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Often, when modeling infectious disease spread, the complex network through which the
disease propagates is approximated by simplified spatial information. Here, we simulate
epidemic spread through various contact networks and fit spatial-based models in a Bayes-
ian framework using Markov chain Monte Carlo methods. These spatial models are individ-
ual-level models which account for the spatio-temporal dynamics of infectious disease. The
focus here is on choosing a spatial model which best predicts the true probabilities of infec-
tion, as well as determining under which conditions such spatial models fail. Spatial mod-
els tend to predict infection probability reasonably well when disease spread is propagated
through contact networks in which contacts are only within a certain distance of each
other. If contacts exist over long distances, the spatial models tend to perform worse when
compared to the network model.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction Generally, infectious diseases propagate via complex
Having the ability to produce accurate mathematical
models of infectious disease spread can help provide
researchers and government officials with the knowledge
needed for making policy decisions directed toward con-
tainment of disease spread. Quick and accurate disease
models may answer critical questions that can potentially
save lives and protect economies. For example, severe
acute respiratory syndrome (SARS) in 2003 had a drastic
affect on tourism, food and travel, costing China 8.5 and
Canada 4.3 billion US dollars (Beutels et al., 2009). Another
example is given by Meltzer et al. (1999) who estimated
the economic impact of a future influenza pandemic in
the United States at 71.3 to 166.5 billion US dollars.
individual-level interactions, or contacts, between infected
and susceptible individuals in the population. Combining
all individual contact information into a contact network
enables researchers to analyze disease spread through
the population. There is a substantial amount of literature
on network based epidemiology in diseases such as foot-
and-mouth disease and avian influenza, e.g. (Cauchemez
et al., 2011; Dubé, 2009; Jewell et al., 2009; Marchbanks
et al., 2011; Streftaris and Gibson, 2004; Zhen et al., 2011).

However, network data that we may wish to use to
model the spread of various diseases is often difficult to
obtain. Collection of such data is expensive and there are
issues regarding recall and privacy encroachment. A con-
nection, or a contact between two individuals, is usually
deemed to be any contact between individuals by which
the disease can spread from an infected individual to a sus-
ceptible individual. The connections themselves can be
hard to describe, as researchers must quantify the type of
relationship or contact needed for infection to transfer
(Keeling and Eames, 2005). The networks may be social
in nature, spatial proximity based, or demographic (Kol-
aczyk et al., 2009). For example, a network may be defined
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by sexual activity between two individuals in the case of a
sexually transmitted disease. Alternatively, if trying to
model the spread of the Norwalk virus in people, we might
use knowledge about which individuals live together in the
same house, attend the same schools, or work together, etc.
If modeling a livestock disease at the level of individual
farms, say, we may want data on the trade networks, sup-
ply networks, and even social networks of farmers and
farm workers.

Due to the complexity of, and difficulties in obtaining
accurate information about, such networks, simplifications
are sometimes made in the model being used. For example,
we may use a spatial network, rather than a more desirable
trade network. Examples of such spatial simplification can
be found in a number of models of the UK 2001 foot-and-
mouth disease epidemic (Chis Ster and Ferguson, 2007;
Chis Ster et al., 2009; Deardon et al., 2010; Keeling et al.,
2001). Plant epidemiologists often make such simplifica-
tions as their subjects are generally stationary thus allow-
ing infective pressures to decrease exponentially with
distance (exponential decay), with a power of distance
(geometric decay) or with a nearest neighbor effect (Beu-
tels et al., 2009; Filipe and Maule, 2004). A piecewise func-
tion, similar in concept to the nearest neighbor effect only
with a given probability of infection from a long distance
source, has also been used in modeling wildlife infectious
diseases in which a physical barrier (such as a river) re-
duces mixing within the population (Smith et al., 2005).
The simplest assumption to make for any infectious dis-
ease model is to assume homogeneous mixing within the
population thereby, with no other covariate information,
assuming equal infective pressure on all individuals within
the population. Bansal et al., 2007 provides insight into the
ability of homogeneous-mixing compartmental model’s
ability to predict the characteristics of network-based
epidemics.

Deardon et al., 2010 define a class of individual-level
models (ILMs) that can be used to model the spread of dis-
ease when its spread depends on various individual-level
risk factors. Spatio-temporal aspects of the infectious dis-
ease can easily be incorporated into such ILMs, enabling
researchers to incorporate spatial proximity to infectious
individuals in the model. Similarly, network information
can be included in such models. The statistical process of
fitting the model to observed data is one key aspect of ana-
lyzing epidemic data. ILMs, and similar models, can be fit
to data within a Bayesian statistical framework using Mar-
kov chain Monte Carlo (MCMC).

The purpose of this paper is to examine the effect of
using spatial information as a proxy to more complex net-
work information when fitting ILMs to epidemic data. Our
intention with this paper is to present generic insights into
the cost of using a spatial model when the underlying pop-
ulation is connected by a spatially-based network. This is
carried out via two simulation studies. These studies in-
volve simulating epidemics, propagated through networks
of varying complexity, and comparing the results obtained
when both network-based, and spatial-based, ILMs are fit
to the simulated data.

The paper is laid out as follows. The general ILM frame-
work and specific ILMs used in the paper will be outlined
in Section 2. Epidemic study and model assessment criteria
will also be discussed. Section 3 presents the results of the
simulation studies via the use of our chosen model assess-
ment criteria. Conclusions that are made from the results
as well as a list of possible future work will be given in
Section 4.
2. Methodology

2.1. General model framework

The general framework of individual-level models
(ILMs) for infectious disease is presented in Deardon
et al. (2010). Here, we briefly review this framework in
the context of a susceptible-infectious-removed (SIR) com-
partmental class of models.

In a discrete time SIR model each individual i can be in
one of three states at any time point: i 2 S implies that the
individual is susceptible to the disease; i 2 I implies that
the individual is infected and is infectious; i 2 R implies
that the individual is removed from the population and
no longer able to be infected or infect other individuals
(e.g. by recovering and gaining immunity to the disease
or dying). An individual i in one of these states at time t
is denoted to be in the set SðtÞ; IðtÞ, or RðtÞ, respectively.
The epidemic history comprises SðtÞ; IðtÞ;RðtÞ for
t ¼ 1; . . . ; tmax where, tmax is the time at which the last
infectious individual enters the removed state. Individuals
within the epidemic may only move from S! I and I! R.
Individuals are defined as discrete points in space and time
with the probability of a susceptible individual i becoming
infected with the disease at time t equal to

Pit ¼ 1� exp f�nðiÞ
X
j2IðtÞ

qðjÞjði; jÞg � eði; tÞ
" #

; ð1Þ

where nðiÞ is a function representing potential risk factors
associated with susceptible individual i contracting the
disease; qðjÞ is a function representing potential risk fac-
tors associated with infectious individual j transmitting
the disease; jði; jÞ is an infection kernel representing po-
tential risk factors involving both infected and susceptible
individuals j and i, respectively; eði; tÞ is a function that ac-
counts for some random behavior within the epidemic that
cannot be explained by the other terms in the model (e.g.
infection of a susceptible individual by an infectious indi-
vidual from outside the observed population). For the pur-
pose of this paper eði; tÞ is set to zero.

We define the epidemic history as fSðtÞ; IðtÞ;RðtÞgtmax
t¼0 .

Given the complete epidemic history the likelihood can
be computed as:

lðy j hÞ ¼
Ytmax

t¼1

Y
i2Iðtþ1ÞnIðtÞ

Pit

" # Y
i2Sðtþ1Þ

1� Pit

" #
; ð2Þ

where, y is the observed epidemic data; h is a vector of
parameters;

Iðt þ 1Þ n IðtÞ is the set of newly infected individuals at
time t þ 1; and Sðt þ 1Þ is the set of susceptible individuals
at time t þ 1.
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We now introduce the specific forms of the general ILM,
given in (1), used in this paper. Here, if the infection kernel
jði; jÞ ¼ jðdijÞ, where dij is the Euclidean distance between
individuals i and j, then we refer to the infection kernel as a
distance kernel.

2.2. Network ILM

The primary epidemic-driving characteristic of the net-
work ILM is the existence (or not) of an edge in a contact
network representing the existence of a link between
two individuals through which disease can potentially
transfer. The probability that individual i is infected at time
t under the network ILM is given by:

PðNÞit ¼ 1� exp �a
X
j2IðtÞ

cij

( )
; ð3Þ

where, a is an infectivity parameter, and

cij ¼
1 if a connection exists between individuals i and j

0 otherwise:

�
ð4Þ

The contact network remains constant over time and is uti-
lized when allowing the epidemic to spread within the
population and fitting the network ILM model.

2.3. Geometric ILM

The geometric ILM is based upon a geometric distance
kernel where

jðdijÞ ¼ d�d
ij characterizes the risk of infection depend-

ing on the distance. Here, the probability that individual i
is infected at time t is given by:

PðGÞit ¼ 1� exp �c
X
j2IðtÞ

d�d
ij

( )
; ð5Þ

where, c is an infectivity parameter for contracting the dis-
ease, d is the spatial parameter, and dij is the Euclidean dis-
tance between individuals i and j.

2.4. Exponential ILM

The exponential kernel model is based upon a distance
kernel jðdijÞ ¼ expð�kdijÞ. The probability that individual i
is infected at time t is defined by:

PðEÞit ¼ 1� exp �g
X
j2IðtÞ

expð�kdijÞ
( )

; ð6Þ

where g is an infectivity parameter for contracting the dis-
ease and k is the spatial parameter.

2.5. Constant piecewise model

The constant piecewise model is characterized
by a distance kernel that is based on a piecewise
constant infectivity dependant on a single change-point.
The probability that individual i is infected at time t is gi-
ven by:
PðPÞit ¼ 1� exp �
X
j2IðtÞ

uðdijÞ
( )

; ð7Þ

where,

uðdijÞ ¼
/ dij 6 s
w dij > s:

�

2.6. Homogeneous mixing model

The homogeneous mixing model is the simplest model
among all models being tested. Probabilities of infection
are based purely on the number of infected individuals in
the population at a given time. The probability that indi-
vidual i is infected at time t is defined by:

PðMÞit ¼ 1� exp �
X
j2IðtÞ

x

( )
; ð8Þ

where, x is a constant transmissibility parameter. Thus, at
any given time t each susceptible individual has an equal
chance of being infected.

2.7. Epidemic simulation

Here we consider two studies, the purpose of which is
to answer the question, how far can the spatial proxy to
the true underlying network be relied on to provide rea-
sonable model fit.

2.7.1. Epidemic simulation study one
The epidemic population consists of 625 individuals,

positioned on a 25 � 25 grid such that each individual, i,
is located spatially at the coordinates ðx; yÞ for all combina-
tions of x; y ¼ 1; . . . ;25. Simulated contact networks pro-
duced for this study are based on three parameters,
ein; eout , and radius r. The probability of an undirected con-
nection between two individuals within distance r of each
other is equal to ein, while the probability of a connection
for distances greater than r is eout . A contact network for
a given population can be generated for given ein; eout ,
and r parameters. A total of 27 combinations of parameter
values are used to generate epidemics. The values of
the parameters used are: ein ¼ ð0:3;0:5; 0:7Þ; eout ¼
ð0:0;0:05;0:2Þ, and r ¼ ð3;5;7Þ. Epidemics are then simu-
lated using the contact network generated and the net-
work model (3) with a ¼ 0:4 and an infectious period of
two time units for each individual. A simulation with alter-
native infectivity parameters was also generated with
a ¼ 0:1 and an infectious period of six time units for each
individual. The epidemic begins when one randomly se-
lected individual becomes infectious at t ¼ 1. The epidemic
proceeds with the probability of infection being calculated
for each susceptible individual at each time point t accord-
ing to the network model (3) with a ¼ 0:4 or 0:1 accord-
ingly. The epidemic runs for t ¼ 1; . . . ;25. There are 10
epidemics simulated per parameter combination.

2.7.2. Epidemic simulation study two
The population for this study contains the same number

of individuals, grid layout and size as study one. However,
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contact networks used in this study incorporate the exis-
tence of super-spreaders in a population in which the
underlying probability of contact decays continuously over
distance. This underlying probability of an undirected con-
nection between two individuals follows a geometric spa-
tial decay according to

Pðcij ¼ 1Þ ¼ 1� exp �d�D
ij

n o
: ð9Þ

Additionally, super-spreaders are superimposed on the
network. These super-spreaders are randomly chosen indi-
viduals that are forced to have a relatively large number of
connections with other individuals selected completely
randomly from within the population.

In this study, the spatial decay parameter, D, is either
set at ‘‘high’’ or ‘‘low’’ rates of 1.1 and 0.75, respectively.
The number of super-spreaders is set at either 10 or 40.
The number of random connections for each super-sprea-
der is simulated from a Poisson distribution with a mean
of either 20 or 50. Therefore, eight parameter combinations
are used to generate contact networks. Epidemics are then
simulated in the same procedure and according to the
same network model (3) as in study one.

2.8. Choice of contact network

The algorithms for both contact networks were chosen
and created to provide broad yet sensible examples of pos-
sible networks. The piecewise function for generating con-
tact information within study one is simple with a clear
change-point spatial relationship. An example of this sys-
tem could be seen in developing countries where travel
distance is localized. The super-spreader concept of study
two increases the randomness and connectivity within
the contact network. Lloyd-Smith et al. (2005) postulate
that super-spreading is inherent within many epidemics,
this concept drove the methodology behind this contact
network. In both cases the underlying network generators
were chosen with the view that they would generate a
wide range of networks, some of which a spatial ILM might
be able to model well, and some of which not.

The networks produced under these schemes will also
be applicable to a wide range of disease systems, from sys-
tems in which spread is very local (eg. soil borne plant
pathogens causing root rot), local with longer distance
transmission (eg. domestic animal disease spread via ani-
mal contact such as porcine reproductive and respiratory
syndrome) with or without super-spreaders (eg. markets
in the case of a farming system), and very random (less
spatial) systems such as influenza in humans.

2.9. Model fitting

Models are fit within a Bayesian framework which uses
the likelihood, lðy j hÞ, to update prior information, pðhÞ, to
attain the posterior distribution:

pðh j yÞ / lðy j hÞpðhÞ:

Each of the models described (network ILM, geometric ILM,
exponential ILM, constant piecewise and homogeneous
mixing models) are fitted to the simulated epidemic via
Metropolis-Hastings Markov chain Monte Carlo with uni-
form random walk proposals for each parameter. All priors
used, except for that of the constant piecewise radius
parameter, are vague, consisting of independent positive
half-normal distributions with a mode of zero and variance
of 1000. A uniform distribution with bounds of one and ten
was used for the radius parameter of the constant piece-
wise model. This was done to force the fitting of a piece-
wise kernel and to not allow s! 0 or s!1, which
essentially results in the homogeneous mixing model
(see Section 4). MH-MCMC chains are run for 50,000 itera-
tions with a burn-in period of 5000. Convergence is con-
firmed through visual inspection. Posterior means values
for each model parameter were calculated individually
for all.

2.10. Assessing model fit

Model fit was evaluated at the individual and popula-
tion level via several assessment techniques. The first crite-
rion is carried out by a comparison of the one-step ahead
probability of infection under the posterior mean of each
of the fitted models with that of the true model. This is car-
ried out as follows for a given fitted model. In an otherwise
susceptible population, six individuals are randomly in-
fected in an area within the centre of the population, cor-
ners of the area being given by coordinates (10,10),
(10,18), (18,10), and (18,18). These infectious individuals
make up the set DI . The set DS contains the remaining
619 individuals not in DI . The probability of infection at
the next time point is then calculated via the network
model of (3), with a ¼ 0:4, for the susceptible individuals,
DS. Let PT

i be this true probability of infection with

PT
i ¼ 1� exp �a

X
j2DI

cij

( )
; ð10Þ

where cij is the true contact network. Infection probabili-
ties for the susceptible individuals, DS, are then calculated
under the various models using their respective posterior
mean estimates (and the true contact network for the net-
work ILM). The posterior mean value used is based only on
the individual epidemic replication under consideration.
Let PF

i be the probability of infection of individual i 2 DS un-
der the fitted model. Given PF

i and PT
i we define

CF ¼ fi : jPT
i � PF

i j > 0:1g 8 i 2 DS; ð11Þ
HðFÞ ¼ jC
F j
jDSj

: ð12Þ

where, jCF j and jDSj are the number of individuals in sets CF

and DS, respectively. Thus, HðFÞ is the proportion of abso-
lute differences between the fitted probabilities of suscep-
tible individuals being infected under the true model and
other considered models that exceed the cutoff value of
0.1. The final HðFÞ reported is an average over all ten epi-
demic replicates. A model which has a smaller HðFÞ is con-
sidered to be a better fitting model. This model assessment
technique allows for the evaluation of model fit at the indi-
vidual level and is an effective assessment criterion as it
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provides an overall measure of predictive power for each
model at the individual level.

The probability of a susceptible individual i becoming
infected by a single infectious individual j plotted against
the distance between the individuals dij under the true
model and posterior means of the fitted model for each
network parameter combination for study one was also
used to determined model fit at the individual level. These
plots present how each model’s spatial characteristics
change the probability of infection, this can be compared
to the true contact network’s model change.

Evaluation of model fit at the population level involved
analyzing the posterior predictive distribution of the epi-
demic timeline. The epidemic timeline is defined as the
number of newly infected individuals at each time point.
Every posterior predicted epidemic timeline is estimated
by drawing a value at random from the respective model
parameter’s posterior distribution and allowing the epi-
demic to spread according to the model and its posterior
value(s) within the same population for which the poster-
ior information is based on. This procedure is repeated one
hundred times for each epidemic. The resulting plot pre-
sents a posterior predictive distribution of the epidemic
timeline which can be compared to the true epidemic
timeline of the original data. Precision and bias of the epi-
demic timeline posterior predictive distribution can then
be analyzed and assessed for each model at the qualitative
level. Quantitate information about the posterior predic-
tive distribution of the epidemic timeline was obtained
by calculating the mean predicted squared error, MPSE.

MPSE ¼ 1
2500

X100

i¼1

X25

t¼1

ðn̂i;t � ntÞ2; ð13Þ

where, n̂i;t is the predicted number of newly infected indi-
viduals at time t for a given posterior predictive epidemic
timeline i and nt is the true number of newly infected indi-
viduals of the original epidemic. The MPSE, quantifies the
variance and bias of each model’s posterior predictive dis-
tribution for the epidemic timeline. The MPSEs of the ten
replicates for each contact network parameter are then
averaged and compared, with lower values indicating bet-
ter results.

3. Results

The mean HðFÞ for study one and two with a ¼ 0:4 and
infectious period equal to two time units are displayed in
Fig. 1 and Fig. 2, respectively.

The posterior mean values of each parameter are the
averages over 10 replicates for each fitted model. They
are listed within the Supplementary material along with
all remaining MPSE and HðFÞ data tables for study one
and two with a ¼ 0:1 and infectious period equal to six
time units.

3.1. Network ILM results

The network ILM was the model for which the best re-
sults were expected since the observed epidemic was sim-
ulated using a network ILM. Further, the true underlying
contact network over which the observed epidemic was
generated was used in the fitted model. For all 27 param-
eter combinations of study one and all 8 parameter combi-
nations of study two, HðFÞ are zero for the network ILM.

Results of the MPSE for the network ILM were generally
favorable compared to the other models tested.
3.2. Epidemic simulation study one – non-network models
common results

The non-network models fit were the geometric ILM,
exponential ILM, constant piecewise model and the homo-
geneous mixing model. There seem to be no obvious sim-
ple relationships between HðFÞ and either ein or r.
However, with a ¼ 0:1 and infectious period equal to six
time units there was an apparent increase in HðFÞ with
increasing ein. The network parameter that had by far the
greatest effect on HðFÞ was eout . All non-network models
produced the lowest HðFÞ values for parameter combina-
tions involving eout ¼ 0:0. The HðFÞ values for all non-net-
work models were substantially higher than the HðFÞ

values for the network ILM. Non-network model HðFÞ val-
ues ranked on average from lowest to highest were given
by constant piecewise model, geometric ILM, exponential
ILM, and finally the homogeneous mixing model. Results
between the geometric ILM and exponential ILM were of-
ten similar.

Plots of the fitted probability of a susceptible individual
becoming infected by an infectious individual against the
distance between the two individuals for each of the fitted
models under the posterior means, along with the true
model, for study one can be seen in Fig. 3 for various com-
binations of the network parameters.

Similar to the HðFÞ results, MPSE values were highly re-
lated to the eout value, with the lowest MPSEs from
eout ¼ 0:0. Model performance for the MPSE depended on
the eout value. In all cases the network ILM had the lowest
MPSE values followed by homogeneous mixing model, con-
stant piecewise model, exponential ILM, and geometric
ILM for eout ¼ 0:05 and 0:2 however, for eout ¼ 0:0 the
homogeneous mixing model performed the poorest.
3.3. Epidemic simulation study two – non-network models
common results

Increases in the number of super-spreaders, the number
of connections for each super-spreader and the spatial de-
cay rate show a propensity to increase HðFÞ values for all
models but the homogeneous mixing model, for which
the opposite effect on HðFÞ is seen. The lowest HðFÞ

values for the geometric, exponential and constant piece-
wise models occurred for the parameter combination
with the lowest amount of network connection
(D ¼ 1:1; SS ¼ 10;n ¼ 20). The parameter combination
with the highest amount of network connectivity
(D ¼ 0:75; SS ¼ 40;n ¼ 50) resulted in the lowest HðFÞ for
the homogeneous mixing model. Non-network model
HðFÞ values ranked on average from lowest to highest were
given by constant piecewise model, geometric ILM, expo-
nential ILM, and homogeneous mixing model.



Fig. 1. Average proportion of infection probability differences for susceptible individuals that exceed the cut off value of 0.1 (average HðFÞ) for each
combination of ein; eout and r of study one (a ¼ 0:4 and infectious period = 2)
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Fig. 2. Average proportion of infection probability differences for susceptible individuals that exceed the cut off value of 0.1 (average HðFÞ) for each
combination of D; SS and n of study two. (a ¼ 0:4 and infectious period = 2)
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MPSE values were highly correlated to the degree of
super-spreading and contacts within the network, as with
the HðFÞ results. Model performance evaluated by the MPSE
was similar for low super-spreading populations. Generally



Fig. 3. The probability of a randomly selected susceptible individual i becoming infected by a single infectious individual j against the distance between the
individuals dij under the true model and posterior means of the fitted model for said network parameter combinations of study one.
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the network ILM had the lowest MPSE values followed by
homogeneous mixing model, constant piecewise model,
geometric ILM and exponential ILM.

3.4. Overall comparison of models

3.4.1. Geometric model
Fig. 3 shows that the geometric ILM predicts the proba-

bility of a susceptible individual becoming infected by an
infectious individual against distance from the infectious
individual for study one fairly well. However, susceptible
individuals with small distances from a infectious individ-
ual have infection probabilities under the fitted model
which are highly inflated; similarly the right tail ap-
proaches zero which underestimates the probability of an
infection of susceptible individuals that are far from the
infectious individual. The geometric ILM’s posterior
predictive distribution of the epidemic timeline for eout ¼
0:05;0:2 is consistent with reference to the original distri-
bution but have the highest variance about the true epi-
demic timeline. Additionally, a faster spreading epidemic
is predicted for the geometric ILM posterior predictive dis-
tributions of the epidemic timeline for eout ¼ 0:0, an exam-
ple of which can be seen in Fig. 4.



Fig. 4. Posterior predictive distribution of the epidemic timeline for all models tested. Presented for study one with a ¼ 0:4, infectious period equal to two
time units, ein ¼ 0:7; eout ¼ 0:0 and r = 3. The solid black line describes the true epidemic timeline.
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3.4.2. Exponential model
The exponential ILM tended to result in HðFÞ values sim-

ilar to the geometric ILM, however, the geometric ILM on
average was slightly better. Fig. 3 shows that the exponen-
tial ILM underestimates the probability of a susceptible
individual becoming infected against distance from the
infectious individual for study one. The exponential ILM
posterior predictive distribution of the epidemic timeline
for all eout is consistent with the original distribution but
has high variance about the true epidemic timeline (see
Figs. 5 and 6).
3.4.3. Constant piecewise model
The constant piecewise model produced the best results

under the HðFÞ criterion and favorable results using the
MPSE criteria. Fig. 3 shows that the constant piecewise
model predicts the probability of a susceptible individual
becoming infected by a infectious individual against dis-
tance between the two individuals well for study one,
but did underestimate infection probability for susceptible
individuals and improperly estimate the radius. The con-
stant piecewise model posterior predictive distribution of
the epidemic timeline for all eout is consistent with the ori-
ginal distribution. The variance is lowest in the class of
spatial models and has only slightly higher variance than
the homogeneous mixing model for the eout ¼ 0:05; 0:2
cases.
3.4.4. Homogeneous mixing model
The homogeneous mixing model predicts the probabil-

ity of a susceptible individual becoming infected by an
infectious individual using the distance between the two
individuals very poorly, for study one. The average HðFÞ re-
sults were also poor for both studies one and two. Results
at the individual level were poor because the homoge-
neous mixing model does not take into account the dis-
tance factor, as all susceptible individuals have the same
infection probability at any given time. This notion is an
advantage, however, when contact networks contain a
large amount of super-spreaders and/or an increased num-
ber of connections per super-spreader. As such, the results
for the MPSE were favorable as the overall population, with
increased connectivity, can be well modeled by a homoge-
neous mixing model. The homogeneous mixing model’s



Fig. 5. Study one (a ¼ 0:4 and infectious period=2) – mean predicted squared error of each model’s posterior predictive distribution of the epidemic
timeline.

Fig. 6. Study two (a ¼ 0:4 and infectious period=2) – mean predicted squared error of each model’s posterior predictive distribution of the epidemic
timeline.
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posterior predictive distributions of the epidemic timeline
for eout ¼ 0:05;0:2 are consistent with reference to the ori-
ginal distribution. The variance is lowest in comparison to
all spatial model at these eout levels. The posterior predic-
tive distribution of the epidemic timeline for eout ¼ 0:0 is
severely inconsistent with the true epidemic occurring ear-
lier than predicted, this can be seen in Fig. 4.

4. Discussion

The purpose of this paper, as stated in Section 1, was to
examine the effects of using a spatial kernel based ILM to
model disease spread actually propagated through a con-
tact network. This was carried out by simulating epidemics
propagated through two types of random networks. The
first type specified the probability of an edge existing be-
tween two individuals as depending on the distance be-
tween two individuals being greater, or less than, some
constant. Spatial distance within the second study was also
used to determine the probability of an edge between two
individuals, but was based on a continuously spatially-
decaying probability. The second study added complexity
through the inclusion of super-spreaders. Various ILMs
were then fit to the resulting data. Model fit at the individ-
ual level was assessed by considering the one-step ahead
predictive probability of infection based on the posterior
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mean values of the parameters for the fitted models with
that of the true model. At the population-level model fit
was assessed my analyzing the posterior predictive distri-
bution of the epidemic timeline through a mean predicted
squared error calculation.

We have seen that in situations where there are only
contacts between individuals within a relatively short dis-
tance of each other (i.e. eout ¼ 0 in study one) or are less
likely to have contacts over long distances (D ¼ 1:1 in
study two), there is relatively little difference between
the performance of each of the spatial models as they all
tend to fit reasonably well, in terms of predicting infection
probability. However, when contacts occur over longer dis-
tances, the spatial models tend to perform poorly. If the
probability of a long-distance contact is relatively high
(i.e. eout ¼ 0:2 in study one, or n and/or SS are high in study
two), it seems that each of the spatial models performed
roughly as poorly as each other, with perhaps a slight pref-
erence for the constant piecewise model. Model fit results
were not surprising given the mechanics of the simulation.
Essentially in the first study, a piecewise function was used
for the contact network generation and as such the con-
stant piecewise model would be expected to approximate
this aspect well. In the case of the second study, the homo-
geneous mixing model showed improved results when the
super-spreader information overpowered the underlying
spatial decay. The super-spreader aspect of the contact
network is random and therefore would be best approxi-
mated by the homogeneous mixing model.

The homogeneous mixing model is a special case of the
constant piecewise model. When the radius parameter (s)
of the piecewise kernel is outside the bounds of the possi-
ble infection distances observed (i.e. s! 0 or s!1). Pre-
liminary model fit of the constant piecewise model utilized
a vague prior of a positive half-normal distributions with a
mode of zero and variance of 1000 for s. The resulting
MCMC chain would often converge to a homogeneous mix-
ing model case. For the purpose of this simulation study we
wanted to force the constant piecewise model to be fitted
and thus restrict the radius (s) parameter from extremely
low or high values. The use of an informative prior, as de-
scribed in Section 2.9, applied this restriction. Of course,
such MCMC convergence issues are indicative of model
uncertainty. In the case of a real data analysis, researchers
may want to explore this model uncertainty and could do
so using techniques such as reversible jump MCMC to ex-
plore the joint parameter and model space (Richardson
and Green, 1997).

There are numerous avenues for further work poten-
tially open to us. Only two types of contact network gener-
ators have been studied in this paper. It would be
interesting to analyze the results of using the various spa-
tial ILMs for different types of more complex networks. For
example, contact structure could be a function of several
sub-networks. An example of this might be given by con-
sidering influenza for human populations in which differ-
ent networks describe contacts from living in the same
household, attending the same school/workplace, visiting
the same general practitioners, and so on.

In this paper, we assumed a known and fixed infectious
period for each individual. Obviously, it would be more
realistic to have a situation where the infectious period,
and possibly a latent period, are generated from some dis-
tribution. The infectious periods and latent periods for
individuals could then be estimated as part of a data-aug-
mented MCMC scheme, along with the distribution of
those periods. This was not done here, to avoid the sub-
stantial, additional computational burden that would re-
sult from such a scheme and to avoid extra uncertainty
which could confuse results.

As previously stated, obtaining complete contact net-
work information is exceedingly challenging. Studies into
the amount of uncertainty about the network information
that could be incorporated into a Bayesian analysis, in
which the network itself is treated as an unknown param-
eter, before conclusions drawn from the model becomes
unreliable, would also be of interest.

The intention of this paper was to present generic in-
sights into the cost of using a spatial model when the
underlying population is connected by a spatially-based
network. We therefore purposefully avoided using a spe-
cific application. Of course, when modeling a real life out-
break and specific disease system, the model to be fit will
need to be tailored to the data collected, as well as the
underlying disease system. We have seen that the perfor-
mance of the simple spatial disease transmission models
can break down easily under various scenarios when the
underlying contact structure is more complex. Optimal
model fit is achieved when the structure of the model
incorporates the characteristics of the disease spread; this
includes the contact network. If modeling a wildlife epi-
demic, steps must be taken to determine how the mixing
is occurring. At a spatial level this may mean incorporating
aspects describing within herd dynamics, immigration and
emigration rates, physical barriers to movement, and peak
times of activity. With airborne pathogens spread to plants,
models highlighting the spatial decay may indeed be ade-
quate but could be improved upon if windspeed and other
weather characteristics were also taken into account. Per-
haps the overriding lesson to be drawn from the results
shown here is the importance of putting in place a policy
of procedures to collect high quality network (and other)
data from the system of interest.
Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.sste.2013.07.001.
References

Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters:
homogeneous and network models in epidemiology. J R Soc Interface
2007;4:879–91.

Beutels P, Jia N, Zhou QY, Smith R, Cao W, de Vlas SJ. The economic impact
of SARS in Beijing, China. Trop Med Int Health 2009;14(1):85–91.

Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson
NM, Swerdlow DD. Role of social networks in shaping disease
transmission during a community outbreak of 2009 H1N1
pandemic influenza. Proc Natl Acad Sci USA 2011;108(7):2825–30.

Chis Ster I, Ferguson NM. Transmission parameters of the 2001 foot and
mouth epidemic in Great Britain. PLoS ONE 2007;2(6):502.

http://dx.doi.org/10.1016/j.sste.2013.07.001
http://dx.doi.org/10.1016/j.sste.2013.07.001
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0005
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0005
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0005
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0010
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0010
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0015
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0015
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0015
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0015
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0020
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0020


70 N. Bifolchi et al. / Spatial and Spatio-temporal Epidemiology 6 (2013) 59–70
Chis Ster I, Singh BK, Ferguson NM. Epidemiological inference for partially
observed epidemics: the example of the 2001 foot and mouth
epidemic in Great Britain. Epidemics 2009;1(1):21–34.

Deardon R, Brooks SP, Grenfell BT, Keeling MJ, Tildesley MJ, Savill NJ,
Shaw DJ, Woolhouse MEJ. Inference for individual-level models of
infectious diseases in large populations. Stat Sin 2010;20:239–61.

Dubé C. Network analysis of dairy cattle movements in Ontario to support
livestock disease simulation modelling. Thesis. Guelph,
Ontario: University of Guelph; 2009.

Filipe JAN, Maule MM. Effects of dispersal mechanisms on spatio-
temporal development of epidemics. J Theor Biol 2004;226:125–41.

Jewell C, Kypraios T, Christley R, Roberts G. A novel approach to real-time
risk prediction for emerging infectious diseases: a case study in avian
influenza H5N1. Prev Vet Med 2009;91(1):19–28.

Keeling MJ, Eames KTD. Networks and epidemic models. J R Soc Interface
2005;2:295–307.

Keeling MJ, Woolhouse ME, Shaw DJ, Matthews L, Chase-Topping M,
Haydon DT, Cornell SJ, Kappey J, Wilesmith J, Grenfell BT. Dynamics of
the 2001 UK foot and mouth epidemic: stochastic dispersal in a
heterogeneous landscape. Science 2001;294(5543):813–7.

Kolaczyk ED. Statistical analysis of network data. Statistics. New York,
NY: Springer; 2009.
Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the
effect of individual variation on disease emergence. Nature
2005;438(7066):355–9.

Marchbanks TL, Bhattarai A, Fagan RP, Ostroff S, Sodha SV, Moll ME, Lee
BY, Chang CCH, Ennis B, Britz P, et al. An outbreak of 2009 pandemic
influenza A (H1N1) virus infection in an elementary school in
Pennsylvania. Clin Infect Dis 2011;52(Suppl. 1):S154–60.

Meltzer M, Cox N, Fukuda K. The economic impact of pandemic influenza
in the United States: priorities for intervention. Emerg Infect Dis
1999;5(5):659–71.

Richardson S, Green PJ. On Bayesian analysis of mixtures with an
unknown number of components. J R Stat Soc Series B Stat
Methodol 1997;59(4):731–92.

Smith DL, Waller LA, Russell CA, Childs JE, Real LA. Assessing the role of
long-distance translocation and spatial heterogeneity in the raccoon
rabies epidemic in Connecticut. Prev Vet Med 2005;71(3):225–40.

Streftaris G, Gibson GJ. Bayesian analysis of experimental epidemics of
foot-and-mouth disease. Proc R Soc Lond [Biol]
2004;271(1544):1111–7.

Zhen J, Juping Z, Li-Peng S, Gui-Quan S, Jianli K, Huaiping Z. Modelling and
analysis of influenza A (H1N1) on networks. BMC Public Health
2011;11(Suppl. 1):1–9.

http://refhub.elsevier.com/S1877-5845(13)00031-2/h0025
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0025
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0025
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0030
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0030
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0030
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0035
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0035
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0035
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0040
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0040
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0045
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0045
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0045
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0050
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0050
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0055
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0055
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0055
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0055
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0060
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0060
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0065
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0065
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0065
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0070
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0070
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0070
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0070
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0075
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0075
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0075
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0080
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0080
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0080
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0085
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0085
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0085
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0090
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0090
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0090
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0095
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0095
http://refhub.elsevier.com/S1877-5845(13)00031-2/h0095

	Spatial approximations of network-based individual level  infectious disease models
	1 Introduction
	2 Methodology
	2.1 General model framework
	2.2 Network ILM
	2.3 Geometric ILM
	2.4 Exponential ILM
	2.5 Constant piecewise model
	2.6 Homogeneous mixing model
	2.7 Epidemic simulation
	2.7.1 Epidemic simulation study one
	2.7.2 Epidemic simulation study two

	2.8 Choice of contact network
	2.9 Model fitting
	2.10 Assessing model fit

	3 Results
	3.1 Network ILM results
	3.2 Epidemic simulation study one – non-network models common results
	3.3 Epidemic simulation study two – non-network models common results
	3.4 Overall comparison of models
	3.4.1 Geometric model
	3.4.2 Exponential model
	3.4.3 Constant piecewise model
	3.4.4 Homogeneous mixing model


	4 Discussion
	Appendix A Supplementary data
	References


