top SNPs identified by different

LMM methods when using 462 founder individuals.

(PDF)

Text S1 Membership of Wellcome Trust Case Control Consor-

tium 2.

(DOC)

Author Contributions

Conceived and designed the experiments: JMB HJC. Performed the

experiments: JEa ENM MF HJC. Analyzed the data: JEa ENM MF HJC.

Contributed reagents/materials/analysis tools: SMBJ JMB. Wrote the

paper: JEa MF JMB HJC.

References

1. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, et al. (2010) Variance

component model to account for sample structure in genome-wide association

studies. Nat Genet 42: 348–354.

2. Zhang Z, Ersoz E, Lai CQ, Todhunter J R, Tiwari HK, et al. (2010) Mixed

linear model approach adapted for genome-wide association studies. Nat Genet

42: 355–360.

3. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, et al. (2011)

Genetic risk and a primary role for cell-mediated immune mechanisms in

multiple sclerosis. Nature 476: 214–219.

4. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, et al. (2011) FaST

linear mixed models for genome-wide association studies. Nature Methods 8:

833–835.

5. Fisher R (1918) The correlation between relatives on the supposition of

Mendelian inheritance. Trans R Soc Edin 52: 399–433.

6. Henderson CR (1953) Estimation of variance and covariance components.

Biometrics 9: 226–252.

7. Boerwinkle E, Chakraborty R, Sing CF (1986) The use of measured genotype

information in the analysis of quantitative phenotypes in man. I. Models and

analytical methods. Ann Hum Genet 50: 181–94.

8. Abney M, Ober C, McPeek MS (2002) Quantitative-trait homozygosity and

association mapping and empirical genomewide significance in large, complex

pedigrees: fasting serum-insulin level in the Hutterites. Am J Hum Genet 70:

920–934.

9. Chen WM, Abecasis GR (2007) Family-based association tests for genomewide

association scans. Am J Hum Genet 81: 913–926.

10. Aulchenko YS, de Koning DJ, Haley C (2007) Genomewide rapid association

using mixed model and regression: a fast and simple method for genomewide

pedigree-based quantitative trait loci association analysis. Genetics 177: 577–

585.

11. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. (2006) A unified

mixed-model method for association mapping that accounts for multiple levels of
relatedness. Nat Genet 38: 203–208.

12. Amin N, van Duijn CM, Aulchenko YS (2007) A genomic background based
method for association analysis in related individuals. PLoS One 2: e1274.

13. Fakiola M, Strange A, Cordell HJ, Miller EN, Pirinen M, et al. (2013) Common

variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with
susceptibility to visceral leishmaniasis. Nat Genet 45: 208–213.

14. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS

(2012) Rapid variance components-based method for whole-genome association
analysis. Nat Genet 44: 1166–1170.

15. Pirinen M, Donnelly P, Spencer C (2013) Efficient computation with a linear

mixed model on large-scale data sets with applications to genetic studies. Annals
of Applied Statistics 7: 369–390.

16. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for
association studies. Nat Genet 44: 821–824.

17. Almasy L, Dyer TD, Peralta JM, Jun G, Wood AR, et al. (2014) Data for Genetic

Analysis Workshop 18: Human whole genome sequence, blood pressure, and
simulated phenotypes in extended pedigrees. Genet Epidemiol in press.

18. Eu-ahsunthornwattana J, Howey RAJ, Cordell HJ (2014) Accounting for

relatedness in family-based association studies: application to GAW18 data.
BMC Proceedings 8(Suppl 1):S79.

19. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage

disequilibrium: The insulin gene region and insulin–dependent diabetes mellitus.
Am J Hum Genet 52: 506–516.

20. Rabinowitz D, Laird NM (2000) A unified approach to adjusting association

tests for population admixture with arbitrary pedigree structure and arbitrary
missing marker information. Hum Hered 50: 211–223.

21. Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family
based tests of association. Genet Epidemiol Suppl 19: S36–S42.

Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 19 July 2014 | Volume 10 | Issue 7 | e1004445



22. Lake SL, Blacker DB, Laird NM (2000) Family-based tests of association in the

presence of linkage. Am J Hum Genet 67: 1515–1525.
23. Horvath S, Xu X, Laird NM (2001) The family based association test method:

strategies for studying general genotype–phenotype associations. Eur J Hum

Genet 9: 301–306.
24. Thornton T, McPeek MS (2007) Case-control association testing with related

individuals: a more powerful quasi-likelihood score test. Am J Hum Genet 81:
321–337.

25. Jakobsdottir J, McPeek MS (2013) MASTOR: Mixed-Model Association

Mapping of Quantitative Traits in Samples with Related Individuals.
Am J Hum Genet 92: 652–666.

26. Thornton T, McPeek MS (2010) ROADTRIPS: case-control association testing
with partially or completely unknown population and pedigree structure.

Am J Hum Genet 86: 172–184.
27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.
28. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, et al. (2010) Robust

relationship inference in genome-wide association studies. Bioinformatics 26:
2867–2873.

29. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55: 997–1004.
30. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, et al. (2012)

Improved linear mixed models for genome-wide association studies. Nature
Methods 9: 525–526.

31. Lippert C, Quon G, Kang EY, Kadie CM, Listgarten J, et al. (2013) The
benefits of selecting phenotype-specific variants for applications of mixed models

in genomics. Sci Rep 3: 1815.

32. Ettinger NA, Duggal P, Braz RF, Nascimento ET, Beaty TH, et al. (2009)
Genetic admixture in Brazilians exposed to infection with Leishmania chagasi.

Ann Hum Genet 73: 304–313.
33. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of

ancestry in unrelated individuals. Genome Research 19: 1655–1664.

34. Furlotte NA, Eskin E, Eyheramendy S (2012) Genome-wide association
mapping with longitudinal data. Genet Epidemiol 36: 463–471.

35. Lange K, Papp JC, Sinsheimer JS, Sripracha R, Zhou H, et al. (2013) Mendel:

the Swiss army knife of genetic analysis programs. Bioinformatics 29: 1568–
1570.

36. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in

genetic association studies. Statistical Science 24: 451–471.
37. Speed D, Hemani G, Johnson MR, J BD (2012) Improved heritability estimation

from genome-wide SNPs. Am J Hum Genet 91: 1011–1021.
38. Wang K, Hu X, Peng Y (2013) An analytical comparison of the principal

component method and the mixed effects model for association studies in the

presence of cryptic relatedness and population stratification. Hum Hered 76: 1–
9.

39. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library
for genome-wide association analysis. Bioinformatics 23: 1294–1296.

40. Abecasis GR, Cherney SS, Cookson WO, Cardon LR (2002) Merlin-rapid
analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30: 97–

101.

41. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, et al. (2008)
Efficient control of population structure in model organism association mapping.

Genetics 178: 1709–1723.
42. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint

method for genome-wide association studies by imputation of genotypes. Nat

Genet 39: 906–913.
43. Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and

association in general pedigrees: the pedigree disequilibrium test. Am J Hum
Genet 67: 147–154.

44. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM (2004) PBAT: tools
for family-based association studies. Am J Hum Genet 74: 367–369.

45. Dudbridge F (2008) Likelihood-based association analysis for nuclear families

and unrelated subjects with missing genotype data. Hum Hered 66: 87–98.
46. Dudbridge F, Holmans PA, Wilson SG (2011) A flexible model for association

analysis in sibships with missing genotype data. Ann Hum Genet 75: 428–438.
47. Powell JE, Visscher P, Goddard ME (2010) Reconciling the analysis of IBD and

IBS in complex trait studies. Nat Rev Genet 11: 800–805.

48. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-
wide complex trait analysis. Am J Hum Genet 88: 76–82.

Accounting for Relatedness in Genome-Wide Association Studies

PLOS Genetics | www.plosgenetics.org 20 July 2014 | Volume 10 | Issue 7 | e1004445


