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1  |  INTRODUC TION

Nonspecific lipid transfer proteins (LTPs) were first isolated from po-
tato tubers and identified by Kader (1975). LTPs are ubiquitous small 
proteins (molecular weights ranging from 6.5 to 10 kDa) that exist in 
all terrestrial plants (Salminen et al., 2016). They have eight cysteine 
residue motifs that form four conserved disulphide bridges, which 
help stabilize the peptide tertiary structure, and many α- helices with 
a central hydrophobic cavity capable of binding to a variety of lipids 
such as fatty acids, fatty acyl- CoA, phospholipids, and prostaglandin 
B2 (Madni et al., 2020; Salminen et al., 2016). LTPs are encoded by 
large gene families and expressed abundantly in a variety of plant 
tissues. Almost all nonspecific LTPs carry an N- terminal signal that 
localizes the protein at the subcellular level (Edstam et al., 2011; 
Missaoui et al., 2022). Traditionally, LTPs are classified according 
to molecular weight or sequence identity (Boutrot et al., 2008; 
Kalla et al., 1994). A more recent classification system by Edstam 

et al. (2011) uses five major types (LTP1, LTP2, LTPc, LTPd and LTPg) 
and five minor types (LTPe, LTPf, LTPh, LTPj and LTPk) based on the 
position of a conserved intron, the amino acid sequence identity, 
and posttranslational modifications. Expression of many nonspecific 
LTPs can be induced by multiple biotic and abiotic stresses, including 
disease, salinity, temperature and drought (Akhiyarova et al., 2021; 
Duo et al., 2021; Safi et al., 2015; Zhao et al., 2021). In the past two 
decades, several specific LTP functions have been identified, includ-
ing defence against pathogens (Ben et al., 2021; Chen et al., 2021; 
McLaughlin et al., 2021; Schmitt et al., 2018), abiotic stress response 
(Dhar et al., 2020; Hairat et al., 2018; Zhao et al., 2020), pollen de-
velopment (Andre et al., 2022, Tao et al., 2021), cutin wax formation 
(Debono et al., 2009; Kim et al., 2012; Lee et al., 2009; Liu et al., 2014), 
and seed development and germination (Wang et al., 2015). This evi-
dence and the long evolutionary history of LTPs further corroborate 
their likely roles in plant stress adaptation and defence. For a de-
tailed summary of LTP classification, three- dimensional structures, 
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Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine- rich proteins that play nu-
merous functional roles in plant growth and development, including cutin wax formation, 
pollen tube adhesion, cell expansion, seed development, germination, and adaptation 
to changing environmental conditions. LTPs contain eight conserved cysteine residues 
and a hydrophobic cavity that provides a wide variety of lipid- binding specificities. As 
members of the pathogenesis- related protein 14 family (PR14), many LTPs inhibit fungal 
or bacterial growth, and act as positive regulators in plant disease resistance. Over the 
past decade, these essential immunity- related roles of LTPs in plant immune processes 
have been documented in a growing body of literature. In this review, we summarize 
the roles of LTPs in plant– pathogen interactions, emphasizing the underlying molecular 
mechanisms in plant immune responses and specific LTP functions.
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and common functions in plant growth and development, see 
Salminen et al. (2016). In this review, we summarize current knowl-
edge of LTPs in plant– pathogen interactions and discuss interesting 
future research directions.

2  |  ROLES OF LTPs IN DIREC T INHIBITION 
OF FUNGAL AND BAC TERIAL GROW TH 
OR SPORE GERMINATION IN VIVO AND IN 
VITRO

Several LTPs have been found to directly inhibit the growth of 
pathogens in vitro. For example, recombinant Brassica rapa LTP2.1 
displays direct antimicrobial activity against a wide range of plant 
pathogens (Schmitt et al., 2018), LTPs from Leonurus japonicus inhib-
ited growth of filamentous fungi, bacteria and yeast in vitro (Yang 
et al., 2006), LTP4 from Triticum durum has a significant antibacte-
rial effect against several gram- positive and gram- negative bacteria 
(Ben et al., 2021), recombinant Arabidopsis thaliana LTP4.4 exerts po-
tent antifungal activity against Fusarium graminearum (McLaughlin 
et al., 2021), and LTPs from Gossypium hirsutum inhibit growth in a 
wide range of fungi (Chen et al., 2021).

As mentioned in the Introduction, LTPs contain four α- helices 
that are stabilized by disulphide bonds formed by eight cysteine res-
idues. LTPs are presumably able to bind lipids and other nonpolar 
substances due to these hydrophobic cavities. Several methods have 
been used to determine the three- dimensional structures of various 
LTPs (Salminen et al., 2016). For example, in vitro lipid- binding ability 

has been demonstrated in numerous LTPs, including those from 
B. rapa (LTP2.1), wheat and mung bean (Schmitt et al., 2018; Sun 
et al., 2008; Wang et al., 2004). Madni et al. (2020) analysed crys-
tal structures of Solanum melongena LTPs to propose a lipid trans-
port model in which the LTP N- terminus binds lipids, resulting in the 
opening of the hydrophobic cavity. The lipids are then internalized 
into the hydrophobic cavity and expelled from the LTP C- terminus 
(Figure 1). This model suggests that LTPs may help increase the po-
rosity of fungal membranes by bleaching lipids.

Although the antibacterial properties of LTPs appear to be 
closely associated with lipid- binding activity, in some cases the an-
tifungal properties of some LTPs have not been strongly correlated 
with their lipid- binding activity (Sun et al., 2008). Ace- AMP1, an an-
tifungal protein in onion seeds, shares some structural similarities 
with plant LTPs but does not bind lipids (Tassin et al., 1998). Rice 
LTP110 with defective lipid- binding activity caused by site- directed 
mutagenesis retains some antifungal activity (Ge et al., 2003). These 
findings suggest that LTPs have other antifungal mechanisms. The 
cationic residues of LTPs may be associated with growth inhibition 
of pathogens. For example, De Samblanx et al. (1997) hypothesized 
that positively charged patches generated by cationic residues on 
the LTP surface interact with specific negatively charged membrane 
domains of fungal pathogens, resulting in alteration and destabili-
zation of the membrane structure (Figure 1). Subsequent in vitro 
studies have supported this hypothesis: highly conserved cationic 
residues of mung bean LTP1 contribute to its antimicrobial activity 
(Lin et al., 2005) and the antibacterial activity of purified wheat LTPs 
in vitro is correlated with several cationic residues (Sun et al., 2008).

F I G U R E  1  Lipid transfer protein (LTP) roles in plant and bacteria interactions. LTPs destroy bacterial cell membranes using lipid transfer 
properties or their highly conserved cationic residues. LTPs might directly bind to constituent proteins of the bacterial type III secretion 
system to inhibit bacteria and secrete effectors into host cells. LTPs may regulate expression of salicylic acid-  and N- hydroxy- pipecolic 
acid- dependent genes by regulating the homeostasis of abscisic acid and salicylic acid. LTPs also might regulate long- distance transport 
of salicylic acid by participating in cuticle synthesis. Finally, LTPs contribute to pathogen resistance by maintaining integrity of adhesion 
between the cuticle and underlying cell wall. ABA, abscisic acid; CDPKs, calcium- dependent protein kinases; LRR, leucine- rich repeat; 
PAMPs, pathogen- associated molecular patterns; RLKs, receptor- like kinases; SA, salicylic acid; T3SS, type III secretion system.
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In vitro studies indicate that phytopathogen growth is inhibited 
by numerous LTPs in a wide variety of plant species (Ben et al., 2021; 
Chen et al., 2021; McLaughlin et al., 2021). Overexpression of var-
ious LTPs promotes resistance to bacterial and fungal infections in 
plants (Ali et al., 2020; Sarowar et al., 2009; Schmitt et al., 2018). 
LTPs can also interact with other proteins in plant cells (Lim 
et al., 2016; Yu et al., 2013), possibly inhibiting pathogens by in-
teracting with their target proteins. Microbial pathogens secrete 
a wide range of effectors capable of inactivating host proteins, or 
inhibiting expression of host pathogenesis- related (PR) genes, via 
their secretion systems (Deng et al., 2017, Lasica et al., 2017). The 
type III secretion system, in particular, is involved in modulating nu-
merous cellular processes, including cytoskeletal functions, mem-
brane trafficking and cell death (Jing et al., 2021). Ali et al. (2020) 
demonstrated a resistance role of AtLTPg5 in resistance against 
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in 
Arabidopsis, showing that ltpg5 plants are more susceptible to Pst 
DC3000, and that PATHOGENESIS- RELATED GENE 1 (PR1) expres-
sion level decreases in Pst DC3000- infected ltpg5 plants. Similarly, 
we observed reduced expression levels of many PR genes in P. sy-
ringae pv. maculicola- infected ltp mutants (authors' unpublished 
data), suggesting the presence of PR gene expression inhibitors in 
mutants infected by phytopathogenic bacteria. A likely scenario is 
that plant LTPs directly bind to and inhibit constituent proteins of 
the bacterial secretion system. Loss of LTP function thus allows 
bacteria to secrete more effectors into host cells (Figure 1).

Many studies have demonstrated the ability of LTPs to inhibit 
microbial pathogen activity in vitro. Whether the same mechanisms 
underlie antimicrobial activity in vivo remains unclear. LTP overex-
pression has been repeatedly shown to enhance plant resistance to 
bacteria, fungi, viruses and arthropod pests; examples include LTPs in 
Arabidopsis (Ali et al., 2020), Capsicum annuum (Sarowar et al., 2009), 
Triticum aestivum (Zhu et al., 2012), and B. rapa (Schmitt et al., 2018). 
Loss of glycosylphosphatidylinositol- anchored lipid transfer protein 
(LTPg)1, LTPg2, LTPg5, or LTPg6 function in Arabidopsis increases 
susceptibility to epidermal cell wall penetration by Blumeria graminis 
f. sp. hordei (Bgh) (Fahlberg et al., 2019). LTPg1 is located on papillae, 
and observations of cell wall reinforcement at attempted Bgh pen-
etration sites suggest that LTPg1 transports wax monomers to en-
hance papillary cuticular thickness, thereby blocking Bgh infection. 
However, Bgh infection does not alter the composition of cuticular 
wax in ltpg1 mutants, suggesting that LTPg1 exerts a direct antimi-
crobial effect.

3  |  LTPs CONTRIBUTE TO PL ANT 
RESISTANCE RESPONSES BY REGUL ATING 
CUTICUL AR WA X ACCUMUL ATION

The plant cuticle, which consists of a lipophilic cutin polymer matrix 
and wax, is the primary barrier against pathogen invasion. Cuticular 
wax is composed of long- chain fatty acids and their derivatives. 
The cuticle's mechanical strength and viscoelastic properties help 

prevent pathogen infection (Hoffmann- Benning & Kende, 1994; Lee 
et al., 2009; Riederer & Schreiber, 2001). Plant LTPs are generally 
located on the cell walls, suggesting involvement in the transport 
of cutin monomers and wax (Pyee & Kolattukudy, 1995). In tobacco 
plants, cuticular wax accumulation is associated with increased LTP 
expression (Cameron et al., 2006). In Arabidopsis, LTPg1 plays a role 
in cuticular lipid accumulation (Debono et al., 2009; Lee et al., 2009). 
Loss of LTPg1 function alters cuticular lipid composition but not total 
wax or cutin monomer loads. Moreover, the cuticle of ltpg1 plants 
is disorganized and diffuse relative to the wild- type, indicating that 
LTPg1 helps maintain the cuticular layer structure (Lee et al., 2009). 
LTPg2 and LTPg6 function similarly to LTPg1 in epicuticular wax 
accumulation (Kim et al., 2012; Lee et al., 2009). BraLTP1 is involved 
in epicuticular wax deposition in Brassica napus (Liu et al., 2014), 
and ltpg1 gene knockdown results in increased susceptibility to the 
fungal pathogen Alternaria brassicicola (Lee et al., 2009). The effects 
of these LTPs on wax accumulation in plants thus are evidently 
related to their ability to enhance pathogen resistance.

A recent study found that LTPs play a major structural role in 
maintaining the integrity of adhesion between the cuticle (mainly hy-
drophobic) and underlying cell wall (hydrophilic) (Jacq et al., 2017). 
Arabidopsis LTP2 is localized in the cell wall and has only a minor 
effect on cuticular composition. However, ltp2 plants have a disor-
ganized ultrastructure and increased permeability at the cuticle– cell 
wall interface. In addition, LTP2 expression in Arabidopsis is induced 
by the necrotrophic fungus Botrytis cinerea and soil bacterium 
Agrobacterium tumefaciens (Chassot et al., 2007), further suggesting 
that LTP2 contributes to pathogen resistance by maintaining integ-
rity between the cuticle and the cell wall (Figure 1).

In addition to its function as a physical barrier against microbial 
invasion, the cuticle plays important roles in defensive signalling 
and systemic acquired resistance (SAR) (Chassot et al., 2007; Xia 
et al., 2009, 2010, 2012). In A. thaliana, expression of a cell wall- 
targeted fungal cutinase induces alteration of the cuticular struc-
ture and enhances resistance to B. cinerea. Resistance responses 
in cutinase- expressing plants are associated with increased fungi-
toxic activity and expression of PR genes (LTPs, protein inhibitor 
gene families, peroxidases), but such responses are independent 
of salicylic acid (SA)- , ethylene-  and jasmonic acid (JA)- mediated 
signal transduction pathways (Chassot et al., 2007). The cuticle 
also plays a critical role in SAR induction (Lim et al., 2020; Xia 
et al., 2009). Loss functions of cuticle synthesis- related proteins, 
such as acyl carrier protein 4 and long- chain acyl- coA synthetase 2, 
result in compromised SAR (Xia et al., 2009). Another study found 
that an intact cuticle is necessary for active transport of SA, an 
essential defensive hormone (Lim et al., 2020). A cuticle- defective 
mutant shows disruption of long- distance transport of SA from 
SAR- inducing tissues to systemic tissues, which reduces accumu-
lation of pipecolic acid (an SAR inducer) in distal tissues. LTPs also 
appear to be involved in cuticle synthesis (Debono et al., 2009; 
Kim et al., 2012; Lee et al., 2009). Thus, it is reasonable to spec-
ulate that LTPs mediate broad- spectrum defensive signalling by 
regulating lipid export from cuticle (Figure 1).
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4  |  ROLE OF LTPs IN SYSTEMIC 
ACQUIRED RESISTANCE

SAR is an inducible defensive response of plants triggered by localized 
pathogen attack. It can induce immunity to subsequent pathogen in-
fection in the whole plant within a few days (Schnake et al., 2020; Zhou 
et al., 2021). Some long- distance signals synthesized at the infection 
site during SAR can be translocated to systemic tissues via phloem 
or volatilization to induce disease resistance (Chanda et al., 2011; 
Chaturvedi et al., 2012; Jung et al., 2009; Riedlmeier et al., 2017). 
Maldonado et al. (2002) reported that DEFECTIVE IN INDUCED 
RESISTANCE 1 (DIR1), an LTP, plays a role in the transmission of mo-
bile SAR signals in Arabidopsis. DIR1 can bind lipids with high affinity 
(Lascombe et al., 2008), suggesting that mobile SAR signals contain 
lipids. Further studies confirmed that G3P or its lipid derivatives 
are mobile SAR signals (Chanda et al., 2011). DIR1 is translocated 
to systemic leaves via plasmodesmata in the presence of glycerol- 
3- phosphate (G3P) and, conversely, G3P translocation requires 
DIR1, indicating that SAR establishment depends on long- distance 
transport of DIR1 in conjunction with G3P or its derivatives (Chanda 
et al., 2011). Another LTP, DIR- like, is also translocated to systemic 
leaves via the phloem and in some cases DIR- like substitutes for DIR1 
(Champigny et al., 2013). In addition to G3P- derived lipid signalling, 
DIR1 also participates in dehydroabietinal- induced SAR (Figure 2), 
and a dir1 mutant was found to be defective in dehydroabietinal- 
induced systemic immunity (Chaturvedi et al., 2012).

Like DIR1, Azelaic Acid Induced 1 (AZI1) is an LTP that plays a sim-
ilar role in the transfer of long- distance SAR signalling. Loss of AZI1 
function results in loss of systemic immunity triggered by pathogens 
or azelaic acid (AzA), a long- distance SAR signal (Jung et al., 2009). 
AZI1 and DIR1 both mediate long- distance transport of azelaic 
acid and G3P. DIR1 contains two Src homology 3 domains involved 

in promoting protein interactions (Gao et al., 2021; Lascombe 
et al., 2008), suggesting a possible AZI1– DIR1 interaction. The AZI1– 
DIR1 interaction has been confirmed by bimolecular fluorescence 
complementation and co- immunoprecipitation (co- IP) assays (Yu 
et al., 2013). AZI1 and DIR1 functions are essential for G3P accumu-
lation; conversely, G3P regulates AZI1 and DIR1 transcription. These 
findings demonstrate that SAR is regulated by an intricate regulatory 
feedback loop among G3P, DIR1 and AZI1 (Yu et al., 2013).

Early Arabidopsis Aluminum Induced 1 (EARLI1) is an AZI1 homo-
log that can form complexes with AZI1 and DIR1, and is functionally 
involved in SAR (Cecchini et al., 2015). AZI1 and DIR1 are colocalized 
at perinuclear endoplasmic reticulum, plasmodesmata, and chloro-
plast/ endoplasmic reticulum contact sites. AZI1 also is located on 
plastids (e.g., intracellular endosymbiotic cyanobacteria, such as 
chloroplasts and chromoplasts), whereas DIR1 is not, indicating a 
distinction in their particular functions (Cecchini et al., 2021). Live 
cell imaging has revealed the presence of AZI1 in vesicle- like struc-
tures that move rapidly back and forth between chloroplasts and cy-
toplasm. Plastids showed elevated AZI1 levels during SAR, and move 
in close association with endoplasmic reticulum transcytoplasmic 
strands connecting chloroplasts, endoplasmic reticulum, and plasma 
membrane (Cecchini et al., 2015). Chloroplasts serve as synthesis 
sites of putative lipid signals (Cecchini et al., 2015). Observed AZI1 
movement patterns suggest that it facilitates transport of SAR sig-
nals synthesized in chloroplasts (Figure 2).

Further studies showed that azelaic acid and G3P transport 
occurs via plasmodesmata and is regulated by plasmodesmata- 
localizing proteins (PDLP) 1 and 5 (Lim et al., 2016). PDLP1 inter-
acts with AZI1 but not with DIR1. These findings indicate that AZI1 
transports SAR signals synthesized in chloroplasts to plasmodes-
mata via membrane vesicles, and DIR1 (or DIR1/AZI1) complexed 
with lipid signals is subsequently transported to systemic sites via 

F I G U R E  2  A schematic model describing the proposed functions for lipid transfer proteins (LTPs) in transporting lipid- derived systemic 
acquired resistance (SAR) signals. During priming induction, MPK3/MPK6 promotes accumulation of AZI1 in plastids. AZI1/EARLI1 
facilitates transport of SAR lipid signalling to the plasmodesmata (PD). Then, AZI1 interacts with plasmodesmata- localizing protein 1 (PDLP1) 
and DIR1 in the plasmodesmata, transferring lipid signals to DIR1. The DIR1 and lipid signal complex is transferred to adjacent and systemic 
cells via the plasmodesmata. Lipid signalling then induces defence responses or transfer to AZI1 to further translocate SAR signals to 
other cells. Monoterpene (MT) induces a defence response via volatilized systemic tissues and neighbouring plants, where AZI1 mediates 
monoterpene- induced defensive signal propagation. DIR1 is involved in dehydroabietinal (DA)- induced SAR. AZI1 also might regulate 
systemic stomatal density (SD) via perception or transport of an unknown SAR signal (US).
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plasmodesmata (Figure 2). This concept is consistent with the ability 
of DIR1 to move through phloem (Chanda et al., 2011), and the en-
richment of AZI1 in phloem sap during SAR (Pitzschke et al., 2016). 
Recent studies show that AZI1 function in SAR is regulated by phos-
phorylation/dephosphorylation. Mitogen- Activated Protein Kinase 
3 and 6 (MPK3/6) promote AZI1 accumulation in plastids during 
priming induction and are functionally involved in systemic immu-
nity (Cecchini et al., 2021; Pitzschke et al., 2014; Figure 2).

Besides transporting SAR activators via the pholem, AZI1 also 
is involved in defensive signal propagation between neighbouring 
plants. Riedlmeier et al. (2017) identified SAR- associated volatile or-
ganic compounds emitted from Arabidopsis rosettes in response to 
P. syringae AvrRpm1. These compounds (e.g., α-  and β- pinene), when 
volatilized, induce defensive responses in neighbouring plants, in-
cluding accumulation of reactive oxygen species and expression of 
SA-  and SAR- related genes. Such defensive signals do not increase in 
azi1 mutants however, suggesting that AZI1 mediates monoterpene- 
induced defensive signal propagation. AZI1 also plays a role in trans-
mitting systemic stomatal density response signals, which can inhibit 
pathogens by reducing stomatal density in systemic leaves (Dutton 
et al., 2019). See Figure 2 for an overview.

Protein– protein interactions play key roles in the transmission 
of stress signals. As mentioned above, DIR1 and AZI1 have im-
portant signalling functions in plant systemic immune processes. 
Further identification of AZI1-  and DIR1- interacting proteins is 
therefore necessary to understand their function in plant sys-
temic immune responses. For example, DIR1 is translocated from 
pathogen- inoculated tissues to systemic tissues via plasmodesmata 
(Lim et al., 2016). Identification of the receptor protein for DIR1 in 
systemic tissues would help to clarify the transmission mechanism 
of SAR signals. Two useful methods for identifying LTP- interacting 
proteins are the yeast two- hybrid system and co- IP coupled with 
high- resolution mass spectrometry. AZI1 and DIR1 also have been 
confirmed to transport the putative lipid SAR long- distance signaling 
(Chanda et al., 2011; Maldonado et al., 2002). Thus, identification 
of lipids specifically bound by AZI1 and DIR1 during SAR induction 
is useful for identifying new SAR long- distance signals. In the yeast 
Saccharomyces cerevisiae, the binding lipids of 13 LTPs were identi-
fied by co- IP coupled with metabolomics based on high- resolution 
mass spectrometry (Maeda et al., 2013). This method could also be 
used to identify bonding lipids of AZI1, DIR1 and other LTPs.

5  |  ROLE OF LTPs IN SIGNAL E XCHANGE 
BET WEEN HOST PL ANT AND PAR A SITIC 
PATHOGENS

Leguminous plants are characterized by the ability to inter-
act with rhizobia and produce nitrogen- fixing organs (nodules). 
Medicago truncatula N5 (MtN5), a root- specific LTP in the leg-
ume M. truncatula, is involved in symbiotic interaction between 
M. truncatula and Ensifer meliloti (formerly Sinorhizobium meliloti), 
and its expression is induced during such interaction (Pii et al., 

2009). MtN5 production is induced in the early stage of E. me-
liloti infection and localized to mature nodules. The number of 
nodules produced in response to E. meliloti infection is higher in 
MtN5- overexpressing lines and lower in MtN5- knockdown lines. 
MtN5 displays lipid- binding activity, and recombinant MtN5 binds 
lyso- phosphatidylcholine in vivo (Pii et al., 2009). Phospholipase 
D, a key protein in arbuscular mycorrhizal symbiosis (Charron 
et al., 2004; Drissner et al., 2007), is functionally involved in 
MtN5 induction in E. meliloti- inoculated roots (Pii et al., 2012). 
Together, these findings indicate LTP involvement in the signal 
exchange between host plant and rhizobia.

LTP AsE246, similar to MtN5, is required for nodule organogene-
sis in Astragalus sinicus (Chinese milk vetch) (Lei et al., 2014). AsE246 
is expressed specifically in nodules and binds the plant- synthesized 
membrane lipid digalactosyldiacylglycerol (DGDG) in vivo. AsE246 
and DGDG are colocalized in the symbiosomal membrane. RNAi 
silencing of AsE246 expression in A. sinicus leads to reductions in 
the levels of phosphatidylcholine, phosphatidylethanolamine, phos-
phatidylinositol and DGDG. AsE246 knockdown results in decreased 
lipid contents in nodules, fewer nodule primordia and mature nod-
ules, and fewer infection threads (Lei et al., 2014), suggesting that 
it assists lipid transport across the symbiosomal membrane and is 
essential for effective legume- rhizobium symbiosis in A. sinicus. The 
high- temperature protein G (HtpG) in Mesorhizobium huakuii inter-
acts with AsE246 during legume- rhizobium symbiosis and affects 
the symbiosomal lipid content in root nodules. It also assists in nod-
ule development and nitrogen fixation (Zhou et al., 2019).

Most vascular plants benefit from symbiosis with mutualistic 
arbuscular mycorrhizal fungi (AMF), which facilitate nutrient and 
water uptake (Jiang et al., 2017). In return for mineral nutrients, 
plants transfer fixed carbon to AMF. Recent studies report that fatty 
acids synthesized in the host plants also are delivered to AMF and 
play essential roles in sustaining mycorrhizal colonization (Bravo 
et al., 2017; Luginbuehl et al., 2017; Rich et al., 2021). Fatty acids 
transfer depends on the ATP binding cassette in the transporter- 
mediated lipid export pathway (Jiang et al., 2017). Furthermore, the 
symbiotic transfer of lipids in bryophytes is regulated by ortholo-
gous genetic pathways, similar to vascular plants, indicating its con-
servation across land plants (Rich et al., 2021). Based on their lipid 
transfer function, it is thus reasonable to speculate that LTPs also 
would play important roles in mycorrhizal colonization by transfer-
ring lipids from host plants to AMF.

6  |  LTPs MEDIATE SIGNAL 
TR ANSMISSION IN ABSCISIC ACID 
SIGNALLING PATHWAY

Stomatal movement is regulated by various phytohormones, 
including SA, abscisic acid (ABA), and JA (Dutton et al., 2019, Xiang 
et al., 2021). ABA in particular plays a crucial role in controlling 
stomatal movements (Huang et al., 2021). Its content is elevated at 
pathogen infection sites to mediate closure of stomata and prevent 
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further pathogen entry (David et al., 2019; Ding et al., 2016). 
StLTP10, a potato LTP, plays a key role in regulating Phytophthora 
infestans- triggered stomatal closure by interacting with Pyrabatin 
Resistance 1- Like 4 PYL4, an ABA receptor (Wang et al., 2021). 
StLTP10 biosynthesis is induced by P. infestans and phytohormones 
SA, ABA, and methyl salicylate, and StLTP10 overexpression 
enhances resistance to P. infestans in potato. Yeast two- hybrid and 
bimolecular fluorescence complementation assays have confirmed 
this StLTP10– PYL4 interaction (Wang et al., 2021). StLTP10 recruits 
PYL4 to plant cell membranes and acts synergistically with PYL4 to 
induce stomatal closure in response to P. infestans infection (Wang 
et al., 2021) (Figure 3). Like StLTP10, another study similarly reports 
that AtLTP3 positively regulates ABA biosynthesis in Arabidopsis, 
and ABA levels increase in AtLTP3- overexpressing plants (Gao 
et al., 2016).

7  |  LTPs BIND COMPETITIVELY TO 
ELICITIN RECEPTORS TO AC TIVATE PL ANT 
IMMUNE RESPONSES

Elicitins are small (c.10 kDa) cysteine- enriched proteins secreted 
by pathogenic species of Phytophthora and Pythium, two genera 
of fungus- like oomycetes (Buhot et al., 2001; Ponchet et al., 1999). 
Elicitins contain a hydrophobic cavity formed by an α- helix fold and 
stabilized by three disulphide bonds (Boissy et al., 1999). This cavity 
allows the binding of sterol and fatty acids. In tobacco plants, sterol- 
elicitin complexes recognize plasma membrane receptors and induce 
a hypersensitive response and SAR (Ponchet et al., 1999). Elicitins 
and plant LTPs have some common structural and nonspecific ex-
tracellular lipid- binding properties. For example, the interaction of 
wheat LTP1 with elicitin receptors in tobacco plasma membranes 
indicates functional similarity between LTPs and elicitins (Buhot 
et al., 2001). The same group reported that tobacco LTP1 bound to 

various lipids, including the signalling molecule JA, in vivo (Buhot 
et al., 2004). LTP1– JA complexes bind to sites characterized as elici-
tin receptors, and exogenous localized application of the complexes 
in tobacco plants induces SAR against Phytophthora parasitica. In 
grape (Vitis vinifera), VvLTP4 interacts with JA, and exogenous ap-
plication of VvLTP4– JA complex promotes resistance to B. cinerea 
(Girault et al., 2008). JA also plays a key functional role in plant 
defence responses to necrotrophic pathogens (Glazebrook, 2005). 
These findings demonstrate the ability of plant LTPs to bind elici-
tor receptors and mediate pathogen resistance via the JA signalling 
pathway (Figure 3).

8  |  ROLE OF LTP IN NEGATIVE 
REGUL ATION OF PL ANT IMMUNE 
RESPONSES

Plant LTPs most commonly function in plant immune processes as 
positive factors. As members of the PR14 family of PR proteins, 
LTPs show inducible expression patterns during pathogen chal-
lenge (Sels et al., 2008). However, some LTPs negatively regulate 
plant immune responses. During SAR in Arabidopsis, DIR1 transfers 
a putative lipid signal (Chanda et al., 2011; Maldonado et al., 2002). 
Heterologous expression of AtDIR1, OsDIR1- A, and OsDIR1- B 
in barley promotes local defensive responses (Colebrook, 2010). 
However, TaDIR1- 2, the wheat ortholog of DIR1, acts as a negative 
regulator in wheat resistance to Puccinia striiformis f. sp. tritici by 
modulating reactive oxygen species (ROS) and SA- induced signal-
ling (Ahmed et al., 2017). Specifically, taDIR1- 2- knockdown plants 
displayed accumulation of ROS and SA, and enhanced resistance to 
P. striiformis. In Arabidopsis, AtLTP3 similarly contributes to disease 
susceptibility by enhancing ABA biosynthesis (Gao et al., 2016). 
LTP3- overexpressing strains had increased ABA levels, reduced SA 
levels, and increased susceptibility to Pseudomonas syringae (Gao 

F I G U R E  3  Lipid transfer protein (LTP) 
roles in plant and fungus interactions. 
LTPs can destroy fungal cell membranes 
using lipid transfer or highly conserved 
cationic residues. LTPs also regulate 
abscisic acid (ABA)- mediated stomatal 
closure by interacting with abscisic acid 
receptor PYL4 to enhance resistance 
to fungi. Finally, LTP– jasmonic acid (JA) 
complexes bind competitively to elicitin 
receptors to activate immune responses
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TA B L E  1  Summary of lipid transfer proteins identified in plants and their functions

Species Protein name Functions References

Arabidopsis thaliana SCP- 2 Edqvist et al. (2004)

LTP6 Chae et al. (2010)

LTP5 Pollen tube development Chae et al. (2009, 2010)

DIR1 Systemic acquired resistance Chanda et al. (2011), Maldonado et al. (2002)

DIR1- like Systemic acquired resistance Champigny et al. (2013)

LTPg3, LTPg4 Pollen development Edstam and Edqvist (2014)

LTP3 Germination and seedling growth, 
freezing and drought stress

Guo, Yang, et al. (2013), Pagnussat 
et al. (2015)

END1 Li, Lopato, et al. (2014)

AtLTP4.5 Biotic stress McLaughlin et al. (2015)

EARLI1 Systemic acquired resistance Cecchini et al. (2015)

AZI1 Systemic acquired resistance, salt 
stress

Cecchini et al. (2015), Jung et al. (2009), 
Pitzschke et al. (2014)

LTPg15- LTPg17, LTPg20, 
LTPg22, LTPg23, LTPg26, 
LTPg30

Edstam et al. (2013)

LTP1 Ethylene- mediated signalling 
pathway, cell differentiation, 
embryo and shoot development

Baroux et al. (2001), Potocka et al. (2012), 
Toonen et al. (1997), Wang et al. (2016),

AtLtpI- 4 Suberin formation of crown galls Deeken et al. (2016)

ACD11 Negative regulation of 
programmed cell death

Brodersen et al. (2002, 2005), Simanshu 
et al. (2014), Zhai et al. (2017)

AtLTP2 Maintaining the integrity of cell 
wall

Jacq et al. (2017)

LTPg15 Seed coat permeability Lee and Suh (2018)

LTPg6 Defence responses to fungi Fahlberg et al. (2019)

LTPg2 Defence responses to fungal 
cuticular wax export

Fahlberg et al. (2019), Kim et al. (2012)

LTPg1 Defence responses to fungal 
cuticular wax export

Debono et al. (2009), Fahlberg et al. (2019), 
Kim et al. (2012), Lee et al. (2009)

LTPg5 Defence responses to bacteria and 
fungi, seed development

Ali et al. (2020), Edstam and Edqvist (2014), 
Fahlberg et al. (2019)

DRN1 Defence responses, salt stress Dhar et al. (2020)

AtLTP4.4 Antifungal, antioxidant McLaughlin et al. (2021)

LSR1 Regulate leaf senescence Feng et al. (2022)

Oryza sativa LTP Lee et al. (1998)

LTP- 2 Samue et al. (2002)

OsLTP5 Defence responses Kim et al. (2008)

OsDIL Drought stress, development Guo, Ge, et al. (2013)

Psd1 Growth and development Li, Xia, et al. (2014)

OsLTPL36 Seed development and germination Wang et al. (2015)

Ptd1 Growth and development Deng et al. (2020)

OsLTPL159 Cold tolerance Zhao et al. (2020)

OsLTPL94 Pollen wall development Tao et al. (2021)

OsC6 Pollen wall development, anther 
development

Chen et al. (2022), Zhang et al. (2010)

OsLTP47 Pollen wall development Chen et al. (2022)

(Continues)
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Species Protein name Functions References

Triticum aestivum LTP1 Charvolin et al. (1999), Gincel et al. (1994)

AceAMP1 Defence responses, antifungal Roy- Barman et al. (2006)

TaLtp9.1b, TaLTP9.2b- TaLTP9.2d, 
TaLtp9.3a- TaLtp9.3g, 
TaLtp9.4a- TaLtp9.4c, 
TaLtp9.7a- TaLtp9.7e, 
TaLTP7.1a- TaLTP7.1c

Boutrot et al. (2007,  2008)

TaLt10B6, TaBs108F7, TaLt10F9 Antifungal Sun et al. (2008)

Ltp3F1 Antifungal Kirubakaran et al. (2008)

TaPR60 Binding of lipid molecules Kovalchuk et al. (2009)

TaLTP5 Defence responses against fungi Zhu et al. (2012)

TaPR61 Kovalchuk et al. (2009)

TaDIR1- 2 Negative regulator in wheat 
resistance to fungi

Ahmed et al. (2017)

Ms1 Pollen exine development Tucker et al. (2017)

TaLTP40, TaLTP75 Salt tolerance Hairat et al. (2018)

TaMs1 Pollen development Kouidri et al. (2018)

TaMs5- A, TaMs5- B Pollen exine development Pallotta et al. (2019)

TaLTP3 Defence responses against Puccinia 
triticina, thermotolerance and 
oxidative stress

Wang et al. (2017), Zhao et al. (2021)

Euphorbia lagascae ElLTP1, EILT2P2 Programmed cell death Edqvist and Farbos (2002), Eklund and 
Edqvist (2003)

Malus pumila LTP3 Cuticle formation André et al. (2022)

Triticum durum TdPR61 Kovalchuk et al. (2012)

TdLTP4 Antimicrobial, abiotic and biotic 
stress

Ben et al. (2021), Safi et al. (2015)

Pisum sativum PsLTP1 Binding abscisic acid Akhiyarova et al. (2021)

Artemisia annua AaLTP3, AaLTP4 Growth and development Adhikari et al. (2019)

Gossypium hirsutum GhLTPg1 Fibre elongation Deng et al. (2016)

GhnsLTPsA10 Defence responses against 
Verticillium wilt

Chen et al. (2021)

Bassica napus BnLTP- II Defence responses against 
Pseudomonas syringe pv. tomato

Balmant et al. (2021)

BraLTP1 Epicuticular wax deposition and 
development

Liu et al. (2014)

BraLTP2 Trichome development Tian et al. (2018)

Chrysanthemum 
morifolium

DgnsLTP Cold tolerance Huang et al. (2021)

Solanum tuberosum StnsLTP1 Aiotic stresses Gangadhar et al. (2016)

StLTP10 Defence responses against 
Phytophthora infestans

Wang et al. (2021)

Trachyspermum ammi nsLTP1 Nazeer et al. (2019)

Zea mays BETL9, BETL9- like Royo et al. (2014)

Ms44 Dominant male sterility Fox et al. (2017)

Nicotiana 
benthamiana

NbLTP1 Assists bamboo mosaic virus 
Bamboo mosaic virus 
accumulation

Chiu et al. (2020)

TA B L E  1  (Continued)
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et al., 2016). Previous studies indicated that ABA acts antagonis-
tically against SA- mediated immune signalling (David et al., 2019). 
However, another study indicated that full- scale induction of 
SA and NPR1- dependent genes requires ABA signalling (Ding 
et al., 2016). Although both regulate cellular NPR1 protein levels 
in an antagonistic manner, ABA is critical for SA accumulation and 
induction of SA- dependent defence responses in both P. syringae- 
infected tissues and adjacent tissues (Ding et al., 2016). The accu-
mulation level of ABA increased in both P. syringae- infected tissues 
and adjacent tissues, and the induction of SA and SA- dependent 

genes was compromised in aba3 plants defective in ABA biosyn-
thesis during P. syringae infection (Ding et al., 2016). These find-
ings indicate that dynamic homeostasis of ABA and SA during plant 
immune processes is essential for full- scale induction of defence 
responses. Thus, these LTPs, which appear to negatively regulate 
plant immunity, may be critical for the induction of an intact resist-
ance response by modifying the ABA/SA balance (Figure 1). Further 
elucidation of the mechanisms by which these LTPs regulate phy-
tohormone homeostasis will greatly improve our understanding of 
the molecular mechanisms of plant immunity.

Species Protein name Functions References

Nicotiana tabacum TobLTP2 Cell wall extension Nieuwland et al. (2005)

NtLTP1- NtLTP4 Promote monoterpene emission, 
lipid secretion from glandular 
trichomes, salt and drought 
stresses

Choi et al. (2012), Hwang et al. (2020), Xu 
et al. (2018)

Triticosecale LTPc3a, LTPc3b Pollen wall development Zaidi et al. (2020)

Brassica rapa BrLTP2.1 Antifungal Schmitt et al. (2018)

Morinda citrifolia McLTP1 Antibacterial Souza et al. (2018)

Medicago truncatula MtN5 Rhizobium– host interaction Pii et al. (2009,2012)

Chelidonium majus CmLTP9.5 Antibacterial Nawrot et al. (2017)

Setaria italica SiLTP Salt and drought tolerance Pan et al. (2016)

Coffea canephora CcLTP2 Antimicrobial activity against 
pathogens

Bard et al. (2016)

Coffea arabica CaLTP1a, CaLTP1b, CaLTP3a, 
CaLTP3b

Cotta et al. (2014)

Panax ginseng pgLTP Antifungal Cai et al. (2016)

Cucumis sativus CsDIR1, CsDIR2 Systemic acquired resistance Isaacs et al. (2016)

Lotus japonicus LjLTP10 Drought stress, cutin formation Tapia et al. (2013)

Astragalus sinicus AsE246 Legume- rhizobium symbiosis Lei et al. (2014)

Lens culinaris LcLTP2 Antimicrobia Gizatullina et al. (2013)

Helianthus annuus HaAP10 Seed germination Pagnussat et al. (2012)

Capsicum annuum CaLTP(1) Antifungal Diz et al. (2011)

CaMF2 Pollen development Chen et al. (2011)

CALTPI, CALTPII Local and systemic acquired 
resistance

Sarowar et al. (2009)

Leonurus japonicus LJAMP2 Defence responses against fungi Jia et al. (2010)

Vitis vinifera VvLTP2- VvLTP5 Defence responses against fungi Girault et al. (2008)

VvLTP1 Embryo development François et al. (2008)

Sesamum indicum SiLTP1- SiLTP5 Choi et al. (2008)

Senecia squalidus SsLTP1 Osmotic constraints, cold 
acclimation

Kielbowicz- Matuk et al. (2008)

Vigna radiata Vrltp1, Vrltp2 Liu and Lin (2003)

Mb- nsLTP1 Lin et al. (2005)

Physcomitrella patens PpLTPg2, PpLTPG8 Drought and cold stress Edstam and Edqvist (2014)

Hordeum vulgare HvLTP1.1- HvLTP1.16, 
HvLTP2.1- HvLTP2.5, 
HvLTPd1- HvLTPd11, 
HvLTPg1- HvLTPg8

Duo et al. (2021)

Ginkgo biloba Gb- nsLTP1 Sawano et al. (2008)

TA B L E  1  (Continued)
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Like TaDIR1- 2 and AtLTP3, Accelerated Cell Death 11 (ACD11) in 
Arabidopsis also has a negative effect on plant immunity (Brodersen 
et al., 2002). ACD11 encodes an LTP and is able to transfer ceramide- 
1- phosphate (C1P), which plays important roles in plant growth, 
development, senescence and programmed cell death (PCD) (Gao 
et al., 2022; Simanshu et al., 2014; Zhai et al., 2017). X- ray struc-
tures showed that ACD11 belongs to the glycolipid transfer pro-
tein superfamily. ACD11 contains a surface- localized, phosphate 
headgroup recognition centre connected to an interior hydropho-
bic pocket, which can selectively bind and transfer C1P (Simanshu 
et al., 2014). Knockout of ACD11 results in activation of PCD and 
the SA- dependent defence response (Brodersen et al., 2002, 2005). 
The phenotype of acd11 plants occurs due to ectopic activation of 
LAZ (Lazarus) 1, LAZ2, LAZ4 and LAZ5 (Malinovsky et al., 2010; 
Munch et al., 2015; Palma et al., 2010). In Arabidopsis, the binding 
partner of ACD11 and its homologs also negatively regulate PCD 
and the defence response by interacting with ACD11 (Li et al., 2019; 
Petersen et al., 2009). Recently, a RING- type E3 ligase, XBAT35.2, 
was found to positively regulate defence responses against Pst 
DC3000 by promoting the ubiquitination and subsequent degrada-
tion of ACD11 in Arabidopsis (Liu et al., 2017). A low accumulation 
of XBAT35.2 is maintained via self- regulation under normal growth 
conditions, and ACD11 thus could accumulate and suppress PCD. In 
the presence of Pst DC3000, however, XBAT35.2 levels increase to 
promote ACD11 degradation, allowing for PCD and expression of 
SA- dependent genes to occur as part of the defence response (Liu 
et al., 2017).

Higher plants have evolved multiple immune systems to restrict 
colonization and invasion (Pastorczyk- Szlenkier & Bednarek, 2021). 
However, constitutive activation of immune responses, such as 
PAMP- triggered immunity, effector- triggered immunity and SAR, 
will allocate nutrient resources into the biosynthesis of multiple de-
fence molecules, which in turn often inhibit plant growth and devel-
opment (Pastorczyk- Szlenkier & Bednarek, 2021). Thus, ACD11 may 
serve a essential role in balancing plant growth and immunity: under 
normal conditions, it helps to maintain normal growth and develop-
ment by suppressing PCD (Liu et al., 2017), while under biotic stress 
XBAT35.2 accumulation promotes ACD11 degradation to initiate 
PCD and defence responses (Liu et al., 2017).

9  |  CONCLUSION

Plant LTPs play a variety of roles in plant immune responses. 
Although no single function can be assigned to all LTPs in general, 
individual isoforms play specific and sometimes multiple biological 
roles, such as directly inhibiting fungal and bacterial growth, regulat-
ing the cell wall structure, signalling transduction during SAR, nodule 
formation and participating in phytohormone signalling pathways 
(Table 1). Several questions remain, however, regarding the precise 
mechanisms of LTPs involved in plant– pathogen interactions. For 
example, can LTPs inhibit the growth of pathogens by transporting 
lipids synthesized in plant cells into pathogens? Do LTPs play a role 

in mycorrhizal colonization by transporting fatty acids from host 
cells to symbiotic pathogens? How do LTPs regulate plant defence 
responses by regulating phytohormone homeostasis? Can LTPs di-
rectly bind to and inhibit constituent proteins of the bacterial se-
cretion system? How do LTPs regulate the plant growth– immunity 
trade- off in plant– pathogen interactions? Finally, if lipid- binding ac-
tivity is necessary for the defensive functions of LTPs, which lipids 
are bound by LTPs in plant– pathogen interactions? Clarifying these 
aspects will greatly advance the understanding of LTP functions.
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