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Exclusive human milk feeding of the newborn is recommended during the first 6

months of life to promote optimal health outcomes during early life and beyond. Human

milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes,

immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides

(HMOs), microbiota, and microRNAs. Recent findings highlighted the potential

importance of adding HMOs into infant formula for their roles in enhancing host defense

mechanisms in neonates. Therefore, understanding the roles of human milk bioactive

factors on immune function is critical to build the scientific evidence base around

breastfeeding recommendations, and to enhance positive health outcomes in formula

fed infants through modifications to formulas. However, there are still knowledge gaps

concerning the roles of different milk components, the interactions between the different

components, and the mechanisms behind health outcomes are poorly understood.

This review aims to show the current knowledge about HMOs, milk microbiota,

immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have

similar mechanisms of regulating gut and microbiota function. It will also highlight the

knowledge gaps for future research.
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INTRODUCTION

The immune system is the primary line of defense against environmental exposures such as
allergens, bacteria, and viruses. The infant’s immune system, often mischaracterized as “immature,”
is simply naïve to its new extra-uterine environment (1). Normally it undergoes a series of pre-
programmed events during early life in response to exposures that occur primarily through the
respiratory tract and gastrointestinal tract (GIT) mucosa (2). The infant’s immune system at birth
has limited anti-oxidant and anti-inflammatory activity in the respiratory andGIT, underdeveloped
physical barriers (e.g., tight junctions), limited GIT acidity (chemical barrier), delayed T-cell
function and decreased secretion of immunoglobulins [specifically secretory immunoglobulin A
(IgA)] (3–5). Early life in humans (from the fetal stage to early months of life) is associated with
developmental milestones and human milk provides a medium for inducing both tolerances to
antigens and development of a robust immune defense against harmful pathogens. Human milk
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feeding has been demonstrated to provide healthy GIT mucosal
stimuli, impact gut microbiota composition, and promote the
infant’s developing immune system likely by human milk
bioactives (i.e., HMOs, milk microbiota, miRNA, antibodies,
lactoferrin, immunoglobulins, cytokines, and hormones) (6,
7). Careful cultivation of a healthy immune system includes
not only protective responses to harmful organisms and
antigens (e.g., bacteria, viruses, toxins) but moderating the
response to non-harmful antigens in the environment (e.g.,
food antigens or beneficial commensal organisms) in the
form of immune tolerance. The current review focus is
on lactoferrin, immunoglobulins, HMOs, milk microbiota,
and miRNAs components of human milk and their role in
infants’ gut microbiota colonization, gut health and immune
system modulation.

LACTOFERRIN

Lactoferrin (LF) membrane structure, membrane receptors
and transport have been reviewed elsewhere (8). This section
will describe the antimicrobial and immune modulatory
properties of lactoferrin as well as ongoing clinical studies of
formulas supplemented with lactoferrin. Lactoferrin is an iron-
binding glycoprotein that exhibits immunomodulatory, anti-
inflammatory, antibacterial, antifungal, and antiviral function
(Figure 1A) (9–11). Human lactoferrin levels change as milk
matures with colostrum having higher concentrations in both
term and preterm milk (12), however, preterm milk tends to
maintain higher levels of lactoferrin over time (12–14). A recent
study of Chinese women reported that lactoferrin concentration
was 3.16 and 1.73 g/L in colostrum and milk, respectively (15).
LF binds free iron which is an essential nutrient for bacterial
growth, thus leading to a bacteriostatic effect (16). Also, LF
promotes the growth of low iron requiring bacteria thought to be
beneficial to humans such as Lactobacillus and Bifidobacterium
(17). Early studies on LF showed a fungistatic effect through
iron sequestration (18, 19). Other studies have shown a more
direct fungicidal interaction between lactoferrin and the fungal
cell surface that is not dependent on iron (20, 21). Furthermore,
in vitro studies in which skim human milk and bovine milk were
incubated with lactoferrin, iron, and fungi (Candida albicans)
demonstrated that skim humanmilk inhibits fungal growth while
bovine milk did not show a fungistatic effect (22). Additionally,
another in vitro study showed that human milk LF had higher
effect in preventing bacterial growth relative to bovine LF (23)
suggesting human milk LF has a superior effect over bovine milk
LF. Unfortunately, not all mothers can provide breastmilk for
their infants and humanmilk LF is difficult to obtain for research.
Since human and bovine milk LF are highly similar in sequence
homology and structure (24, 25), and share similar antimicrobial
and immunomodulatory properties (26–29), bovine LF is used
more commonly in research.

Lactoferrin has been shown to exhibit immunomodulatory
properties in several animal models. For example, mice infected
with Mycobacterium tuberculosis and supplemented with bovine
lactoferrin had decreased levels of M. tuberculosis in their lungs

as well as decreased inflammation and increased CD4+ and
CD8+ cells (30). A porcine model evaluating the impact of
lactoferrin on the immune system showed higher levels of
natural killer (NK) cells in mesenteric lymph nodes (MLN),
peripheral blood monocytes (PBMC), and in the spleen of
piglets fed LF supplemented-formula compared to those fed
sow milk and standard formula (31). NK cells are part of the
innate immune system and provide protection to the neonate
against infections as well as release cytokines that activate
other immune cells (32, 33). Piglets fed formula supplemented
with bovine lactoferrin had increased crypt cell proliferation
and serum immunoglobulin G (IgG) compared to piglets fed
formula alone (34, 35). Additionally, piglets that received bovine
lactoferrin supplemented formula had greater IL-10 and TNF-
α production by splenic cells when compared to the control
group (35). Collectively, lactoferrin likely plays a key role in
the immune response in neonates. Due to these antimicrobial
and immunomodulatory properties of lactoferrin, lactoferrin
supplementation in preterm infants has been attempted to
decrease late-onset sepsis and necrotizing enterocolitis (36).
Moreover, the antifungal property of LF is quite important
as premature infants are much more susceptible to fungal
infections. Thus, several studies of formulas supplemented with
bovine LF to support infants’ growth and development have
occurred. For example, infant formulas supplemented with
bovine LF at 0.6 and 1.0 g/L (range of LF concentration
found in mature human milk) were compared to a standard
cow’s milk formula evaluating growth and tolerance in healthy
term infants from 12-days old to 12 months of age. This
study reported no growth rate difference between formulas,
however the bovine LF supplemented formulas had softer stool
consistency relative to the infants fed standard formula (37).
Several studies have investigated the addition of bovine LF
to neonatal diet (breastmilk, donor milk, and/or formula) in
premature infants and have not found significant differences in
late onset sepsis outcomes (38–40). Future studies are needed
to determine the beneficial effect of enteral LF and LF addition
to formulas to enhance the anti-pathogenic effects and immune
response in term as well as in preterm infants.

IMMUNOGLOBULINS

Immunoglobulins (Igs) are glycoprotein molecules produced
by plasma cells. They have been shown to provide passive
immunity to infants via transfer across the placenta and during
breastfeeding. There are five different types of Igs—IgA, IgG,
IgM, IgE, and IgD; however, only IgG, crosses the placenta with
the majority being transferred in the 3rd trimester (41, 42). All
types of Igs have been found in human milk with the most
predominant being secretory IgA (sIgA) followed by sIgG (43).
sIgA protects against toxins, bacteria, and viruses by preventing
binding to the host or directly neutralizing, and serves as the first
line of defense in the intestines (Figure 1A) (44–46). sIgA in milk
is only partially digested in the stomach of both preterm and
term infants while the remainder survives to provide immunity
to the lower GI tract (47). Levels in humanmilk decrease over the
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FIGURE 1 | Schematic overview of specific bioactive components of human milk (HM) and their role in immunomodulation. (A) An iron-binding antimicrobial protein

lactoferrin (LF) inhibits a number of pathogenic bacteria (i.e., Escherichia coli) from adhering to epithelial cell. LF can promote the growth of intestinal villi. After

pathogenic bacteria invasion into the lamina propria of the epithelial gut cells, LF can inhibit the signal between lipopolysaccharide (LPS) released by gram-negative

bacteria and the CD14—TLR complex (macrophage signaling). LF can enhance the maturation of B and T cells to improve the immune response. Immunoglobulins

IgA, IgM, and IgG present in HM provide passive immunity to the newborn. IgA and IgG can bind to pathogenic bacteria and prevent them from adhering to the

epithelial cells in the gut mucosa. Also, IgA can serve as a substrate to obligate anaerobes (i.e., Bacteroides) promoting a healthy microbiota colonization. IgM inhibits

enteric bacterial and viral infections by opsonizing the antigen for complement fixation and destruction. (B) In the lumen, human milk oligosaccharides (HMO) inhibit

bacterial binding to cell receptors by directly binding to the pathogens. HMOs can stimulate the growth of commensal bacteria by serving as substrates. On epithelial

cells, HMOs can prevent pathogen binding by acting as binding decoy receptors. Metabolites of HMOs including short-chain fatty acids can influence epithelial cell

maturation and intestinal barrier (i.e., tight junctions) function. HMOs can interact with dendritic cells present in the lamina propria leading to T-cell proliferation,

subsequently, T/B cell

(Continued)
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FIGURE 1 | interaction resulting in increased production of antibodies in order to keep the immune system homeostasis. In the absence of HMOs (no HMO)

pathogenic bacteria binding to the epithelial cells increase cytokine production in the lamina propria as a pro-inflammatory response. (C) Bifidobacterium and

Lactobacillus, commensal bacteria found in HM, can adhere to intestinal cells, resulting in greater beneficial microbiota colonization. Furthermore, Bacteroides fragilis

can interact with dendritic cells, resulting in suppression of inflammation by inducing T regulatory cell (Treg) production. (D) The extracellular vesicles (EVs) contain

cargos such as microRNAs (miRNAs). EV-miRNAs likely have immunological and microbial impact on the gastrointestinal tract of neonates. Human milk miRNAs such

as miR-21 can regulate gene expression by binding to toll-like receptors 7 and 8 (TLR7/TLR8). Other milk miRNAs (i.e., miR-148 and miR-30) may play a role in gut

immune response by decreasing cytokine production via T-cell inhibition and preventing antigen presentation by dendritic cells and macrophages, respectively.

first 12 weeks post-partum, most significantly over the first week
(48, 49). Although it does decrease, infants rely on human milk
sIgA initially, as the cells that produce sIgA in the neonatal gut are
low at birth and increase by 10–20 times over the first 6months of
life (50). This correlates with a study comparing fecal sIgA levels
in breastfed and formula-fed infants which noted that in the first
month of life, sIgA levels were much higher in the breastfed
group but were more similar between breastfed and formula fed
infants at 6 months of age (51). In mothers immunized with
the Neisseria meningococcal vaccine, IgA antibodies specific for
Neisseria meningitidis have been shown in human milk for up
to 6 months post-partum (52). Interestingly, mother’s health
status appears to impact sIgA levels in the human milk. sIgA
levels have been reported to be lower in the mature milk of
mothers with gestational diabetes (53) and in mothers with post-
partum stress, anxiety, and depression (54). IgA and IgG levels
are lower in the colostrum of mothers with gestational diabetes
compared to normo-glycemic women (55, 56). Overall, data
suggests that mothers’ health condition, vaccination status and
lactation period impacts IgA levels in human milk.

IgG is the main immunoglobulin found in serum and is
associated with long-term immunity. It not only activates the
complement cascade to remove pathogens, but has also been
shown to protect against viral infections at the mucosal level
through neutralization (57, 58). IgG levels in human milk are
low, but increase over time (59). Interestingly, the concentration
of IgG is higher in the human milk of exclusively breastfeeding
mothers compared to those that are non-exclusive breastfeeding
(59). In a mouse model, pathogen-specific IgG was shown to be
transferred in milk and protect the pups by coating the pathogen
and reducing intestinal colonization (60). Kazimbaya et al. (61)
collected human milk samples from mothers prior to their infant
receiving the live rotavirus vaccine. For each sample, whole milk,
purified IgA, purified IgG, and IgA/IgG depleted milk were
isolated. MA104 cells inoculated with the live rotavirus vaccine
were exposed to different dilutions of whole milk, purified
IgA, purified IgG, and IgA/IgG depleted milk. Interestingly,
whole milk and purified IgA and IgG inhibited viral replication
suggesting that human milk IgA and IgG can protect against
rotavirus infections (61). These studies suggest that human milk
IgG plays a role in decreasing infections in infants.

IgM is also transferred to infants via human milk. IgM
levels do not vary in human milk in exclusive breastfeeding
mothers compared to non-exclusive breastfeeding mothers (59).
However, IgM is partially digested by term infants while it is not
digested by preterm infants (62). Nevertheless, IgM antibodies
protect against bacterial and viral infections by opsonizing the
antigen for complement fixation and destruction (63, 64). Serum

IgE is associated with a reduction in allergic reactions and
parasitic infections. It has also been shown to protect against
viruses such as parvovirus B19 (65) and progression of human
immunodeficiency virus 1 (HIV-1) (66, 67). Anti-parvovirus B19
IgE antibodies have been found in humanmilk (68), which might
help protect breastfed infants from infection with parvovirus
B19. Allergen-specific IgG and IgE antibodies are present in both
maternal blood and human milk which may sensitize infants to
similar allergens (69). IgD is expressed on mature B cells and
it has been shown to bind to certain bacteria resulting in B cell
stimulation and activation (70, 71).

Of note, IgA, sIgA, IgM, and IgG concentrations are
significantly higher in fresh humanmilk compared to donor milk
(62), which is important to infants in the neonatal intensive care
unit due to frequent use of donor milk. This is not unexpected
as most donor milk is from mothers of infants that are at least 6
months of age and these samples undergo Holder pasteurization.
IgM and IgG are more sensitive to Holder pasteurization than
IgA (62, 72, 73). Overall, Igs play a role in reducing pathogenic
infections, allergies and likely gut maturation in combination
with other components of human milk.

HUMAN MILK OLIGOSACCHARIDES
PROMOTE BENEFICIAL MICROBIOTA
GROWTH, PROTECT FROM
INFLAMMATION, AND PREVENT
PATHOGEN INVASION

Humanmilk oligosaccharides (HMOs) are unconjugated lactose-
based carbohydrate structures (74, 75) with concentrations
between 7 and 14 g/L in mature milk and 20–24 g/L in colostrum,
making HMOs the third most abundant solid component
in human milk after lactose and lipids (74, 76). The milk
oligosaccharide profile in human milk is more diverse than
that of other mammals. For example, the concentration of
oligosaccharides in bovine milk is 100 mg/L, and only 50
oligosaccharides structures have been identified in bovine milk
(77). However, more than 200 distinct HMO structures have been
identified in human milk (74, 75, 78, 79). The structure of HMOs
has been reviewed previously (80). The HMOs profile among
individual women varies due to differences in the expression
of the secretor (Se) and Lewis (Le) genes in the mammary
gland. The Se gene encodes for α1,2-fucosyltransferase 2 (FUT2)
while the Le gene encodes α1-3/4-fucosyltransferase 3 (81, 82).
A systematic review to determine the most abundant HMOs
comparing both term and preterm milk reported that for
secretor mothers, term milk is most abundant with the neutral
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HMOs 2′-fucosyllactose (2′FL), difucosyllacto-N-hexaose II (DF-
LNH II), Trifucosyllacto-N-hexaose (TF-LNH), and Lacto-N-
Fucopentaose I (LNFP-I) and the acidic HMOs 6′-sialyllactose
(6′SL), Disialyllacto-N-Tetraose (DS-LNT), and fucosyllacto-N-
neohexaose I (FS-LNnH I). For secretor mothers, pretermmilk is
most abundant with the neutral HMOs 2′FL, DF-LNH II, LNFP-
I, and tetrasaccharides lacto-N-tetraose (LNT) and acidic DS-
LNT, 6′SL, sialyllacto-N-tetraose c (LST c). Non-secretor milk
does not contain α1-2-fucosylated HMOs (83). Additionally, this
study revealed that non-secretor term milk is most abundant
with neutral DF-LNH II, LNT, and lacto-N-neotetraose (LNnT)
and acidic 6′SL. Non-secretor pre-term milk is most abundant
for neutral DF-LNH II, LNT, and LNFP II and acidic DS-LNT,
LSTc, and 6′SL (83). Erney et al. (84) evaluated 435 women from
10 countries and showed a significant variance in expression of
HMOs. In particular, European and Latin American mothers had
higher 2′FL expression than those in the US or Asia (84). An
in-depth evaluation of regional variation in HMO composition
evaluating 410 women from 11 different regions in Europe, North
and South America, and sub-Saharan Africa showed variation
in secretor status based on regions and self-identified ethnicity
(85). It also noted variation in total HMO concentration as well
as concentrations of all HMO types except LNFP-I. In addition,
several HMO concentrations varied based on environment (rural
vs. urban Gambia) including higher LNnT and DSLNT in the
rural cohort (85). In addition, HMO composition is likely
impacted by exercise. For example, recently Harris et al. (86)
demonstrated that exercise induces an increase in 3-SL in human
and mice during lactation. In conclusion, HMO composition is
impacted by geographic location, likely diet, the secretor status
of the mother, term vs. preterm milk and exercise. Thus, future
studies need to determine how combination of these factors
can optimize HMO synthesis and protect neonates during the
infancy period.

HMOs Promote Growth of Healthy Gut
Microbiota and Exhibit Protection Against
Infections
HMOs have been shown to have a prebiotic effect as they are
not digested in the gut and reach the large intestine intact
where they are utilized by gut microbiota. HMOs have been
shown to stimulate gut microbiota growth and composition.
Bifidobacterium, specifically Bifidobacterium longum subsp.
infantis and its interaction with HMOs has been well-studied.
B. infantis has greater growth when HMOs, not glucose, are
the sole source of carbohydrates (87). Its genome has been
shown to contain gene clusters dedicated to HMO metabolism
and utilization (88). This ability to grow and metabolize HMOs
is not present across all bacteria, but seen in B. infantis
as well as Bifidobacterium bifidum, Bacteroides fragilis, and
Bacteroides vulgatus (89–91). Many bacteria, Lactobacillus gasseri
and Enterococcus, for example, do not grow well, or at all, in just
the presence of HMOs (87, 91). In a recent animal study, healthy
rats were supplemented daily with 2′-FL from days 2 to 16 of life.
At day 8, supplemented animals were noted to have increased
villus heights as well as higher Lactobacillus proportions in cecal

samples. At day 16, animals had higher plasma IgA and IgG as
well as more T-cell subsets in their mesenteric lymph nodes (92).
This study shows that 2′FL supplementation early in life has a
prebiotic effect as well as promotes intestinal growth and immune
system maturation.

HMOs not only promote a healthy gut microbiota
composition, but also have antimicrobial properties.
For instance, α1,2-fucosylated oligosaccharides inhibited
Campylobacter jejuni infection in mice (93). In addition, 2′FL
percentage in milk has been shown to be inversely proportional
to rates of C. jejuni diarrhea (94). HMOs have also recently been
shown to have antimicrobial properties against Streptococcus
agalactiae [Group B Strep (GBS)], Staphylococcus aureus, and
Acinetobacter baumannii (95, 96) by increasing the sensitivity
of such bacteria to several antibiotics, particularly antibiotics
to which they are not usually susceptible (97). Overall, HMOs
provide some protection to infants against bacterial pathogens.

HMOs protect infants from pathogen invasion by various
mechanisms (Figure 1B). Several in vitro and in vivo studies
highlighted the antiviral properties against different viruses
including rotavirus, norovirus, HIV, and influenza. Rotavirus
is the most common cause of severe diarrhea worldwide and
accounts for 5% of all deaths among children <5 years of
age (98). In vitro, 2′FL, 3′SL, 6′SL, and galacto-oligoasccharide
reduce infectivity of human rotavirus in MA104 cells, mainly
through effects on the virus (99). In experimental settings, 2′FL,
LNnT, 3′SL, and 6′SL supplementation in piglets acutely infected
with rotavirus downregulated the viral non-structural protein-
4 (NSP-4) mRNA expression in the ileum, indicating HMOs
inhibit rotavirus replication in the gut (100). Other animal
studies in both rats and piglets show that HMOs, in addition to
prebiotics, can reduce the length of diarrhea caused by rotavirus
(101, 102). HMOs have also been shown to protect against
norovirus, the most common cause of acute gastroenteritis
outbreaks. Norovirus has been shown to interact with histo-
blood group antigens differently with type O having higher
susceptibility and B having lower susceptibly to the infection
(103, 104). Non-secretors have also been shown to have lower
susceptibility to norovirus infections. However, milk from non-
secretor mothers does not inhibit attachment of norovirus while
milk from secretors does (105). This is likely due to 2′FL binding
to the virus and blocking attachment to the gastrointestinal tract
(106, 107). 3′FL has also been shown to bind norovirus and block
its attachment. Both 2′FL and 3′FL do so by binding to the HBGA
pockets on the norovirus capsule, thus, they act as soluble decoy
receptors to block pathogens (106). Human milk with higher
LDFH-I levels is associated with protection against norovirus as
well (94). In both of these gastrointestinal viruses, HMOs have
been shown to improve outcomes.

It is estimated that over 38 million people are living
with HIV and the rates of transmission from mother to
child are as high as 45% (108). In the western world,
HIV is considered a contraindication to breastfeeding (109),
however, in other countries where access to clean water is
unavailable, it is deemed to be the safest option for infant
feeding due to lack of nutritional alternatives (110). While
breastfeeding is the main post-natal transmission route, many
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breastfed infants do not become infected. HMOs have been
shown to bind the HIV surface glycoprotein, gp120 and
decrease binding to dendritic cells (111). HIV infected mothers,
particularly those with higher concentrations of LNnT are
less likely to transmit HIV to their infants. Mothers with
higher concentrations of 3′SL are noted to have higher
transmission rates to their offspring as well as a higher viral
load and lower CD4 count (112, 113). Higher concentrations of
fucosylated HMOs are also associated with decreased mortality
in non-infected infants whose mothers are HIV positive (114).
Another viral infection that can be ameliorated with HMOs
is influenza. Influenza infects more than 3 million people
yearly worldwide and causes over 300,000 deaths (115). An
in vitro study using pretreated respiratory epithelial cells
(Calu-3, 16HBE lines) and PBMCs challenged with either
respiratory syncytial virus or influenza and incubated with
various concentrations of 6′SL, 3′SL, 2′FL, and LNnT for 24 h
showed that 6′SL and LNnT significantly decreased influenza
viral load in both airway epithelial cell lines (116). In addition,
modified versions of 3′SL and 6′SL have been shown to block
hemagglutination and prevent infectivity of influenza viruses
(117, 118). HMOs have been shown to improve outcomes in
viral gastroenteritis and influenza as well as impact transmission
of HIV.

HMOs Improve Gut Barrier Function and
Optimize Immune Function
Necrotizing enterocolitis (NEC), a common intestinal disease
among premature infants, can cause significant morbidity and
mortality [reviewed by Neu and Walker (119)], and is far less
common in humanmilk fed vs. formula fed infants (120). Enteral
feeding, including breast- and formula-feeding, impacts the gut
maturation of neonates by increasing or decreasing intestinal
permeability (121, 122). Decreased intestinal permeability is
associated with gut maturation while elevated permeability
makes neonates more susceptible to enteric infections and
inflammation such as NEC (123, 124). Several studies in animals
and humans demonstrated that HMOs may contribute to
breastfed infants’ lower rates of NEC. In a NEC induction
model using neonatal mice, HMO supplemented formula-fed
pups had increased mucin expression and decreased intestinal
permeability (125). In another rat model of NEC, pups fed HMO
supplemented formula had improved survival and the HMO
disialyllacto-N-tetraose (DSLNT) was noted to be protective
(126). Formulas supplemented with 2′FL have been associated
with decreased NEC rates in both mice and rat models (127, 128).
However, animal models using preterm pigs have shown only
minor effects of HMO supplemented formula on gut microbiota
(129) and no effects on gut permeability (130). In addition,
several studies have found thatmilk with lower levels of DSLNT is
associated with higher rates of NEC (113, 128). In breastfeeding
or pumping mothers, decreased diversity of HMOs, specifically
lower concentrations of LNDFH-I during the first month of
life is associated with a higher risk for NEC development in
preterm infants (131). Clinical trials reported an association
of breastfeeding with decreased intestinal permeability at 7

and 14 days of life in preterm infants compared to those
that were formula fed (122). In preterm infants, decreased
intestinal permeability was associated with increased abundance
of Clostridium and Bifidobacterium during the first 2 weeks of life
(132). However, which components of humanmilk are providing
these effects and interactions remains to be determined. Overall,
HMOs have been shown to decrease pro-inflammatory cytokine
expression, pathogenic bacteria penetration, and intestinal
permeability in the gut (125, 133, 134). These findings suggest
that not just HMOs alone, but rather HMOs in combination with
maternal and/or host microbiota might regulate the intestinal
barrier function.

HMOs play an important role in the enhancement of the
immune system both locally and systemically. HMOs enhance
the functions of human dendritic cells (135), an antigen-
presenting cell that plays a pivotal role in the regulation and
development of the immature immune system in neonates
through the recruitment of functional regulatory T-cells (136).
For instance, an in vitro approach showed that 0.8, 2 and 5
mg/mL of an HMO mixture upregulated interleukin production
(IL-10, IL-27, and IL-6) in dendritic cells (135). Furthermore,
HMOs at these concentrations protected dendritic cells against
the inflammatory impact of 5 mg/mL lipopolysaccharide (LPS)
(135). In a recent mouse model, neutral HMO fractions
stimulated the immune response in peritoneal macrophage cells
by upregulating the release of nitric oxide (NO), prostaglandin E2
(PGE2), reactive oxygen species (ROS), TNF-α and interleukins
such as IL-1β, IL-2, IL-6, and IL-10 (137). Therefore, it is
reasonable to hypothesize that certain HMOs can inhibit the
pro-inflammatory responses in breastfed infants. In a mouse
model, 2′FL supplementation with a dose range of 0.25–5%
(w/w) 2 weeks before the primary and booster vaccinations
enhanced humoral and cellular immune response to vaccines
(138). Mice that received 2′FL had increased levels of vaccine-
specific IgG1 and IgG2a in the serum that were 2′FL dose
dependent and increased CD27 expression in splenic B-cells.
When stimulated ex vivo, spleen cells from 2′FL mice had
increased interferon-γ production and proliferation of CD8+

and CD4+ T-cells (138). In addition, mice that were fed the
2′FL containing food had increased activation of B-cells, T1-
helper cells, and regulatory T-cells in their MLN (135). In
a porcine model, piglets that received formula supplemented
with HMOs were shown to have increased circulating NK
cells and mesenteric lymph node memory T-cells compared
to those that only received formula (139). These studies show
that HMOs improve immune response to both infections
and vaccines.

HMOs have been shown to play a role in toll-like receptors
(TLRs) expression. TLRs are a family of pattern recognition
receptors that play a key role in the recognition of invading
pathogens and initiate host defense (140–142). Studies have
reported structure-dependent effects of HMOs on TLR functions.
For example, Asakuma et al. (143) showed that 3′SL, 6′SL,
and 6′GL increased expression of both TLR2 and TLR4
while LNFP-I upregulated TLR4 in intestinal cell line HT-
29 (143). In another in vitro study, Cheng et al. (144)
reported that 3′-FL activated TLR2 whereas LNT activated
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several TLRs in THP1 macrophages. They also found inhibitory
effects for HMOs on TLRs in vitro. For instance, 6′SL, 2′FL,
and LNnT inhibited TLR5 and TLR7 whereas 3′FL inhibited
TLR5, TLR7, and TLR8 (144). A recently published study
fed mice and premature piglets with 2′FL, 6′SL or lactose
supplemented formula. Those fed 2′FL and/or 6′SL were noted
to have decreased signs of NEC. 2′FL and 6′FL inhibited
TLR4 signaling in vivo in cultured IEC-6 enterocytes, in
human intestinal explants from NEC patients, and in mouse
derived enteroids (145). These studies indicate some role
for HMOs in modulating TLRs, however, comparisons are
difficult due to differences in studies conducted. The complex
effects of different HMOs in modulating TLRs need to be
investigated through in vivo models. This will enable us
to determine the different mechanisms involved in immune
modulation by HMOs. Overall, HMOs appear to have a
protective effect in reducing inflammation and inducing stronger
immune response.

HMOs as Supplements to Boost Immune
Function
HMOs and bovine milk oligosaccharides (BMOs) are currently
being studied for their ability to improve immune response in
infants. Bovine milk serves as a source of simple and complex
oligosaccharides that resemble HMOs (146). It is substantially
lower in overall total oligosaccharide concentration compared
to human milk, however, there are some similarities in the
oligosaccharide profile (147). Bovine milk has a much larger
proportion of acidic oligosaccharides including 3′SL and 6′SL
as well as neutral LNnT, which are identical to the HMOs
with the same name (148). Fucosylated structures such as
2′FL have also been isolated from bovine milk, though in
far lower concentrations than human milk (146, 148). BMOs
have been demonstrated to elicit similar biological functions to
those of HMOs including inhibition of pathogen adhesion to
intestinal enterocytes, diminished gut permeability, decreased
inflammatory markers, and correction of gut dysbiosis (149).
Charbonneau et al. (150) investigated breastfed infants’ growth
parameters and differences in human milk oligosaccharide
composition in Malawi (150). This study demonstrated that the
human milk of mothers whose infants had poor growth had
lower levels of sialylated HMOs and overall lower concentrations
of HMOs (150). Based on this data, a germ-free mouse and
piglet model was then used to investigate the impact of sialylated
HMOs on stunting phenotype. Animals were gavaged with
bacterial strains from feces of infants with growth failure
and fed a typical Malawian diet. Some of the animals were
supplemented with sialylated BMO’s (S-BMO) as well. Those
that received S-BMO had improved lean body mass gains,
improved metabolism, and elevated levels of N-acetylneuraminic
acid (150), suggesting sialylated oligosaccharides are involved in
infant growth.

Addition of synthesized oligosaccharides to infant formulas
is an evolving field. 2′FL is one of the most abundant and well-
studied of the human oligosaccharides as previously mentioned.
It has been successfully synthesized and shown to be structurally

similar to 2′FL found in humanmilk samples (151). In a neonatal
piglet model, enzymatically synthetized 3′SL and 6′SL sodium
salt supplemented bovine based formulas were investigated (152,
153). Piglets were fed either a control diet or concentrations
of 140, 200 or 500 mg/L 3′SL, and 300, 600, and 1,200 mg/L
for 6′SL. These studies showed that the synthesized HMOs
are safe and maintain similar growth in supplemented piglets
compared to control diet (152, 153). Several clinical studies have
evaluated the addition of 2′FL to formula. 2′FL formula fed
infants were compared to breastfed infants and all infants had
appropriate growth (154). An evaluation of the cytokine profiles
in breastfed infants, 2′FL supplemented formula fed infants,
and standard dairy-based formula fed infants demonstrated
that 2′FL supplemented formula fed infants had lower plasma
concentrations of IL-1α, IL-1β, IL-6, TNF-α, and IL-1rα than the
standard formula fed infants, and were similar to those that were
breastfed (155). 2′FL supplemented formulas have been approved
and are being marketed in Europe (156) and the US, however,
the supplementation is at much lower concentrations of 2′FL
than what is found in human milk. Sialic acid concentrations
have also been evaluated in human milk from mothers with term
and preterm infants and compared to several infant formulas
(157). The highest concentration was noted in colostrum and
then decreased over the next 3 months. Milk from mothers
with preterm infants had higher levels of sialic acid. Formulas,
however, had a much lower sialic acid content, <25% of
what was found in human milk (157). Sialic acid is integral
to neonatal brain development and childhood malnutrition,
specifically decreased sialic acid intake, has been linked to
persistent cognitive deficits (158, 159). Thus, future studies of
formulas supplemented with sialic acid would need to be tested
for the cognitive function in infants and HMO supplementation
to formula is an avenue to pursue in the near future.

HUMAN MILK MICROBIOTA IMPACTS
COLONIZATION OF GUT MICROBIOTA
AND LIKELY IMMUNE SYSTEM DURING
NEONATAL PERIOD

Different maternal factors including pathologies of the breast,
intrapartum antibiotics, maternal health, body mass index
(BMI), parity, gestational age, and geographic location of
the mothers can contribute to shaping the milk microbiota
(160–166). The early establishment of infant microbiota
relies on maternal microbiota and plays a key role in the
formation of the gut barrier and the maturation of the
immune system (Figure 1C) (167). Human milk contains a
complex community of bacteria (161, 168) which includes,
but is not limited to, multiple genera from Bifidobacterium
and Lactobacillus spp, Streptococcus, Staphylococcus, Ralstonia,
Bacteroides, Enterobacter, and Enterococcus (161, 167, 169–171).
Hunt et al. (172) showed that while there are common genera
found in milk, there is variation overtime and between mothers.
While most studies have focused on human milk bacterial
content, several recent studies have noted fungi present in
human milk (173–177). These studies are observational and
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further investigation is required to evaluate fungal population
variance between mothers, the functions of milk mycobiome
in infant gut development, and its interactions with other
milk microbiota/bioactives and infant immune system. Due
to this constraint, this review will focus on human milk and
infant microbiota.

Human milk microbiota likely establishes a healthy profile
of intestinal bacteria, leading to the maturation of the innate
and adaptive immune systems in infants. For instance, intestinal
bacteria promote the development of B-cells in Peyer’s Patches
and increase the release of mucosal IgA, which acts as the first line
of defense (178, 179). Human milk bacteria can also improve the
activity against infections through the induction of cytotoxic Th1
cells maturation in vitro (180). Interestingly, Lactobacillus in the
human milk may enhance the release of Th1 cytokines and TNF-
α, and activate NK cells, CD4+, and CD8+ T-cells and regulatory
T-cells (181). In addition, commensal bacterial in human milk
such as Lactobacillus gasseri and Lactobacillus crispatus have
adhesion capacity to the intestinal cells, indicating greater
colonization for beneficial bacteria in the gut in breastfed infants
(182). In a recent study, Damaceno et al. (182) reported that
Bifidobacterium breve, Lactobacillus gasseri and Streptococcus
salivarius, limit pathogen adhesion to intestinal epithelial cells ex
vivo (182). The microbial species identified in human milk have
pathogen inhibition and improving immune function properties.
Many studies compare human milk bacterial content to stool
content of infants. Human milk microbiota composition is also
dependent on pumped vs. directly breast fed. Recently, Moossavi
et al. (161) noted that providing pumped milk was associated
with higher levels of potential pathogens (i.e., Enterobacteriaceae
and Enterococcaceae). Infants fed pumped milk had a lower
amount of Bifidobacterium in their stool. In addition, Fehr et al.
(183) noted that exclusively breastfed infants have a different
microbiome than those that are fed pumped milk. The fact that
direct breastfeeding vs. pumpedmilk feeding results in a different
gut microbiome in infants needs to be investigated further. It
is possible that some of the variations are due to variability
in pump hygiene, mothers skin microbiota, and contribution
from environment.

Commensal bacteria in human milk may play protective
roles against gastrointestinal infections during infancy. Malago
et al. (184) found that Lactobacillus casei, Lactococcus lactis
and Bifidobacterium infantis suppressed the release of IL-8 in
Caco-2 intestinal cell line incubated with pathogenic Salmonella,
supporting the notion that human milk bacteria could protect
the infant intestine against epithelial damage. In a recent study,
higher abundance of Bifidobacterium at 1 week of life was
associated with higher levels of IL-13, IL-5, IL-6, TNF, and IL-1β
at 36 months of age compared to children with lower abundance
of Bifidobacterium at the same time point (185). Bacteroides
might also play a key role to support the immune system in
infants during the early stages of life. In particular, the surface
of Bacteroides fragilis has polysaccharide A which increases
FOXP3 T-cells in the lamina propria resulting in suppression of
inflammation (186). In a mouse model, Donaldson et al. (187)
showed that Bacteroides binds IgA which allows it to colonize
the gastrointestinal tract. In conclusion, milk microbiota likely is

one of the first things to colonize the infant gut, promote growth
of beneficial microbiota, and in turn impact the immune system
in infants.

The infant diet also impacts the microbiome of the
gastrointestinal tract and immune system in both animal models
and clinical studies. In a rhesus macaques model, formula
fed infants were noted to have a different gut microbiome
including more Ruminococcus and less Lactobacillus. They also
had an increase in pro-inflammatory cytokines TNFα, IFN-
γ, IL-1β, and IL-8 (as well as several others) at 1 month of
life that decreased overtime (188). Mothers milk fed rhesus
macaques are noted to have more memory T-cells as well as T-
helper 17 cells compared to formula fed which persists even 6
months after weaning (189). A study of juvenile rhesus macaques
noted continued differences, in particular, higher CD8+ T-cell
activation (190). These studies show that in rhesus macaques,
mothers milk improves immune response while formula changes
the microbiome and increases inflammation. There are also
several studies carried out with a piglet model that explore diet
and its effect on microbiome and the immune system. While
many piglet models use sow-fed piglets, this leads to confounding
factors due to housing environment, sow milk microbiota,
and the maternal environment. Studies from our team housed
piglets in the vivarium and fed a regulated diet to eliminate
the confounding factors associated with a sow-fed piglet model.
Piglets were fed either donor human milk or formula and
monitored closely for growth and immune responses. Those fed
human milk had a stronger immune response to vaccination
in comparison to those fed formula. The piglets who received
human milk had lower genera diversity at day 50. At day 21,
those fed human milk had higher levels of Bacteroides than
those fed formula (191, 192). The human milk fed group also
had higher levels of T-cell proliferation (191, 192). These results
were similar in comparison to infants fed human milk suggesting
the strength of the model. For example, in a small comparative
study, fecal samples were collected during the first 20 days of life
from 6 breastfed and 6 formula fed infants. In breastfed infants,
Bifidobacterium became the most common gut bacteria while
in formula fed infants, Bacteroides and Bifidobacterium were
found in similar amounts (193). Several other studies have found
that in early life, stool Bifidobacterium amount varies in healthy
breastfed infants (194–197). Although the reason is unclear,
environment may play a role in this. A recent study found three
distinct infant gut microbiota, one low in Bifidobacterium but
with higher amounts of Streptococcus, one with high amounts
of both Bifidobacterium and Bacteroides, and one with higher
amounts of Bifidobacterium. Overtime, infant stool transitioned
from the profile low in Bifidobacterium to a profiler higher in
Bifidobacterium (197). The CHILD cohort has published several
studies on infant diet and its impact on microbiome. At 3
months of age, formula fed infants had higher richness and
increased Lachnospiraceae. Infants who were breastfed but briefly
supplemented with formula had lower levels of Bifidobacteriaceae
and higher levels of Enterobacteriaceae at 3 months of age
compared to those who did not receive any formula (198). A
smaller subset from this cohort noted that formula fed infants
had increased richness at 4 months and higher amounts of

Frontiers in Immunology | www.frontiersin.org 8 February 2021 | Volume 12 | Article 604080

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Carr et al. Human Milk Boosts Immune System

Clostridium difficile were noted (195). A 2-year study of infant
diet and microbiome revealed that formula feeding in the first 3
months of life is associated with decreased diversity and richness
at 12–24 months of life. It is also associated with altered beta
diversity (199). Andersson et al. (200) compared infants fed 3
different types of formula to breastfed infants and evaluated
immune response through 6 months of age. The breastfed group
had an increase in leukocyte count, particularly an increase in
neutrophils. Formula fed infants had a decrease in the relative
amount of NK cells and an increase in CD4+ αβT-cells. Formula
fed infants also had a higher ratio of CD4–CD8 cells (200). Data
from these studies indicate that human milk feeding is optimal
for microbial colonization, promoting robust immune response
and decreasing inflammation in early life.

EXTRACELLULAR VESICLES AND
MICRORNA CARGO ROLE IN IMMUNE
FUNCTION

Extracellular vesicles is a broad term used to describe vesicles
released from many cell types. Readers are referred to O’Reilly
et al. (201). for a detailed review of human milk extracellular
vesicles (EVs) and their role on infant health. The different
methodologies (ultracentrifugation, Exoquick) used to isolate
EVs indicate the existence of two subsets such as exosomes
(30–100 nm) (202–204) and microvesicles (100–1,000 nm) (205,
206). EVs have been reported to contain various molecules (i.e.,
proteins, microRNA, metabolites) (207–215). It is yet to be
determined whether both exosomes and microvesicles contain
miRNAs as most of the methods used so far enrich exosomes.
Interestingly, milk seems to contain the highest level of miRNAs
compared to its volume. The mechanisms involved in loading
the miRNAs to EVs in human milk are still unclear and future
research is needed. For a more detailed review of EV biogenesis
and cargo composition readers are referred to Spencer and
Yeruva (216). The focus of this subsection is to describe EV-
microRNA cargo role on infant health.

miRNA are small non-coding RNA (∼22 nucleotides) that
regulate post-transcriptional expression of genes and have
biological activities in humans (217–219). Human milk contains
several miRNAs (218, 220), and these miRNAs survive in the
acidic environment in the GI tract and can be absorbed (221).
Infant formulas, however, have a significantly lower amount of
miRNAs compared with human milk (218, 222). The origin
of these miRNAs is still under debate. However, based on the
current knowledge on the composition of the EV proteins,
breast cell lines, and miRNA profile of mammary gland cells,
these miRNAs are likely from immune-related and mammary
gland cells (223–225). The literature review of several studies
on miRNA profile suggests that miR-148a-3p, miR-22-3p, miR-
200a-3p, miR-146b-5p, miR-30d-5p, let-7a-5p, miR-30a-5p, let-
7f-5p, let-7b-5p, and miR-21-5p (226–231) were the most
abundant in human milk. In vitro studies suggest that milk
miRNAs are taken up by intestinal, immune, and cancer cell
lines (218, 220, 232–236). Future animal models and clinical

studies under controlled conditions are needed to determine the
bioavailability of these miRNAs.

Few studies have been conducted so far on various factors
impacting milk miRNA composition. For example, in mice fed
high-fat diet, changes in milk miRNA expression was observed
(237). Target prediction analysis of these miRNAs in the high-
fat diet group impacted developmental process and transcription.
Most recently, Carney et al. demonstrated changes in miRNA
profile based on delivery status (preterm vs. term) that appear
to influence metabolism and lipid biosynthesis. This suggests
gestational age likely plays a role in milk miRNA composition
and miRNAs appear to directly influence neonatal health and
metabolism. This is an area for future studies to determine the
underlying mechanisms involved in milk miRNA composition.

The biological impact of human milk EV-miRNAs on infant
health is important to address before supplementing formulas.
Previous studies using target prediction analysis of human
milk miRNAs provided initial evidence that the majority of
these miRNAs are likely impacting the immune system. Also,
experimental evidence from in vitro and in vivo studies using
infection and inflammation models suggest that milk miRNAs
could impact the immune system. For example, miR-148,
present in pre-term and term human milk but significantly
lower in formula (218, 226), appears to be the most abundant
in human milk. It is shown to regulate the innate immune
response in several ways including limiting cytokine production
(238). miR-148 also inhibits T-cell proliferation initiated by the
presentation of antigens by dendritic cells in a mouse model
(238). Let-7 functions to regulate the innate immune system;
it limits B-cell activation, affects T-cell differentiation, and
regulates TLR4 signaling and macrophage activation (239, 240).
miR-30 is important for intestinal epithelial cell homeostasis
(241) and the immune response to Mycobacterium tuberculosis
(242) and influenza infections (243). miR-30 also inhibits
antigen processing and presentation by dendritic cells and
macrophages (244). Other studies identified miR-181 in human
milk (220) which induces B- and T-cell differentiation and
development (245, 246) and plays a role in inflammation by
downregulating TNF-α production in Brucella abortus infections
(247). In addition, porcine milk miRNAs were recently shown to
reduce LPS-induced apoptosis by preventing TLR4 in intestinal
epithelial cells (248). Thus, it is possible that milk miRNAs
protect infants from infection, reduces inflammation, and boosts
the immune response by various mechanisms (Figure 1D).

The potential for human milk miRNAs acting as TLR7 ligand
is a novel concept that we put forth in this review.We hypothesize
that GU rich motif (GU or GUUG) of human milk miRNAs
activates TLR7/TLR8 and could have an adjuvant effect on
immune response during vaccination in breastfed infants. For
example, milk miR-21, let-7a, and let-7b have a GU rich region
and can bind to TLR7/TLR8 receptors (249–252). Thus, milk
miRNAs could have dual functions such as TLR7/TLR8 receptors
and/or regulatory role by inhibiting gene expression. Mechanistic
studies are needed to determine the specific role of milk miRNAs.
In addition, whether miRNAs have direct or indirect effects
via microbiota on the infant gut and the immune system is
not fully understood. However, the evidence so far suggests
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that miRNAs could change microbiota composition. Recently,
exosome/RNAdepleted diet (based on bovinemilk exosomes) fed
C57Bl6 mice showed changes in the composition of microbiota
with relative abundances reported < 1% at family taxonomic
level in comparison to exosome/RNA sufficient diet fed mice
(253). This study does not show the direct role of miRNAs
from bovine milk, nor does it indicate which components of
exosomes altered the microbiota composition. However, in a
different study it has been demonstrated that bacterial growth
is promoted in the presence of certain miRNAs and that
endogenous miRNA produced by intestinal epithelial cells alter
gut microbial diversity. The increased growth was observed
in co-culture of Mission R© miRNA mimics and Fusobacterium
nucleatum (ATCC R© 10953) and E.coli (ATCC R© 47016) (254).
Results from this study suggest that miRNAs modulate the gut
microbiota; to date, however, no studies investigating the effect
of exogenous miRNAs from human milk on neonatal microbiota
have been conducted. If miRNAs do indeed promote the survival
and growth of gut bacteria, these may serve as a novel component
to supplement the infant diet.

PERSPECTIVE AND CONCLUSIONS

Human milk remains the gold standard for infant nutrition.
This review summarized several bioactive components of human
milk and their impact on infant microbiome and gut/immune
function. Human milk oligosaccharides have been shown to have
a prebiotic effect, decrease infectivity as pathogen decoys, and
enhance the immune system. Milk microbiota appears to help
infants’ gut and immune system and protect from pathogens.
However, several questions remain unanswered that could
ultimately improve term and preterm infant outcomes including
decreased infection and improved gut and immune function.
Mechanistic studies involving animal models in association with
clinical trials are needed. While large animal models (piglet
and monkey) are advantageous due to the similarities with
infant gut physiology (189, 255), they have multiple limitations.
These include a low cost-benefit ratio to generate germ-free
animal models due to the specialized facilities required, difficulty
and expense of knock-out models, issues obtaining species
specific reagents and ethical constraints. Animal models have
shown differences in offspring gut microbiome and immune
response based on diet. Clinical data, while extremely relevant,
only allows for association data due to confounding factors.
Thus, alternative models such as germ-free mice could be

explored to understand the mechanistic questions about milk
bioactives. Determining how different human milk bioactives
individually and in combination will impact infants’ health needs
to be pursued.

Future Research
While many questions relating to human milk bioactives have
been addressed, there are areas of research that requires future
studies. The questions that remain unanswered are: (1) what
combination of HMOs or their derivatives should be added
to standard formula? (2) should HMOs be added to formula
for premature infants? (3) what are the direct and indirect
effects of HMOs on infant immune function? (4) how does
maternal microbiota transfer into milk and further shape the
milk microbiome? (5) does out-of-body bacteria, including skin
bacteria, infant oral bacteria, or bacteria from the environment
enter the mammary gland and alter milk microbiota? (6) does
milk microbiome affect composition of other milk components
such as HMOs andmiRNAs? (7) how does milk microbiota affect
TLRs in the infant gut and does this impact colonization with
commensal bacteria and protection from invading pathogens? (8)
does the gut milieu (microbiota andmycobiota) interact and how
does the interplay impact overall infant health? and (9) how does
the addition of different human milk components to formula
impact the gut colonization patterns, and in turn, longitudinal
infant health? All these questions need further investigation using
preclinical and clinical studies. microRNAs are a newer field of
study, thus, many questions remain pertaining to how miRNAs
interact with the infant gut microbiome and immune system.
In conclusion, determining how different human milk bioactives
individually and in combination will promote infants’ health
needs to be pursued.
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