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1  |  INTRODUC TION

An estimated 4.8  million new cases of gastrointestinal cancers 
and 3.4  million related deaths occurred worldwide in 2018.1 
Gastrointestinal cancers account for 26% of the global cancer inci-
dence and 35% of all cancer-related deaths.1 Gastrointestinal can-
cers mainly include oesophageal, gastric and colorectal cancers.2 
Most of the gastrointestinal cancers were diagnosed at a middle or 

advanced stage. This situation is the major obstacle to the effective 
treatment of gastrointestinal cancers.3,4 Therefore, identifying early 
diagnosis markers for gastrointestinal cancers is of great significance 
to the treatment of gastrointestinal cancers.

Gastrointestinal cancers are multifactorial diseases caused 
by complex interactions between genetic and environmental fac-
tors.5–7 More than 50% of all gastrointestinal cancers are caused by 
environmental risk factors, including infection, alcohol consumption, 
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Abstract
Nuclear factor-kappa B1 (NF-κB1), a pleiotropic transcription factor, functions as a 
critical contributor to tumorigenesis. Growing numbers of case-control studies were 
carried out to analyse the potential contribution of NF-κB1 gene variants to gastro-
intestinal cancer risk, yet remains conflicting conclusions. Therefore, we conducted 
this most up-to-date meta-analysis to evaluate the relationship between NF-κB1 gene 
insertion (I)/deletion (D) polymorphism, namely −94ins/delATTG or rs28362491, and 
the susceptibility to gastrointestinal cancers. We searched PubMed, EMBASE and 
MEDLINE databases updated in April 2021 for relevant studies. Meta-analysis was 
carried out by software Stata11.0. The quantification of the relationship was deter-
mined by computing the combined odds ratios (ORs) and their corresponding 95% 
confidence intervals (CIs). Sensitivity analysis, the funnel plot and Begg's rank correla-
tion test were also applied. Our findings indicate that −94ins/delATTG polymorphism 
could not significantly impact the susceptibility to gastrointestinal cancers. Under any 
five genetic models, −94ins/delATTG polymorphism was not remarkedly linked to the 
risk of colorectal, gastric and oesophageal cancer, respectively. The significant role of 
−94ins/delATTG was only observed in some certain subgroups. Findings here suggest 
that NF-κB1 gene −94ins/delATTG polymorphism may not predispose to gastrointes-
tinal cancer susceptibility.
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tobacco smoking and over obesity. Apart from the environmental 
factors, genetic variations are also implicated in the onset and out-
come of gastrointestinal cancers.8–11 Single nucleotide polymor-
phisms (SNPs), the most common and effective variant type, are 
significantly associated with cancer susceptibility.12–14

NF-κB, short for nuclear factor kappa B, is a pluripotent and 
critical dimer transcription factor. NF-κB orchestrates multiple 
physiological and pathological processes, particularly in cell sur-
vival, differentiation, inflammation and carcinogenesis.15–23 It was 
originally discovered by Sen and Baltimore in 1986.24 NF-κB family 
is consisted of 5 different protein subunits, including NF-κB1 (p50/
p105), NF-κB2 (p52/p100), RelA (p65), c-Rel and RelB, in mammals.25 
NF-κB expression is strictly regulated in normal cells, but it is gen-
erally overexpressed in many cancer cells.26 Upregulation of NF-κB 
has been observed in several types of cancer, including hepato-
cellular carcinogenesis,27,28 colon cancer,29 breast cancer,30 ovar-
ian cancer31 and glioma cancer.32 Multiple number of NFKB1 gene 
SNPs were investigated in the implication of cancer. Among them, 
the rs28362491, namely the −94insertion/deletion ATTG polymor-
phism, ranks the most intensively investigated SNP.33,34 The deletion 
of ATTG bases prevents or reduces the binding to nuclear proteins 
and results in decreased transcript levels of the NFKB1 gene, thus 
influencing the stability of mRNA and efficiency of regulating trans-
lation. Research regarding NFKB1 gene −94insertion/deletion ATTG 
polymorphism on its association with gastrointestinal cancer risk 
was widely performed. However, the conclusions are still contra-
dictory and inconsistent, partly attributed to the underpower and 
bias of independent studies, especially for small cohorts. Therefore, 
the exact association between NFKB1 −94insertion/deletion ATTG 
variant and risk of gastrointestinal cancer awaits to be determined. 
Here, a renewed meta-analysis with all potential studies performed 
before April 2021 was analysed to acquire a clearer impact of NFKB1 

−94insertion/deletion ATTG polymorphism on gastrointestinal can-
cer susceptibility.

2  |  MATERIAL S AND METHODS

2.1  |  Search strategy

We reported this meta-analysis in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 
and Meta-analysis of Observational Studies in Epidemiology 
(MOOSE) reporting guidelines.

2.2  |  Publication selection

We applied an all-sided literature retrieval using EMBASE, PubMed 
and MEDLINE up to April 2021. We used the following key words 
to carry out this procedure: (1) NFKB1 or NF-κB1 or nuclear factor 
kappa B1; (2) −94insertion/deletion ATTG or rs28362491 or SNPs 
or polymorphisms or polymorphism or variants; and (3) colorectal 
cancer or gastric cancer or gastrointestinal cancers or oesophageal 
cancer. To identify all the available studies, we also arranged two 
authors to screen eligible publications by hand-searching the refer-
ences of included publications.

2.3  |  Eligibility criteria

Publications are required to meet the following criteria for inclu-
sion: (1) evaluating the relationship between NFKB1 rs28362491 
and gastrointestinal cancer risk; (2) case-control study; and (3) 

F I G U R E  1  PRISMA flow chart 
illustrating results of the literature
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enough data to calculate odds ratios (ORs) and corresponding 
95% confidence intervals (CIs). Editorials, meta-analyses, reviews, 
research on animals and repetitively published articles were 
excluded.

2.4  |  Data extraction

We arranged two researchers (Hanqiang Wu and Jianrong Liang) to 
acquire the data independently by adopting the unified data table. 
The authors acquired the following information from all the studies: 
surname of the first author, source of control, year of publication, 
type of cancers, ethnicity of the study subject, numbers of cases 
and controls, genotyping method, and genotype of SNPs. If the ex-
tracted information is disputable, the authors would re-check the 
references and make sure which extracted information is right. We 
assessed the methodologic quality of each study using the quality 
assessment criteria described by previous studies (Table  S1). We 
judged the study quality to be high if the score was more than 9 
points or otherwise to be low.

2.5  |  Statistical methods

We first test if the SNPs in the controls conformed to Hardy-Weinberg 
equilibrium (HWE) by goodness-of-fit test. The association between 
NFKB1 rs28362491 and gastrointestinal cancer risk was evaluated by 
identifying the genotype frequencies of all cases and controls. Odds ratio 
(OR) and 95% confidence interval (CI) were adopted to assess this rela-
tionship. The meta-analysis assessed association by using five different 
genetic models: homozygote model (II, homozygous insertion [ins/ins] or 
wild-type vs. DD, homozygous deletion [del/del]); heterozygote model 
(ID, heterozygous ins/del vs. DD); recessive model (II vs. ID/DD); domi-
nant model (ID/II vs. DD); and allele contrast model (I vs. D). Stratification 
analyses were also performed by ethnicity, cancer type, source of con-
trol, score and HWE in controls, if applicable. We further analysed the 
heterogeneity among studies using Cochrane Q test. If p  <  0.10 or 
I2 > 50% for the Q test, the random effects model (DerSimonian-Laird 
method) was applied to conduct the analysis; if not, the fixed effects 
model (Mantel-Haenszel method) was applied.35 The included studies 
were deleted one by one, and then, the left studies were recalculated 
for ORs and 95% CIs to determine the influence of each study on the 

F I G U R E  2  Representative forest plots for the correlation between the NFKB1 −94ins/delATTG polymorphism and gastrointestinal cancer 
susceptibility. The horizontal lines represent the study-specific ORs and 95% CIs
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total combined effect size (sensitivity analysis). Publication bias for the in-
cluded literature was determined using the funnel plot and Begg's funnel 
plot. p value < 0.05 indicates significant finding. Trial sequential analysis 
(TSA) was performed as described by us previously. Briefly, after adopt-
ing a level of significance of 5% for type I error and of 30% for type II 
error, the required information size was calculated, and TSA monitoring 
boundaries were built. All statistical analysis was performed using STATA, 
version 11.0 (Stata Corporation, College Station, TX).

3  |  RESULTS

3.1  |  Literature retrieval results

The screening process of the current meta-analysis was shown in 
Figure 1. We first identified 22 articles with potential relevance 

from PubMed, MEDLINE and EMBASE. We then arranged two au-
thors to identify whether there exist additional articles from the 
retrieved studies. Three articles were further identified. After care-
ful review, we total identified 16 studies for final analysis.33,36–48

3.2  |  Studies characteristics

Among the 16 included studies (Table  1), 11 were reported on 
colorectal cancer, 4 on gastric cancer and 1 on oesophageal can-
cer. Nine were in Asian populations, 8 in Caucasian populations 
and 2 in Asian populations. For sources of control, 12 were hos-
pital based and 4 were population based. For quality score, there 
were 8 publications of low quality and 8  studies of high quality. 
The SNPs in the control groups of 10 studies complied with HWE, 
while 6 deviated.

F I G U R E  3  Representative forest plots for the correlation between the NFKB1 −94ins/delATTG polymorphism and respective 
oesophageal, gastric and colorectal cancers susceptibility. The horizontal lines represent the study-specific ORs and 95% CIs
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3.3  |  Quantitative analysis

The detailed results of the meta-analysis were presented in Table 2 
and Figures 2 and 3. The pooled analyses indicated that negative 
association was detected between the NFKB1 −94ins/delATTG pol-
ymorphism and overall gastrointestinal cancer susceptibility under 
all 5 genetic models (II vs. DD: OR = 0.94, 95% CI = 0.70–1.26; ID 
vs. DD: OR = 0.99, 95% CI = 0.85–1.16; II vs. ID/DD: OR = 0.92, 
95% CI = 0.74–1.14; ID/II vs. DD: OR = 0.97, 95% CI = 0.81–1.16; 
and I vs. D: OR = 0.96, 95% CI = 0.84–1.09). In cancer type sub-
group analysis, NFKB1 −94ins/delATTG polymorphism still failed 
to impact the susceptibility in subgroup of colorectal cancer, gas-
tric cancer and oesophageal cancer. Subgroup analysis of ethnic-
ity indicated that significant decreased cancer risk was detected in 
Caucasians (II vs. ID/DD: OR = 0.74, 95% CI = 0.56–0.98), but not in 

Asians. Further stratification analysis by source of control revealed 
that studies conducted as population base protect from cancer risk 
(II vs. DD: OR = 0.78, 95% CI = 0.66–0.93; II vs. ID/DD: OR = 0.81, 
95% CI = 0.72–0.91; and I vs. D: OR = 0.87, 95% CI = 0.80–0.94). 
Moreover, score subgroup indicated that studies >9 were linked to 
decreased cancer risk (II vs. DD: OR = 0.70, 95% CI = 0.49–0.99; II 
vs. ID/DD: OR = 0.72, 95% CI = 0.55–0.94; and I vs. D: OR = 0.87, 
95% CI = 0.74–1.00). Further stratification of HWE analysis in con-
trols demonstrated that no significant association was detected in 
subgroup of both HWE ≤ 0.05 and HWE > 0.05.

3.4  |  Sensitivity analysis

Here, we also carried out a sensitivity analysis by gradually delet-
ing the included studies in a one-by-one manner. The no statistical 

F I G U R E  4  Sensitivity analysis 
of the association between NFKB1 
−94ins/delATTG polymorphism and 
gastrointestinal cancer susceptibility. Each 
point represents the recalculated OR after 
deleting a separate study

F I G U R E  5  Funnel plot analysis of 
publication bias for NFKB1 −94ins/
delATTG polymorphism. Each point 
represents a separate study
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fluctuation of the pooled OR value suggested that the analytic re-
sults were reliable and stable (Figure 4).

3.5  |  Publication bias

Begg's funnel plot did not have significant asymmetry (Figure  5). 
Statistical evidence of Egger's test also could not identify obvious 
publication bias for all of the polymorphisms.

3.6  |  Trial sequential analysis

To minimize random errors and strengthen the robustness of our 
conclusions, we performed TSA (Figure  6). This analysis showed 
that the cumulative z-curve did cross the trial sequential monitoring 
boundary, suggesting that further evidence is needed to verify the 
conclusions.

4  |  DISCUSSION

In the current meta-analysis, we comprehensively extract informa-
tion from available epidemiology studies to assess the association 
between NFKB1 gene −94ins/delATTG polymorphism and gastroin-
testinal cancer risk. Our findings indicate that NFKB1 gene −94ins/
delATTG polymorphism could not modify gastrointestinal cancer 
susceptibility. Of note, this is the first meta-analysis performed by 

far on NFKB1 gene −94ins/delATTG polymorphism and gastrointes-
tinal cancer susceptibility.

Growing evidence has pointed to the involvement of NFKB1 
−94ins/delATTG polymorphism analysed here (rs28362491) in can-
cer susceptibility. Song et al.40 observed that the NFKB1 −94ins/de-
lATTG polymorphism could enhance the susceptibility of colorectal 
cancer in a Southern Chinese population. However, role of NFKB1 
−94ins/delATTG polymorphism in specific cancer is contradictory, 
namely a decreased cancer susceptibility or a null association. To 
solve this controversy, several meta-analyses have been conducted. 
The first meta-analysis was carried out in 2011 by Zou et al.49 Their 
study incorporated 2743 cases and 2195 controls by including eleven 
studies. They failed to detect any relationship between the −94ins/
delATTG SNP and risk of overall cancer. However, subgroup analysis 
identified an ethno-specific association; the D allele could decrease 
the risk of cancer in Asians, but confer to a higher risk in Caucasians. 
In a meta-analysis updated to July 2016 involving 18,299 cases and 
23,484 controls from 50 case-control studies, Fu et al. y50 identified 
that the NFKB1 −94ins/delATTG polymorphism protects from get-
ting overall cancer in the homozygote model; heterozygote model; 
dominant model; and allele contrast. Stratified and subgroup anal-
yses indicated decreased susceptibility for prostate cancer, ovarian 
cancer, lung cancer, nasopharyngeal carcinoma and oral squamous 
cell carcinoma, and this association also is significant for Asians, es-
pecially Chinese subjects, in hospital-based studies, and in studies 
with quality score <9. Of note, by far, no available GWAS has iden-
tified the significant relationship between NFKB1 −94ins/delATTG 
polymorphisms and risk of gastrointestinal cancers.

F I G U R E  6  Trial sequential analysis for NFKB1 −94ins/delATTG polymorphism under the allele contrast model
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Since then, several new relevant case-control studies on gastro-
intestinal cancers have emerged. Therefore, we set as a pioneer to 
determine whether NFKB1 −94ins/delATTG polymorphism impact 
risk of gastrointestinal cancers. However, NFKB1 −94ins/delATTG 
polymorphism under any five genetic models has not enough ability 
to influence susceptibility to overall gastrointestinal cancer. Several 
merits existed in the current meta-analysis. First, this is up to now 
the first and largest meta-analysis regarding NFKB1  gene −94ins/
delATTG polymorphism and gastrointestinal cancers susceptibility. 
Second, in sensitivity analysis, relative stability and credibility of the 
results were achieved as no significant changes after deleting each 
study at a time. Third, there existed no obvious publication bias, in-
dicating the reliability of conclusion. Some limitations in the current 
meta-analysis should be acknowledged. First, the number of sub-
jects in the included studies is relatively small, especially in strati-
fied analyses, which might result in a lack of statistical power and 
prevent a meaningful analysis of the results. Second, the association 
strength was only evaluated by unadjusted estimates. Adjustment 
analysis including gene-gene, gene-environment factors were not 
carried out because of the lack of original data. Third, in the included 
studies, the population sources were generally limited to Caucasians 
and Asians. Thus, the conclusion here should be interpreted in cau-
tion in Africans.

5  |  CONCLUSION

In all, our finding has concluded that NFKB1 gene −94ins/delATTG 
polymorphism may not predispose to gastrointestinal cancers sus-
ceptibility. More attention should be paid to several research di-
rections in future studies. First, more high-quality studies with 
expanded sample sizes are necessarily called to further identify the 
relationship of the NFKB1 gene −94ins/delATTG polymorphism and 
gastrointestinal cancer risk, especially in Caucasian and African pop-
ulations. Second, functional studies are needed to clarify the under-
lying mechanisms of NFKB1 gene −94ins/delATTG in gastrointestinal 
cancers.
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