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Summary 
Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, 

prognosis, and response to therapy. However, the molecular mechanisms responsible for these 

disparities have not been investigated extensively. Sample-specific gene regulatory network 

methods were used to analyze RNA sequencing data from non-cancerous human lung samples 

from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma primary tumor 

samples from The Cancer Genome Atlas (TCGA); results were validated on independent data. We 

observe that genes associated with key biological pathways including cell proliferation, immune 

response and drug metabolism are differentially regulated between males and females in both 

healthy lung tissue, as well as in tumor, and that these regulatory differences are further 

perturbed by tobacco smoking. We also uncovered significant sex bias in transcription factor 

targeting patterns of clinically actionable oncogenes and tumor suppressor genes, including AKT2 

and KRAS. Using differentially regulated genes between healthy and tumor samples in 

conjunction with a drug repurposing tool, we identified several small-molecule drugs that might 

have sex-biased efficacy as cancer therapeutics and further validated this observation using an 

independent cell line database. These findings underscore the importance of including sex as a 

biological variable and considering gene regulatory processes in developing strategies for disease 

prevention and management. 
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Introduction 
 
Lung adenocarcinoma (LUAD) exhibits significant sex differences in incidence, prognosis and 

response to therapy. LUAD has been observed to be more prevalent in females than males [1, 2, 

3], with the sex difference being more pronounced among nonsmokers [4]. However, males with 

LUAD have more severe disease and poorer survival outcomes compared to females with the 

disease [5]. Treatment responses and toxicity are also influenced by sex [5]; while females usually 

respond better to chemotherapy compared to males [6], immune checkpoint inhibitors have 

been found to be more effective in males [7] with lung cancer. 

 

Increased susceptibility of LUAD in females may partially be attributed to the effect of estrogens 

on lung carcinogen metabolism. For example, polymorphisms in cytochrome P450 1A1 (CYP1A1) 

and glutathione S-transferase M1 (GSTM1) may contribute to the increased risk of females for 

lung cancer. Females with the CYP1A1 mutant/GSTM1 null genotypes face an elevated risk, 

regardless of their smoking history, potentially influenced by estrogen exposure [8]. Hormonal 

influences could contribute not only to lung cancer incidence, but also its development and 

survival outcomes [9]. Prior research has detected the existence of estrogen receptors in 

malignant lung tissues in both sexes [10]. However, the effects of sex steroid hormones may not 

account for all differences in how males and females respond to environmental carcinogens 

including smoking [4]. Among other factors, higher DNA adduct levels and more frequent 

mutations in the proto-oncogene KRAS in females have also been cited as a possible contributor 

governing higher lung cancer risk in females [11]. Genetic and metabolic factors have also been 

cited as potential mediators for the better prognostic outcomes in females [12, 13] compared to 

males with lung cancer. While previous studies have focused on molecular alterations and gene 

expression alone [14, 15], an integrative analysis of multi-omics data from a systems perspective 

can offer valuable insights into sex-specific regulatory mechanisms linked to both lung cancer 

incidence and clinical outcome. 

 

Despite documented sex differences in LUAD risk and subsequent disease outcome, most 

methods used in the development and selection of cancer therapeutics do not consider biological 
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sex differences, in part because their molecular drivers are poorly understood, and partly 

because clinical trials are not designed to address sex-specific effects. Understanding the 

regulatory processes that differentiate between the sexes in both healthy lung tissue and in LUAD 

will not only help to elucidate disease mechanisms but also identify more effective therapeutic 

approaches for both sexes. 

 

We inferred gene regulatory networks using PANDA [16] and LIONESS [17], methods that in 

combination integrate genome-wide transcription factor binding site maps, transcription factor 

protein-protein interaction data, and gene expression profiles to produce sample-specific 

regulatory network models that have successfully uncovered sex-specific regulatory drivers of 

health and disease in previous studies [18, 19, 20, 21]. We compared these sample-specific 

regulatory networks between males and females to identify genes and biological pathways 

targeted by transcription factors in a sex-biased manner in both healthy lung tissue and in LUAD 

samples. We further explored how this sex bias is influenced by smoking behavior, a significant 

risk factor for lung cancer.  

 

As a primary measure of regulatory network differences, we used differential gene targeting, 

which identifies significant changes in the network model transcription factor repertoire 

controlling each gene. Among healthy samples, genes associated with cell adhesion and cell 

proliferation were highly targeted among female nonsmokers, while in tumor samples these 

genes showed higher targeting in males, irrespective of smoking history. Genes associated with 

immune pathways exhibited higher targeting in tumor samples from females than in those from 

males, suggesting the potential for sex-based differential response to cancer immunotherapy. 

Pathways with known relevance in chemotherapy response such as drug metabolism cytochrome 

P450 (CYP450) showed higher targeting in females, compared to males. Furthermore, an 

elevated targeting of drug metabolism CYP450 was also associated to favorable survival 

outcomes in response to chemotherapy among females but not males. We also uncovered 

significant sex bias in transcription factor targeting of oncogenes and tumor suppressor genes, 

including AKT2 and KRAS that suggests lung cancer drugs targeting these genes might exhibit 
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differences between the sexes in both efficacy and toxicity. Using an in-silico drug repurposing 

tool, we identified several small-molecule drugs that might have sex-biased efficacy as cancer 

therapeutics and further validated this hypothesis using an independent cell line database. 

 

Results 
 
The Role of Differential Gene Regulation by Sex in Incidence Risk of LUAD 
 
To understand why females have a higher risk of developing LUAD compared to males, especially 

among nonsmokers, we compared male and female gene regulatory networks inferred from 

GTEx for healthy lung samples [Figure 2]. We identified several key pathways that are targeted by 

transcription factors in a sex-biased manner in healthy lung that shed light on potential 

mechanisms driving sex difference in disease risk. For nonsmokers we observed increased 

targeting in females compared to males (FDR<0.05) of pathways responsible for cell proliferation, 

cell adhesion and migration, including the hedgehog signaling pathway, WNT signaling pathway, 

notch signaling pathway, ERBB signaling pathway, non-small cell lung cancer, focal adhesion and 

adherens junction [Figure 2]. We validated these findings in healthy lung samples from an 

independent dataset (LGRC) [Figure D.2]. For smokers, all these pathways mentioned were more 

highly targeted in males than females, however, in the LGRC dataset we were only able to 

validate this finding for pathways associated with non-small cell lung cancer and hedgehog 

signaling [Figure D.2]. 

 

The CYP450 drug metabolism pathway, which is associated with environmental carcinogen 

metabolism [11] also had higher targeting in female among nonsmokers and in male among 

smokers, within both GTEx [Figure 2] and LGRC [Figure D.2] control samples. 

 

Based on our analysis we observe that in healthy human lung, pathways related to cell 

proliferation and environmental carcinogen metabolism were differentially regulated between 

males and females which might contribute to the difference in risk of developing LUAD between 

the sexes. 
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Understanding Sex Difference in LUAD Prognosis through Differential Gene Regulation 
 
To understand why males have poorer prognosis than females with LUAD, we compared the gene 

regulatory networks of primary tumors from males and females from the TCGA and identified 

key pathways with a sex-biased targeting pattern by transcription factors. Specifically, we found 

that pathways involved in cell adhesion, cell proliferation, and cell migration, such as WNT 

signaling pathway, pathways in cancer, tight junction, and adherens junction, all have higher 

targeting in tumors from males compared to those from females irrespective of smoking status. 

It is interesting to note that for nonsmokers [Figure 3], cell proliferation and migration-related 

pathways switched from having higher targeting in healthy females to having higher targeting in 

male tumors. And for smokers [Figure 4], pathways related to cell proliferation and cell migration 

that were already highly targeted in healthy males become even more highly targeted in male 

tumors, compared to females. 

 

We replicated our network analysis using an independent LUAD dataset (GSE68465) [Figure D.3] 

and validated that among nonsmokers, WNT signaling pathway and tight junction were more 

highly targeted in male tumors than in those from females. We also validated that among 

smokers, pathways in cancer and adherens junction showed higher targeting among male 

tumors, consistent with the results from TCGA. 

 

We then turned our attention to oncogenes and tumor suppressor genes cataloged in the 

COSMIC database [22] and found these to also be highly differentially targeted between the sexes 

in both healthy and tumor samples [Figure 5]. Among nonsmokers in healthy GTEx lung samples, 

both oncogenes and tumor suppressor genes showed higher targeting (p-value of Wilcoxon 

signed rank test is 2.229e-09 for oncogenes and 3.614e-05 for tumor suppressor genes) in 

females compared to males. Whereas among the nonsmokers in the TCGA tumor samples, both 

oncogenes and tumor suppressor genes showed higher targeting in male samples (p-value of 

Wilcoxon signed rank test is 2.334e-09 for oncogenes and 5.217e-07 for tumor suppressor 

genes), which may help explain poorer prognosis in males compared to females. For smokers, 
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oncogenes and tumor suppressor genes showed higher targeting for males than females in both 

healthy lung samples from GTEx (p-value of Wilcoxon signed rank test is 3.546e-08 for oncogenes 

and 2.296e-12 for tumor suppressor genes), as well as LUAD tumors from TCGA (p-value is 

5.906e-08 for oncogenes and 2.296e-12 for tumor suppressor genes). 

 

To understand whether sex differences in regulation of biological pathways might explain poorer 

survival among males with LUAD, we performed survival analysis on TCGA data using a Cox 

proportional hazard model for each of these pathways. We found a higher targeting of the RNA 

Degradation pathway to be associated with poorer survival outcome in males (z-score of the 

coefficient corresponding to pathway score is 2.030 with p-value 0.042) but did not have any 

impact in females (z-score of the coefficient corresponding to pathway score is -0.740 with p-

value 0.459). The leading genes contributing towards a higher targeting of RNA degradation 

among males include CNOT1 [23], CNOT2 [24], CNOT3 [25] and DCP1A [26], all of which have 

previously been found to have prognostic significance in various cancers, including non-small cell 

lung cancer. 

 

Sex Difference in Immunotherapy 

 

Among GTEx smokers [Figure 4], immune-related pathways such as allograft rejection, intestinal 

immune response for IGA production, systemic lupus erythematosus, antigen processing and 

presentation, all showed higher targeting in females. This female bias was even more strongly 

evident in TCGA tumor samples from smokers. Among GTEx nonsmokers [Figure 3] these 

pathways were more highly targeted in males. However, in TCGA we found higher targeting in 

females—except for systemic lupus erythematosus which remained highly targeted in male 

tumor samples—but the observed sex difference was smaller than that in GTEx. Other immune 

pathways such as hematopoietic cell lineage and natural killer cell mediated cytotoxicity showed 

higher targeting in male within GTEx and switched to higher targeting in female within TCGA, 

irrespective of smoking status. This pattern of female-bias in targeting of immune pathways was 

validated in tumor samples from GSE68465 among smokers. 
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We performed immune cell type deconvolution analysis of TCGA data and found that, consistent 

with a higher targeting of immune pathways in females, various immune cell proportions 

including natural killer cells, CD4+ naive T cells, myeloid dendritic cells and B cells were higher 

among female tumor samples than male tumor samples [Figure 6]. The only exceptions are CD4+ 

Th2 helper cells that are present in higher proportions among male samples. Differential 

targeting of immune pathways, along with a sex-biased infiltration of immune cells, might 

contribute to varying degrees of efficacy of immune checkpoint inhibitors shown to exist among 

males and females with LUAD [Table C.1] [27]. Interestingly, within healthy samples from GTEx, 

we did not find any sex difference in the proportion of immune cells that had sex-biased 

infiltration rate in TCGA [Figure D.4], the only exception being natural killer T cells, which showed 

higher proportion in males compared to females among nonsmokers. 

 

Sex Difference in Chemotherapy 

 

There is empirical evidence of significant sex differences in chemotherapy response [28] in LUAD, 

with females having better outcomes than males in most cases [6]. To explore this, we used 

networks only for patients who received chemotherapy and fit a Cox proportional hazard model 

to identify pathways with a sex-biased impact on survival. We find two pathways: drug 

metabolism CYP450 and metabolism of xenobiotics by CYP450. We observe that a higher 

targeting of both these pathways have a beneficial impact on prognosis in females receiving 

chemotherapy but for males receiving chemotherapy, we did not find any significant impact.  

 

Within females, a higher targeting of two CYP450 pathways—drug metabolism (p-value 0.016) 

and metabolism of xenobiotics (p-value 0.052) was associated with better survival, while in males 

a differential targeting of these pathways did not have any impact on survival (p-value for 

metabolism of xenobiotics by CYP450 was 0.110 and p-value for drug metabolism CYP450 was 

0.157). Previously, [20] found this same pattern of influence on the interaction between drug 

metabolism CYP450 targeting and chemotherapy treatment, in the context of colon cancer. 
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Interestingly, these pathways did not have any significant impact on survival in treatment-naïve 

tumor samples, which indicates that gene regulatory network analysis has the power to predict 

the potential for individuals to respond to clinical interventions, including the use of 

chemotherapy agents. 

 

Sex Difference in Targeted Therapy 

 

Cancer therapeutics targeting specific genes have also been observed to have a sex-biased impact 

on both dose-efficacy and dose-toxicity [55]. To understand how differential regulation of specific 

drug targets might contribute towards different efficacy of various cancer drugs in males and 

females with LUAD, we chose 28 genes commonly targeted by lung cancer drugs [29] for a closer 

analysis [Figure 7]. Among these genes, three showed significant (p-value less than 0.05) sex-bias 

in transcription factor targeting patterns: within nonsmokers AKT2 showed higher targeting 

among females; KRAS and IGF1R showed higher targeting among males compared to females, 

irrespective of smoking status. 

 

Furthermore, to find potential targeted cancer therapeutics that might be more beneficial to 

individuals of one sex over the other, we used CLUEreg [30], a tool designed to match disease 

states to potentially therapeutic small molecule drugs based on differential regulation between 

tumor and healthy samples, and derived a list of small molecule drug candidates for both males 

and females. After cross-referencing these candidate drugs with the Genomics of Drug Sensitivity 

in Cancer (GDSC), we identified several small molecule drugs that might be beneficial for either 

males or females with LUAD. While several conventional cancer therapeutics such as 

Tanespimycin and Cisplatin appeared as potential drug candidates for both sexes, we found three 

drug candidates (Trametinib, Scriptaid/Vorinostat and Actinomycin-d/Dactinomycin) that had 

evidence of potential efficacy exclusively for females and one drug candidate (LBH-

589/Panobinostat) exclusively for males; all four of these drugs are FDA approved. 
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Using GDSC dataset, we validated that female cell lines had higher sensitivity for Trametinib (p-

value 0.00027 Mann-Whitney test), and male cell lines had higher sensitivity for Panobinostat  

(p-value 0.01396 Mann-Whitney test), as predicted by CLUEreg [Figure 8]. However, we did not 

find supporting evidence for sex differences in the efficacy of Vorinostat or Dactinomycin. This 

may be due to the relatively small number of cell lines of either sex that have been profiled and 

the innate variability among individuals in regulatory potential. Although preliminary, the 

validation of CLUEreg drug predictions using an independent cell line drug screening dataset 

confirms the value of using sex-specific changes of regulatory networks to identify therapeutics 

tailored to the patient sex. 

 

Discussion 

 

LUAD, like many cancers, is known to differ between males and females in disease risk, 

development, progression, and response to therapy. While lifestyle differences, androgen and 

estrogen levels, and the genetic effects of different allosomes may play some role, the causes of 

these apparent sex differences remain largely unstudied. Although there are some differences in 

gene expression between males and females, both in healthy and tumor samples, these are 

largely confined to the sex chromosomes [20] and do not shed much light on mechanistic 

differences that might help explain the well-established clinical differences. 

 

We applied methods to infer and compare gene regulatory network models to explore whether 

sex-specific regulatory patterns in healthy and LUAD samples might provide mechanistic 

explanations for sex-specific phenotypic differences in the disease. Using differential targeting 

analysis on individual-specific gene regulatory networks inferred using PANDA and LIONESS, we 

identified sex-bias in transcription factor targeting of biological pathways associated with cell 

proliferation, environmental carcinogen metabolism and immune response in healthy lungs, as 

well as in LUAD. 
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We found differences in regulatory processes controlling genes involved in cell proliferation and 

adhesion pathways, including many implicated in cancer, such as the hedgehog signaling pathway 

[31], WNT signaling pathway [32], notch signaling pathway [33] and ERBB signaling pathway [34]. 

Within healthy samples these pathways showed higher targeting in female nonsmokers and male 

smokers, whereas within tumor samples all these pathways were highly targeted in males, 

irrespective of smoking status. These differences in gene regulation may explain why females 

have a greater risk of developing LUAD, but the disease trajectory in males leads to more rapid 

progression and poorer outcomes.  

 

Chemotherapy drugs such as carboplatin and paclitaxel has been observed to have sex difference 

in both efficacy and toxicity in non-small cell lung cancer, where females have more favorable 

prognosis than males [6]. Our analysis suggests that the differential response to 

chemotherapeutic agents might be associated to a differential targeting of drug metabolism 

CYP450 pathways. Among patients undergoing chemotherapy, we found that higher targeting of 

two CYP450 pathways, namely drug metabolism and xenobiotics metabolism, was associated to 

improved survival in females, while in males, differential targeting of these pathways did not 

have any significant impact on survival. A similar influence of drug metabolism CYP450 targeting 

on chemotherapy outcomes was previously identified in the context of colon cancer [20]. 

 

Not surprisingly, we also found sex-specific differences in the regulation of immune related 

processes, as well as proportion of infiltration of various immune cells within tumor samples. Not 

only do this shed light on cancer prognosis but might also elucidate towards a sex-biased 

response to various cancer immunotherapies [27] , including PD1 and PDL1 inhibitors. 

 

We identified that several genes for which targeted therapies exist, including AKT2, IGF1R, and 

KRAS, are differentially targeted between the sexes in our regulatory networks. While these 

genes have been extensively studied, there are virtually no published studies on potential sex 

differences in response to drugs targeting these genes. However, evidence for sex differences in 

response to targeted therapies is growing. It has been shown in a murine model that drugs 
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targeting IGF1R (Insulin-like Growth Factor-1) improve lifespan with a reduction of neoplasm only 

in females [35], which aligns with our findings. 

 

We identified four FDA-approved small-molecule drug candidates that might have a sex-biased 

efficacy: three drugs (Trametinib, Vorinostat and Dactinomycin) were identified exclusively for 

females and Panobinostat was identified exclusively for males. Using an independent database, 

we validated that female cell lines had indeed higher sensitivity for Trametinib, and male cell 

lines had higher sensitivity for Panobinostat. Trametinib targets MAP2K1 [36], which showed 

higher targeting in males than females, based on our analysis of regulatory networks. Higher 

targeting of MAP2K1 by transcription factors may reduce the effectiveness of cancer therapeutics 

targeting MAP2K1 such as trametinib in males compared to females. Panobinostat is a histone 

deacetylase (HDAC) inhibitor [37]. HDAC inhibitors cause upregulation of the cell cycle gene 

CDKN1A, leading to cell cycle arrest [38, 39]. CDKN1A showed higher targeting by transcription 

factors in females than males. Higher targeting of CDKN1A by transcription factors may reduce 

the effectiveness of HDAC inhibitors such as Panobinostat in females compared to males.  The 

validation of CLUEreg drug predictions using an independent cell line drug screening dataset 

underscores the potential of using gene regulatory networks to identify sex-specific cancer 

therapeutics. 

 

It is essential to acknowledge that although during differential targeting analysis the data were 

adjusted for various clinical confounders such as age, race, smoking history, and clinical tumor 

stage, the analysis might still be influenced by cellular and genetic heterogeneity or unobserved 

clinical phenotypes and risk factors including the effect of hormones, lifestyle habits, 

environmental exposures, and family history. To establish causal conclusions regarding the effect 

of regulatory sex-differences in disease mechanism, further efforts are required to elucidate the 

relative contributions, as well as possible interactions between these factors and sex-biased gene 

regulatory patterns identified by our analysis. 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2023. ; https://doi.org/10.1101/2023.09.22.559001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.22.559001
http://creativecommons.org/licenses/by-nd/4.0/


In conclusion, our study highlights the substantial sex differences in gene regulatory patterns in 

healthy lung as well as LUAD. These distinctions not only bear relevance to disease susceptibility 

and prognosis but also hold promise for shaping sex-specific therapeutic responses and 

enhancing survival rates. Our findings emphasize the potential of harnessing sex-specific 

alterations in regulatory networks to develop personalized treatments and dosage protocols, 

tailored to each patient's sex. Consequently, gene regulatory network inference emerges as a 

promising tool for designing sex-specific Precision Medicine approaches for LUAD as well as other 

diseases, to improve clinical outcomes for all individuals. 
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Figures 

 

Figure 1: Schematic overview of the study. Top box, overview of the approach used to construct individual 
specific gene regulatory networks with PANDA and LIONESS by integrating information on protein-protein 
interaction between transcription factors (TFs), TF-gene motif binding, and gene expression data of GTEx 
healthy lung tissues and TCGA lung adenocarcinoma (LUAD) primary tumor samples from Recount3. 
Bottom box, overview of the differential targeting analysis and independent datasets for validation. 
 
Figure 2: Sex difference in GTEx healthy lung samples within nonsmokers and smokers. Normalized 
enrichment scores (NES) from gene set enrichment analysis (GSEA) using KEGG pathways are shown for 
all pathways that have significant (adjusted p-value < 0.05) sex difference among either nonsmokers or 
smokers. Pathways with higher targeting in male are marked blue and pathways with higher targeting in 
female are marked red. Green boxes highlight pathways associated with cell proliferation and brown 
boxes highlight pathways associated with environmental carcinogen metabolism. 
 
Figure 3: Sex difference among nonsmokers in GTEx healthy lung and in TCGA LUAD. Normalized 
enrichment scores (NES) from GSEA using KEGG pathways are shown for all pathways that have significant 
(adjusted p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. Pathways with 
higher targeting in male are marked blue and pathways with higher targeting in female are marked red. 
Green boxes highlight pathways associated with cell proliferation and purple boxes highlight pathways 
associated with immune response. 
 
Figure 4: Sex difference among smokers in GTEx healthy lung and in TCGA LUAD. Normalized enrichment 
scores (NES) from GSEA using KEGG pathways are shown for all pathways that have significant (adjusted 
p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. Pathways with higher 
targeting in male are marked blue and pathways with higher targeting in female are marked red. Green 
boxes highlight pathways associated with cell proliferation and purple boxes highlight pathways 
associated with immune response. 
 
Figure 5: Sex difference in targeting of oncogenes (top row) and tumor suppressor genes (bottom row) 
in GTEx and TCGA nonsmokers (left column) and smokers (right column). 
 
Figure 6: Sex Difference in immune and stromal cell composition in TCGA LUAD samples. Cell 
compositions are computed using “xcell”, which derives cell composition proportion of 36 immune and 
stromal, along with three composite scores: immune score, stroma score and microenvironment score. 
The bubbleplot shows only those cells that are significantly (p-value < 0.05) different in proportion in 
male and female tumor samples. 
 
Figure 7: Sex difference in transcription factor targeting of genes commonly targeted by drugs in lung 
cancer in TCGA and validation data GSE68465, split by smoking status. The heatmap shows t-statistics 
corresponding to the sex coefficient from a limma analysis on the gene targeting score (indegree) (p-value 
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< 0.05 for the sex coefficient). Genes with higher targeting in male samples are marked in blue and genes 
with higher targeting in female samples are marked in red. 
 
Figure 8: Validation of sex-specific therapeutics predicted by CLUEreg using GDSC drug sensitivity data.  
Boxplots of half maximal inhibitory concentration values (Log IC50) for male and female cell lines treated 
with Trametinib and Panobinostat, Mann-Whitney test. 
 

Tables 

 

Table 1: Clinical characteristics of the discovery and validation datasets. Clinical characteristics by sex 
are recorded in supplementary table S1. 
 

STAR Methods 
 
Discovery Dataset 
 
We downloaded uniformly processed RNA-Seq data from the Recount3 database [40] for two 

discovery datasets using the R package “recount3” (version 1.4.0) on May 26, 2022: (i) healthy 

lung tissue samples from the Genotype Tissue Expression (GTEx) Project [41] (version 8) and (ii) 

lung adenocarcinoma (LUAD) samples from The Cancer Genome Atlas (TCGA) [42]. Clinical data 

for GTEx samples were accessed from the dbGap website (https://dbgap.ncbi.nlm.nih.gov/) 

under study accession phs000424.v8.p2. Clinical data for TCGA samples were downloaded from 

Recount3. Throughout our analysis the GTEx samples will be referred to as “healthy lung 

samples.” 

 

From 655 healthy lung samples in GTEx, we removed 77 samples because they were designated 

as “biological outliers” in the GTEx portal (https://gtexportal.org/) for various reasons (as 

described in https://gtexportal.org/home/faq). The remaining 578 samples (395 males, 183 

females) were used in the analysis. We verified that the self-reported gender for GTEx samples 

aligned with the biological sex through a principal component analysis (PCA) of gene expression 

values of 36 genes on the Y chromosome [Figure D.1]. 
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From the TCGA dataset, we removed two recurrent tumor samples and 59 samples from normal 

adjacent tissues, keeping only primary tumor samples. For individuals with multiple samples, we 

retained the sample with the highest sequencing depth. Finally, we also removed two samples 

annotated as “female” as these samples clustered with “male” samples using PCA for the Y 

chromosome as above [Figure D.1]. We also removed one sample with missing gender 

information. Subsequent analyses were performed on the remaining 513 primary lung 

adenocarcinoma tumor samples (238 males, 275 females). 

 

We extracted TPM normalized gene expression data from both GTEx and TCGA using the 

“getTPM” function in the Bioconductor package “recount” (version 1.20.0) [43] in R (version 

4.1.2). We excluded lowly expressed genes by removing those with counts <1 TPM in at least 10% 

of the samples in GTEx and TCGA combined, thus removing 36,360 annotated genes, and leaving 

27,495 (including 36 Y genes and 884 X genes) genes for analysis. To build gene regulatory 

networks, we kept only genes that were present both in this filtered gene set and, in the TF-

target gene regulatory prior used in PANDA and LIONESS (see section “differential targeting 

analysis using single-sample gene regulatory networks”). The remaining 27,189 genes, including 

genes on the sex chromosomes, were used for network inference and analysis. For female 

samples in both GTEx and TCGA, some genes on the Y chromosome have expression values due 

to mismapping of transcripts; we manually set Y chromosome gene expression values to “NA” for 

biological females in both data sets. 

 

Validation Dataset 

 

We identified two independent studies from the Gene Expression Omnibus (GEO) for use in 

validating our findings: GSE47460 (hereafter referred to as LGRC) [44] and GSE68465 [45]. From 

the LGRC (downloaded on Feb 12, 2023) data, we used 108 samples (59 female and 49 male) 

annotated as “control” samples for validation. Gene expression data came from the Lung 

Genomics Research Consortium (LGRC) representing a subset of tissue samples from the Lung 

Tissue Research Consortium (LTRC) that showed no chronic lung disease by CT or pathology. This 
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study used the Agilent-014850 Whole Human Genome Microarray 4x44K G4112F and Agilent-

028004 SurePrint G3 Human GE 8x60K Microarray for gene expression profiling. Data from 

GSE68465 (downloaded on Jan 24, 2023) consisted of gene expression for lung adenocarcinoma 

primary tumor samples from 462 individuals. This study used Affymetrix Human Genome U133A 

Array for gene expression profiling. Nineteen samples were removed because of missing gender 

information. We also removed six samples annotated as “female” and five samples annotated as 

“male” based on PCA of expression of 65 Y genes [Figure D.1]. The remaining 432 samples (218 

male and 214 female) were used in the final validation analysis. 

 

Normalized expression data and clinical data were downloaded using the R package “GEOquery” 

version 2.62.2. For genes with multiple probe sets, we kept the probe with the highest standard 

deviation in expression across samples and the gene set was further filtered to remove any genes 

that did not overlap with those in the TF/target gene regulatory network prior. This left 13,575 

genes in GSE47460 (LGRC) and 13,516 genes in GSE68465 that were used in subsequent analyses. 

The LGRC data did not show any batch effect and so no correction was used. The GSE68465 

dataset contained LUAD specimens from the following sources: University of Michigan Cancer 

Center (100 samples), University of Minnesota VA/CALGB (77 samples), Moffitt Cancer Center 

(79 samples), Memorial Sloan-Kettering Cancer Center (104 samples), and Toronto/Dana-Farber 

Cancer Institute (82 samples). A principal component analysis on the gene expression data 

demonstrated distinct clusters corresponding to these sample source, thus exhibiting a strong 

batch effect; expression data was subsequently batch-corrected using the “ComBat” function 

implemented in the R package “sva” (version 3.42.0). 

 

Table 1 depicts the clinical characteristics of all the discovery and validation datasets. 

 

Differential Targeting Analysis using Single-sample Gene Regulatory Networks 

 

We used PANDA [16] and LIONESS [17] to construct gene regulatory networks [Figure 1] for each 

sample in the discovery and validation datasets, using Python package netzooPy [46] version 
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0.9.10. In addition to the gene expression data obtained from the discovery and validation 

datasets, two other types of data were integrated to construct the networks: TF/target gene 

regulatory prior (derived by mapping TF motifs from the Catalog of Inferred Sequence Binding 

Preferences (CIS-BP) [47] to the promoter of their putative target genes) and protein-protein 

interaction data (using the interaction scores from StringDb v11.5 [48] between all TFs in the 

regulatory prior). Our TF/target gene regulatory prior consisted of 997 TFs targeting 61,485 

ensemble gene IDs, corresponding to 39,618 unique gene symbols (HGNC), and the protein-

protein interaction data contained the measure of interactions between these 997 TFs. We used 

sex-specific binary motif priors (1 representing the presence of a TF motif and 0 representing the 

absence of a TF motif on the promoter region of the gene) for males and females, where the male 

and female motifs were the same for autosomal and X chromosome genes, but motifs on the Y 

chromosome genes were set to 0 in the female prior. The procedure for deriving the motif prior 

and the PPI priors are given in the supplementary material. Regulatory networks were 

constructed for each of the discovery datasets and validation datasets separately for female and 

male samples. The final networks contained only genes overlapping between the TF/target gene 

motif prior and the corresponding gene expression dataset. 

 

For each sample’s gene regulatory network, we computed the targeting score (or, in-degree) for 

each gene, which corresponds to the sum of incoming edge weights from all TFs to this gene. 

Gene targeting scores were compared between males and females using a linear regression 

model, while adjusting for relevant covariates: sex (Male and Female), race (White, Black or 

African American, Others and Unknown), age, smoking status (Ever-smoker and Never-smoker) 

and ischemic time for GTEx; sex (Male and Female), race (White, Black or African American, 

Others and Unknown), age, smoking status (Ever-smoker and Never-smoker) and tumor stage 

(stages I, II, III, IV and “NA”) for TCGA; using the R package limma (version 3.50.3) [49] and 

accounting for interaction between sex and smoking history (ever-smokers and never-smokers). 
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In the LGRC dataset we adjusted for age and smoking status and in GSE68465 we adjusted for 

age, race, tumor stage and smoking status, while simultaneously considering interaction between 

sex and smoking history (ever-smokers and never-smokers) for each validation dataset. 

 

Pathway Enrichment Analysis 

 

A gene set enrichment analysis was performed separately for individuals with different smoking 

histories using the ranked t-statistics of the coefficient for sex derived from the limma analysis 

(Figure 1). We used pre-ranked Gene Set Enrichment Analysis (GSEA) in the R package “fgsea” 

(version 1.20.0) [50] and gene sets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway database [51] (“c2.cp.kegg.v2022.1.Hs.symbols.gmt”), downloaded from the Molecular 

Signatures Database (MSigDB) (http://www.broadinstitute.org/gsea/msigdb/collections.jsp). 

Only gene sets of sizes greater than 15 and less than 500 were considered, after filtering out 

genes which are not present in the expression dataset, which limited our analysis to 176 gene 

sets. Multiple testing corrections were performed using the Benjamini-Hochberg procedure [52]. 

 

Survival Analysis 

 

For each biological pathway, the pathway targeting score was computed as the mean indegree 

of all genes in the pathway. For survival analysis we used the R package “survival” (version 3.2.13) 

and fit Cox proportional hazard model (“coxph”) for the TCGA data to investigate the effect of 

transcription factor targeting of different KEGG pathways on survival outcome, while adjusting 

for age, sex, race, smoking status, tumor stage, and chemotherapy status (yes, no and “NA”).  

 

Immune Infiltration Analysis 

 

We used “xcell” [53] on the TPM-normalized GTEx and TCGA gene expression data with R package 

“immunedeconv” (version 2.1.0) to infer immune and stromal cell composition in tumor samples. 

For every cell type, to quantify whether cell type proportion in tumor are variable by sex, we fit 
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a linear model to predict cell type proportion by sex, while adjusting for age, race, smoking status, 

and clinical tumor stage. 

 

Finding Small Molecule Drugs with CLUEreg 

 

We identified genes that are differentially targeted between tumor and healthy samples, using 

linear models on gene targeting scores from GTEx and TCGA data through R package “limma”. 

We accounted for the interaction between sex and disease status (tumor versus healthy), while 

adjusting for clinical covariates that were available for both GTEx and TCGA, i.e., sex, age, race, 

and smoking status. Genes were ranked by the adjusted p-values (smallest to largest) from the 

limma analysis and all genes significantly differentially targeted (at FDR cutoff 0.05) were chosen 

for males and females separately. The selected differentially targeted genes were split between 

“high” and “low” targeted based on whether they were more highly targeted in tumor (high)  

samples or in healthy (low) samples and subsequently used as input to CLUEreg [30] 

(https://grand.networkmedicine.org/), a web application designed to match disease states to 

potential small molecule therapeutics, based on the characteristics of the regulatory networks. 

CLUEreg produced a list of 100 small molecule drug candidates most suitable for reversing the 

gene targeting patterns in tumor to resemble the gene targeting patterns in healthy samples. 

 

To validate CLUEreg predictions, we used gene expression and drug response data from cancer 

cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC) [54] dataset, removing cell lines 

from reproductive cancer types. We classified cell lines as male (n=227) or female (n=264) groups 

considering both expression of the Y chromosome genes (gene expression data from GDSC) and 

the reported gender of the individual from whom the cell line was derived (Sanger Cell Model 

Passports, https://cellmodelpassports.sanger.ac.uk/downloads). To test whether drug sensitivity 

varies by sex, we combined technical replicates by median of log IC50 and compared the log IC50 

values reported by GDSC (half maximal inhibitory concentration) between male and female cell 

lines using Wilcoxon-Mann-Whitney test. 
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Resource Availability 

 

Lead Contact: Further information and requests for resources should be directed to and will be 

fulfilled by the lead contact Camila M. Lopes-Ramos (email: nhclr@channing.harvard.edu) 

 

Materials Availability: This study did not generate new unique reagents. 

 

Data and Code Availability 

Raw data to construct gene regulatory networks and other analysis were downloaded from open-

source databases dbGap, Recount3, GEO, STRINGdb, CIS-BP and GDSC. Processed data are 

available upon request. 

Sample-specific gene regulatory networks will be available in the GRAND database 

(https://grand.networkmedicine.org) upon acceptance. 

R codes for all downstream analysis are available on a GitHub public repository: 

https://github.com/Enakshi-Saha/Sex-Differences-Lung-Adenocarcinoma  

A notebook describing differential targeting analysis on the TCGA data will be available on 

Netbooks [55]: http://netbooks.networkmedicine.org upon acceptance. 

 

Supplemental information 

 

A. Designing Sex-specific Transcription Factor-Gene Motif Prior 

B. Designing Protein-protein Interaction Prior 

C. Sex Difference in anti PD-1 and anti PDL-1 Inhibitors in Non-small Cell Lung Cancer 

D. Additional Figures 

 

Figure D.1: Defining biological sex based on sex chromosome complement. Scatterplot of first two 
principal components of Y chromosome gene expression in GTEx (top left), TCGA (top right), LGRC (bottom 
left) and GSE68465 (bottom right). 
 

Figure D.2: Sex difference in LGRC control lung samples within nonsmokers and smokers. Normalized 
enrichment scores (NES) from GSEA using KEGG pathways are shown for all pathways that have significant 
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(adjusted p-value < 0.05) sex difference among either nonsmokers or smokers in LGRC. Pathways with 
higher targeting in male are marked blue and pathways with higher targeting in female are marked red. 
Green boxes highlight pathways associated with cell proliferation and brown boxes highlight pathways 
associated with environmental carcinogen metabolism.  
 
Figure D.3: Sex difference in tumor samples from the validation data GSE68465 within nonsmokers and 
smokers. Normalized enrichment scores (NES) from GSEA using KEGG pathways are shown for all 
pathways that have significant (adjusted p-value < 0.05) sex difference among either nonsmokers or 
smokers (in TCGA). Pathways with higher targeting in male are marked blue and pathways with higher 
targeting in female are marked red. Green boxes highlight pathways associated with cell proliferation and 
purple boxes highlight pathways associated with immune response.  
 
Figure D.4: Sex difference in immune and stromal cell composition in GTEx samples: nonsmokers (left) 
and smokers (right). Cell compositions are computed using “xcell”, which derives cell composition 
proportion of 36 immune and stromal, along with three composite scores: immune score, stroma score 
and microenvironment score. The bubbleplot shows only those cells that are significantly (p-value < 0.05) 
different in proportion in male and female samples. 
 
E. Additional Tables 

 

Table E.1: Distribution of Clinical Variables by Sex in GTEx. 

Table E.2: Distribution of Clinical Variables by Sex in TCGA. 

Table E.3: Distribution of Clinical Variables by Sex in LGRC. 

Table E.4: Distribution of Clinical Variables by Sex in GSE68465. 
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Table 1: Clinical characteristics of the discovery and validation datasets. Clinical characteristics by sex 
are recorded in supplementary table S1. 
 

 GTEx 

(healthy lung) 

TCGA 

(LUAD tumor) 

LGRC 

(healthy lung) 

GSE68465 

(LUAD tumor) 

Sample size 578 513 108 432 

Sex     

Female (%) 183 (31.66%) 275 (53.61%) 59 (54.63%) 214 (49.54%) 

Male (%) 395 (68.34%) 238 (46.39%) 49 (45.37%) 218 (50.46%) 

Age     

Mean ± std (range) 54 ± 11.84 (21-70) 65 ± 10.05 (33-88) 64 ± 11.35 (32-87) 64 ± 10.09 (33-87) 

Race     

White (%) 493 (85.29%) 388 (75.63%) - 289 (66.90%) 

Black or African American (%) 70 (12.11%) 50 (9.75%) - 12 (2.78%) 

Others (%) 15 (2.60%) 9 (1.75%) - 6 (1.39%) 

Unknown (%) - 66 (12.87%) - 125 (28.93%) 

Smoking status     

Smokers (%) 382 (66.09%) 424 (82.65%) 65 (60.19%) 290 67.13%) 

Never-smokers (%) 180 (31.14%) 75 (14.62%) 32 (29.63%) 48 (11.11%) 

NA (%) 16 (2.77%) 14 (2.73%) 12 (10.18%) 94 (21.76%) 

Tumor stage     

I (%) - 274 (53.41%) - 148 (33.26%) 

II (%) - 121 (23.59%) - 242 (56.02%) 

III (%) - 84 (16.37%) - 28 (6.48%) 

IV (%) - 26 (5.07%) - 12 (2.78%) 

NA (%) - 8 (1.56%) - 2 (0.46%) 

Ischemic time (hours)     

Mean ± std (range) 8.02 ± 6.98  

(0.0-24.4) 

- - - 
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Figure 1: Schematic overview of the study. Top box, overview of the approach used to construct individual 

specific gene regulatory networks with PANDA and LIONESS by integrating information on protein-protein 

interaction between transcription factors (TFs), TF-gene motif binding, and gene expression data of GTEx 

healthy lung tissues and TCGA lung adenocarcinoma (LUAD) primary tumor samples from Recount3. 

Bottom box, overview of the differential targeting analysis and independent datasets for validation. 
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Figure 2: Sex difference in GTEx healthy lung samples within nonsmokers and smokers. Normalized 
enrichment scores (NES) from gene set enrichment analysis (GSEA) using KEGG pathways are shown for 
all pathways that have significant (adjusted p-value < 0.05) sex difference among either nonsmokers or 
smokers. Pathways with higher targeting in male are marked blue and pathways with higher targeting in 
female are marked red. Green boxes highlight pathways associated with cell proliferation and brown 
boxes highlight pathways associated with environmental carcinogen metabolism. 
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Figure 3: Sex difference among nonsmokers in GTEx healthy lung and in TCGA LUAD. Normalized 
enrichment scores (NES) from GSEA using KEGG pathways are shown for all pathways that have significant 
(adjusted p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. Pathways with 
higher targeting in male are marked blue and pathways with higher targeting in female are marked red. 
Green boxes highlight pathways associated with cell proliferation and purple boxes highlight pathways 
associated with immune response. 
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Figure 4: Sex difference among smokers in GTEx healthy lung and in TCGA LUAD. Normalized enrichment 
scores (NES) from GSEA using KEGG pathways are shown for all pathways that have significant (adjusted 
p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. Pathways with higher 
targeting in male are marked blue and pathways with higher targeting in female are marked red. Green 
boxes highlight pathways associated with cell proliferation and purple boxes highlight pathways 
associated with immune response. 
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Figure 5: Sex difference in targeting of oncogenes (top row) and tumor suppressor genes (bottom row) 
in GTEx and TCGA nonsmokers (left column) and smokers (right column). 
 
 

 
 
Figure 6: Sex Difference in immune and stromal cell composition in TCGA LUAD samples. Cell 
compositions are computed using “xcell”, which derives cell composition proportion of 36 immune and 
stromal, along with three composite scores: immune score, stroma score and microenvironment score. 
The bubbleplot shows only those cells that are significantly (p-value < 0.05) different in proportion in 
male and female tumor samples. 
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Figure 7: Sex difference in transcription factor targeting of genes commonly targeted by drugs in lung 
cancer in TCGA and validation data GSE68465, split by smoking status. The heatmap shows t-statistics 
corresponding to the sex coefficient from a limma analysis on the gene targeting score (indegree) (p-value 
< 0.05 for the sex coefficient). Genes with higher targeting in male samples are marked in blue and genes 
with higher targeting in female samples are marked in red. 
 

 

 
 
 
Figure 8: Validation of sex-specific therapeutics predicted by CLUEreg using GDSC drug sensitivity data.  
Boxplots of half maximal inhibitory concentration values (Log IC50) for male and female cell lines treated 
with Trametinib and Panobinostat, Mann-Whitney test. 
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