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Suppressing unwanted background sound is crucial for aural communication. A

particularly disruptive type of background sound, informational masking (IM), often

interferes in social settings. However, IM mechanisms are incompletely understood.

At present, IM is identified operationally: when a target should be audible, based on

suprathreshold target/masker energy ratios, yet cannot be heard because target-like

background sound interferes. We here confirm that speech identification thresholds differ

dramatically between low- vs. high-IM background sound. However, speech detection

thresholds are comparable across the two conditions. Moreover, functional near infrared

spectroscopy recordings show that task-evoked blood oxygenation changes near the

superior temporal gyrus (STG) covary with behavioral speech detection performance

for high-IM but not low-IM background sound, suggesting that the STG is part of

an IM-dependent network. Moreover, listeners who are more vulnerable to IM show

increased hemodynamic recruitment near STG, an effect that cannot be explained

based on differences in task difficulty across low- vs. high-IM. In contrast, task-evoked

responses near another auditory region of cortex, the caudal inferior frontal sulcus

(cIFS), do not predict behavioral sensitivity, suggesting that the cIFS belongs to an

IM-independent network. Results are consistent with the idea that cortical gating shapes

individual vulnerability to IM.

Keywords: informational masking, masking, auditory perception, functional near infrared spectrocopy, cochlear

implant, hearing

1. INTRODUCTION

Perceptual interference from background sound, also called auditory masking, has long been
known to impair the recognition of aurally presented speech through a combination of at least
two mechanisms. Energetic masking (EM) occurs when target and masker have energy at the same
time and frequency, such that the masker swamps or suppresses the auditory nerve activity evoked
by the target (Young and Barta, 1986; Delgutte, 1990). Informational masking (IM) is presently
defined operationally. IM occurs when a target is expected to be audible based on EMmechanisms,
yet cannot be dissociated from the background sound. Listeners experience IM when the masker is
target-like (e.g., hearing twowomen talk at the same time vs. hearing out a female in the background
of a male voice; Brungart, 2001b) or when the listener is uncertain about perceptual features of the
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target or masker [e.g., trying to hear out a target with known vs.
unexpected temporal patterning, cf. Lutfi et al. (2013)].

Unlike EM, IM is associated with striking variation in
individual vulnerability (Neff and Dethlefs, 1995; Durlach et al.,
2003). Moreover, an individual’s susceptibility to IM is largely
refractory to training (Neff et al., 1993; Oxenham et al., 2003).
Identifying brain regions where IM-evoked activation patterns
covary with individual differences in behavioral vulnerability to
IM may thus hold a key for defining the neural mechanisms
underlying IM.

Neuroimaging studies have greatly advanced our
understanding of the neural mechanisms of masking.
Converging evidence links both EM and IM to recruitment
of superior temporal gyrus (STG) and frontal cortex (Davis and
Johnsrude, 2003, 2007; Scott et al., 2004, 2006, 2009; Mesgarani
and Chang, 2012; Lee et al., 2013; Michalka et al., 2015). For
instance, the predominantly activated STG hemisphere can shift
depending on the amount of IM in the background sound (Scott
et al., 2009). Moreover, for speech that was either spectrally
degraded or had impoverished amplitude cues, spanning the
range from unintelligible to fully intelligible, activation near
STG can account for approximately 40 to 50% of the variance
in speech intelligibility (Pollonini et al., 2014; Lawrence et al.,
2018).

In addition, lateral frontal cortex engages more strongly with
increasing listening effort or increasing recruitment of higher-
order semantic processes (Davis and Johnsrude, 2003; Scott
et al., 2004; Wild et al., 2012; Wijayasiri et al., 2017). Parts
of lateral frontal cortex, including the caudal inferior frontal
sulcus (cIFS), are also sensitive to auditory short-term memory
load in situations with IM (Michalka et al., 2015; Noyce et al.,
2017). Using functional near-infrared spectroscopy (fNIRS), we
previously confirmed that the cIFS region engages more strongly
when listeners actively attend to speech in IM vs. listen passively
(Zhang et al., 2018), making the STG and cIFS promising regions
of interest (ROIs) for the current study.

Widening an established IM paradigm (Arbogast et al., 2002),
we here compare hemodynamic responses to low vs. high IM
speech. We test two hypotheses. H1: Individual differences in
vulnerability to IM are mediated through processing limitations
in the vicinity of STG. H2: Individual differences in vulnerability
to IM arise near cIFS. Both hypotheses predict that for a given
task difficulty, hemodynamic response strength in STG (H1) or
cIFS (H2) accounts for behavioral sensitivity in situations where
the background sound is target-like, but should not correlate with
behavioral performance when the background sound is unlike
the target.

To study how cortical responses shape individual differences
in behavioral speech comprehension, our goal is to differentiate
between brain areas with IM independence (task-evoked
responses do not predict vulnerability to IM) vs. areas with IM
dependence (task-evoked responses predict IM vulnerability).
Using psychometric testing and fNIRS, we simultaneously
quantify behavioral sensitivity and hemodynamic responses
in the vicinity of STG and cIFS. In experiment 1, we
contrast hemodynamic responses to speech detection in presence
of combined target-unlike background noise (“low-IM”) vs.

target-like background speech (“high-IM”). In both conditions,
target and background sound are presented to both ears, resulting
in same-ear masking. Low-IM vs. high-IM maskers have similar
long-term spectral densities. Therefore, the amount of energetic
masking is comparable across those conditions. To elucidate the
role of EM, in experiment 2, we then contrast high-IMwith same-
ear vs. opposite-ear masking. The same-ear high-IM condition
is similar to that of experiment 1. The two experiments serve
as their own control, confirming test-retest reliability of the
measured cortical traces. However, in the opposite-ear condition,
target and high-IM never excite the same cochlea and therefore
EM cannot occur. Our results support H1 but not H2.

2. RESULTS

2.1. Experiment 1
Using the setup shown in Figure 1A, we recorded hemodynamic
responses near cIFS and STG bilaterally, from normal-hearing
young individuals. Target and masker were presented at equal
broadband intensities to both ears. However, due to the presence
of ITDs, listeners perceived the target as sounding from the
left and the masker as sounding from the right. Listeners were
instructed to detect when the target voice on the left uttered color
keywords while SPEECH vs. NOISE maskers interfered from the
right side (Figure 1B). Behavioral pilot testing confirmed that
these spectrally sparse maskers produced high-IM (SPEECH) vs.
low-IM (NOISE, Supplemental Information 1).

Accounting for approximately half of the variance in the
recorded traces (R2 = 0.45), a single Linear Mixed Effects Model
(LMEM; see Supplemental Information 2) was then used to
predict task-evoked hemodynamic responses, by regressing out
reference channels (β6 and β7), block number (β5), and pure-
tone audiometric detection thresholds (PTA; β11 and β12) from
the full response (Supplemental Information 2). Note that the
reference channels comprise 44.6% of the total activation levels
in the LMEM fits, as calculated via the area under the fitted
curve with vs. without β6 and β7. Task-evoked responses were
modeled by a canonical hemodynamic response function (HRF)
and that function’s first derivative (HRF’) to improve temporal
accuracy in the fit. Indeed, unlike the full hemodynamic response,
the LMEM-estimated task-evoked hemodynamic response aligns
well with the task-onset (compare onset of darker shaded area
and dashed line throughout Figure 1D).

Our main interest was to determine the weights of the LMEM
factors modeling cortical hemisphere, cortical structure, and
masker configuration. LMEM fits reveal significant task-evoked
responses at all four ROIs (Table 1; β1−4 > 0, p < 0.0001;
see Figure 1D for HbO (top row) and HbR traces (bottom
row). Moreover, all ROIs were sensitive to IM. Activation was
stronger in the SPEECH as compared to the NOISE configuration
(β10 > 0). The size of the difference between SPEECH
(black lines in Figure 1D) vs. NOISE (red lines) activation
varied across ROIs, but these interactions with ROI were small
compared to the overall effect size (interaction between masker
configuration and cortical structure: β13 < 0; interaction
between masker configuration and hemisphere: β14 < 0; see
Supplemental Information 3).
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FIGURE 1 | High-IM elicits stronger task-evoked responses than low-IM across all tested ROIs in experiment 1. (A) Experimental apparatus and setup and optode

placement for a representative listener. Blue circles show placements of detector optodes, red circles of source optodes. Optodes are geometrically arranged into two

types of source-detector channels: (1) deep recording channels and (2) shallow reference channels. Source-detector pairs of deep recording channels are separated

by 3 cm (solid lines in the bottom insert). Source-detector pairs of reference channels are separated by 1.5 cm (dashed lines in the bottom insert). (B) Task design for

SPEECH vs. NOISE. Both target (left-leading interaural time difference [ITD] of –500 µs) and masker (right-leading ITD of 500 µs) were presented binaurally. Spectral

densities for target vs. masker show mutually flanking, sharply tuned component bands. (C) Sensitivity maps for optodes placed in the vicinity of STG and cIFS.

Warmer colors denote increased likelihood that photons will be recorded from these areas. (D) HbO (top) and HbR (bottom) traces. Full hemodynamic responses are

denoted by solid lines and error ribbons. Here and elsewhere, ribbons show one standard error of the mean across listeners. Task-evoked hemodynamic responses

predicted from the linear mixed effects model (LMEM) are shown as dashed lines. Shaded areas mark the task duration.

2.2. Experiment 2
The sharply tuned, mutually flanking bands of target and masker
in experiment 1 were presented to both ears, and were designed
to produce high- vs. low IM, with little EM. However, IM can
also occur when target and masker are presented to opposite
ears. It is unclear whether the neural mechanisms underlying
IM are similar when target and masker are presented to the
same vs. opposite ears. Thus, we next wished to examine whether
the pattern of STG and cIFS recruitment would generalize to a
dichotic IM configuration.

Testing a new group of 14 listeners, experiment 2 contrasted
SPEECH with SPEECH-oppo, a stimulus configuration that was
identical to SPEECH, except that target and masker were now
presented to opposite ears (Figure 2). Mirroring results from
experiment 1, a single LMEM fitting all HbO and HbR traces
from experiment 2 accounted for approximately half of the
variance in the recorded data (R2 = 0.52), with 60.2% of the
full hemodynamic activation attributed to reference channels.
Moreover, LMEM fits confirmed that task-evoked responses in
all four ROIs occurred in both masker configurations, even when
target and masker were presented to opposite ears (Table 2;
β1−4 > 0, p < 0.0001). All ROIs engaged more strongly in
the SPEECH as compared to the SPEECH-oppo configuration
(β10 > 0), with effect size depending somewhat on ROI (see
Supplemental Information 3).

2.3. Vulnerability to Masking and
Hemodynamic Responses
To test the core hypotheses, we next examined STG and cIFS
for IM-dependence. We reasoned that in an IM-dependent ROI,
the hemodynamic activation strength should predict behavioral

sensitivity. Specifically, should hemodynamic activation near an
ROI predict behavioral sensitivity for high-IM but not low-IM
this would support the idea that brain regions in the vicinity of
that ROI are IM-dependent (H1: STG, H2: ciFS).

For each ROI, planned adjusted coefficients of determination,
R2, between behavioral speech detection sensitivity and the
peak of the HbO response were calculated. In experiment
1, individual behavioral thresholds were significantly anti-
correlated with peak HbO only in the SPEECH configuration
in the vicinity of left or right STG, where hemodynamic
responses explained 23% (left STG) and 31% (right STG) of
the behavioral variance (black square symbols in Figure 3A). In
contrast, behavioral NOISE thresholds were uncorrelated with
hemodynamic responses (Figure 3B). Note that these differences
in hemodynamic activation patterns were observed despite the
fact that the behavioral speech detection performance, measured
during the fNIRS recordings, was comparable between NOISE
and SPEECH [paired t-test: t(13) = −1.14, p = 0.27].
Furthermore, activity levels near cIFS (Figure 1C) were not
correlated with behavioral thresholds in SPEECH or NOISE.

Testing a different group of listeners, experiment 2 confirmed
the finding from experiment 1 that HbO peaks near left or right
STG were significantly anti-correlated with behavioral sensitivity
for the SPEECH configuration. Moreover, activity levels in cIFS
were again uncorrelated with behavioral thresholds. Identical
SPEECH configurations were assessed in experiments 1 and 2.
Therefore, the converging results across two groups of listeners
confirm high test-retest reliability of the current fNIRS approach.
Specifically, in experiment 2, STGHbO peak activation explained
43 and 34% of the behavioral variance in left and right STG,
respectively, (blue square symbols in Figure 3A). In contrast,
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TABLE 1 | Results of LMEM, experiment 1.

Term Estimate S.E. t p

β0 Intercept –0.35 0.092 –3.8 0.0001 ***

β1 HRFHbO 0.55 0.004 138.3 <0.0001 ***

β2 HRF’HbO 0.17 0.004 39.4 <0.0001 ***

β3 HRFHbR 0.02 0.004 5.8 <0.0001 ***

β4 HRF’HbR 0.11 0.043 26.8 <0.0001 ***

β5 Block number 0.01 0.000 76.6 <0.0001 ***

β6 Reference

channelHbO

0.42 0.000 1342.0 <0.0001 ***

β7 Reference

channelHbR

0.44 0.001 580.8 <0.0001 ***

β8 Hemisphere 0.04 0.028 1.5 0.14

β9 Cortical

structure

0.08 0.026 3.0 0.003 **

β10 Masker 0.14 0.061 2.2 0.025 *

β11 R ear PTA 0.02 0.008 1.8 0.08 .

β12 L ear PTA –0.01 0.005 –0.9 0.38

β13 Masker

configuration

: Cortical

structure

–0.03 0.003 –12.8 <0.0001 ***

β14 Masker

configuration

: Hemisphere –0.05 0.003 –21.1 <0.0001 ***

β15 Cortical

structure

: Hemisphere –0.01 0.003 –5.4 <0.0001 ***

β16 HRFHbO : Masker

configuration

–0.19 0.004 –46.5 <0.0001 ***

β17 HRFHbO : Cortical

structure

0.17 0.004 41.6 <0.0001 ***

β18 HRFHbO : Hemisphere -0.43 0.004 –10.8 <0.0001 ***

β19 HRF’HbO : Masker

configuration

0.02 0.004 5.6 <0.0001 ***

β20 HRF’HbO : Cortical

structure

–0.22 0.004 –51.6 <0.0001 ***

β21 HRF’HbO : Hemisphere –0.04 0.004 –9.5 <0.0001 ***

β22 HRFHbR : Masker

configuration

–0.12 0.004 –30.2 <0.0001 ***

β23 HRFHbR : Cortical

structure

–0.01 0.004 –1.0 0.3

β24 HRFHbR : Hemisphere 0.05 0.004 11.9 <0.0001 ***

β25 HRF’HbR : Masker

configuration

-0.10 0.004 –22.4 <0.0001 ***

β26 HRF’HbR : Cortical

structure

0.16 0.004 36.6 <0.0001 ***

β27 HRF’HbR : Hemisphere 0.04 0.004 9.3 <0.0001 ***

Source: Zhang et al., 2021.

All estimates are referenced to a default condition in left cIFS for SPEECH.

Significance codes: ***p < 0.001, **p < 0.01, *p < 0.05, . p < 0.1, p 0.1. Int, intercept;

S.E., standard error of the mean.

hemodynamic responses for SPEECH-oppo did not predict
behavioral sensitivity (Figure 3C).

A caveat, unlike in experiment 1, in experiment 2, task
difficulty differed across masking conditions. Specifically,
behavioral speech detection thresholds were better for SPEECH-
oppo than SPEECH [paired t-test: t(13) = –3.13, p = 0.008;
compare green symbols in Figure 3C falling to the right of the
red, blue and black symbols in Figures 3A,B]. However, even

for the more poorly performing listeners in experiment 2, no
obvious trend links behavioral sensitivity to peak HbO levels in
left or right STG.

Of note, behavioral responses were not predicted from HbR
activity levels, across any of the tested conditions, in either
of the two experiments. As expected, task-evoked HbO and
HbR responses were robustly anti-correlated (in Figures 1D,
2, compare dark dashed lines in the top row to the lighter
dashed lines of the same color in the bottom row). This
anti-correlation would predict that HbR responses mirror
the correlation patterns between HbO peaks and behavioral
sensitivity. However, in general, HbR response magnitudes were
very small, approximately 20% of HbO magnitudes, hinting that
here, the HbR responses may have been contaminated by the
noise floor of the recording system.

3. DISCUSSION

The goal of the current work was to identify brain regions where
individual differences in IM vulnerability emerge. To that end,
we sought to differentiate between IM-independent parts of the
brain whose activation levels are equivalently driven by low-
or high-IM, vs. IM-dependent regions whose activation levels
correlate with individual IM-vulnerability.

3.1. Hemodynamic Correlates of IM
The current data confirm that cortical regions at or near STG and
cIFS engage during masked speech comprehension tasks (Scott
et al., 2004, 2006, 2009; Kerlin et al., 2010; Ding and Simon,
2012; Mesgarani and Chang, 2012; Michalka et al., 2015; Noyce
et al., 2017; Rowland et al., 2018; Zhang et al., 2018). For both
high- and low-IM background sound, when a listener engaged
in speech detection, robust task-evoked hemodynamic responses
in STG and cIFS occurred in both brain hemispheres. Task-
evoked bilateral responses in STG and cIFS were even observed
when target and high-IMmasker were presented to opposite ears
(SPEECH-oppo in experiment 2).

SPEECH masking recruited a stronger task-evoked response
than NOISE masking in both left and right STG, consistent
with prior work (Scott et al., 2004). Activation levels during
SPEECH masking consistently predicted a moderate 30% of
variability of individual differences in vulnerability in left or
right STG, in both experiments. Moreover, STG recruitment
did not predict vulnerability to masking for the low-IM masker
(NOISE condition in experiment 1). Together, these results show
that recruitment in the vicinity of STG was IM-dependent. In
contrast, while cIFS also showed task-evoked responses that were
stronger in SPEECH than in NOISE, cIFS activation strength
did not significantly correlate with individual vulnerability in
any tested masking configuration, suggesting that the vicinity
of cIFS was IM-independent. The observed association between
hemodynamic response recruitment near STG was somewhat
greater in experiment 2 than in experiment 1, and more variable
in left than right STG, hinting that an uncontrolled source
of variance contributed. It is important to note that here, we
did not systematically control for across-participant variability
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FIGURE 2 | Hemodynamic responses for SPEECH (Black) vs. SPEECH-oppo (green) show robust task-evoked recruitment of all ROIs in experiment 2, even when

target and masker are presented to opposite ears. Solid lines and error ribbons denote raw recordings; dashed lines show LMEM fits.

in skull curvature, skin pigmentation or hair coarseness
across participants.

IM is thought to be a central auditory mechanism. However,
IM generally interferes much more strongly when target and
masker are presented to the same ear(s), as compared to being
presented to opposite ears (Brungart and Simpson, 2002, 2007;
Kidd Jr et al., 2003; Gallun et al., 2005; Wightman and Kistler,
2005). It is unclear whether these mechanisms are similar for
same-ear vs. opposite ear IM. Even when background sound
enters a non-target ear, behavioral evidence suggests that IM
interference can be attributed to a combination of a failure to
attend to the target ear as well as increased listening effort (Gallun
et al., 2007), whereas same-ear masking adds the possibility that
energetic masking shapes IM through interactions with attention
and across-time streaming (Ihlefeld and Shinn-Cunningham,
2008).

Here, SPEECH-oppo evoked bilateral responses in STG and
cIFS. If identical STG-based networks were activated for same-
ear-IM (SPEECH) and opposite-ear-IM (SPEECH-oppo), STG
activity should have been a negative predictor of behavioral
SPEECH-oppo sensitivity, but this was not observed. Behavioral
sensitivity in this task was derived by calculating the d’ difference
between the rate of correct button-press responses vs. the rate
of false-alarm button-press responses one would have obtained
had the participant pushed the response button equally often but
randomly (see Methods and Materials), resulting in a theoretical
maximum d’ of 3.25. Note that speech identification thresholds
in SPEECH-oppo were at or close to this psychometric ceiling for
a few of the listeners (note clustering of five green points at the
right of Figure 3C), biasing the regression fits toward zero slope.
However, ignoring these high-performing listeners, even for
poorly performing listeners, no trend emerged linking the peak
HbO response and behavioral sensitivity (Figure 3C). Moreover,
the interpretation that contralateral IM recruits different brain

networks than ipsilateral IM is also supported by prior evidence
from research in children, where the ability to suppress a masker
ipsilateral to the target matures more slowly than the ability to
suppress a masker on the contralateral side (Wightman et al.,
2010).

For same-ear IM, listeners reached comparable speech
detection thresholds in low-IM and high-IM, but had marked
individual difference during IM speech identification during
behavioral pilot testing. This observation is consistent with the
idea that more IM-vulnerable listeners exerted more listening
effort (Pichora-Fuller et al., 2016). A cortical marker for listening
effort was previously located in lateral inferior frontal gyrus, a
brain area which shows attention-dependent increase in frontal
brain activation during listening to degraded speech (Wild et al.,
2012; Wijayasiri et al., 2017). The current study did not target
the lateral inferior frontal gyrus, nor did we record alternative
measures of listening effort, such as pupilometry (Zekveld and
Kramer, 2014; Parthasarathy et al., 2020), precluding any direct
test of this possibility.

Together, the results show that even with comparable
behavioral sensitivities and similar long-term acoustic energy,
high-IM in the same ear increased HbO peaks near STG
and cIFS, as compared to low-IM. This effect was observed
separately for same-ear as well as opposite-ear IM. Moreover,
the observed anti-correlation between HbO peak levels and
individual task performance in same-ear high-IM is consistent
with the interpretation that left and right STG are part of a
same-ear-IM-dependent network. In contrast, the vicinity of cIFS
engaged in an IM-independent manner.

3.2. Emergence of IM
Listeners with higher cognitive abilities comprehend masked
speech better (Rönnberg et al., 2008; Mattys et al., 2012), but
prior work shows no evidence that cognitive ability contributes
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TABLE 2 | Results of LMEM, experiment 2.

Term Estimate S.E. t p

β0 Intercept 0.02 0.065 0.3 0.75

β1 HRFHbO 0.29 0.003 89.4 <0.0001 ***

β2 HRF’HbO 0.07 0.003 19.5 <0.0001 ***

β3 HRFHbR –0.04 0.003 –10.9 <0.0001 ***

β4 HRF’HbR 0.07 0.004 20.8 <0.0001 ***

β5 Block number 0.01 0.000 39.1 <0.0001 ***

β6 Reference

channelHbO

0.67 0.001 1490.4 <0.0001 ***

β7 Reference

channelHbR

0.73 0.001 802.0 <0.0001 ***

β8 Hemisphere –0.02 0.025 –0.7 0.46

β9 Cortical

structure

0.04 0.034 1.2 0.23

β10 Masker 0.00 0.025 0.04 0.97

β11 R ear PTA –0.01 0.011 –0.97 0.33

β12 L ear PTA 0.00 0.009 0.3 0.79

β13 Masker

configuration

: Cortical

structure

0.06 0.002 26.3 <0.0001 ***

β14 Masker

configuration

: Hemisphere –0.03 0.00 –14.5 <0.0001 ***

β15 Cortical

structure

: Hemisphere 0.08 0.002 40.3 <0.0001 ***

β16 HRFHbO : Masker

configuration

–0.1 0.003 –31.8 <0.0001 ***

β17 HRFHbO : Cortical

structure

0.04 0.003 11.1 <0.0001 ***

β18 HRFHbO : Hemisphere 0.03 0.003 8.5 <0.0001 ***

β19 HRF’HbO : Masker

configuration

–0.01 0.003 –1.8 0.072 .

β20 HRF’HbO : Cortical

structure

–0.19 0.003 –53.9 <0.0001 ***

β21 HRF’HbO : Hemisphere –0.06 0.003 –16.63 <0.0001 ***

β22 HRFHbR : Masker

configuration

0.003 0.003 1.1 0.29

β23 HRFHbR : Cortical

structure

–0.05 0.003 –14.4 <0.0001 ***

β24 HRFHbR : Hemisphere –0.04 0.003 –11.9 <0.0001 ***

β25 HRF’HbR : Masker

configuration

0.01 0.003 3.0 0.0031 **

β26 HRF’HbR : Cortical

structure

0.06 0.003 17.8 <0.0001 ***

β27 HRF’HbR : Hemisphere –0.01 0.003 –3.5 0.0006 ***

Source: Zhang et al., 2021.

All estimates are referenced to a default condition in left cIFS for SPEECH. Significance

codes: ***p < 0.001, **p < 0.01, and . p < 0.1, p 0.1. Int, intercept; S.E., standard error

of the mean. Int, intercept; S.E., standard error of the mean.

differently to IM vs. EM. For instance, cognitive scores poorly
predict how well an individual can utilize an auditory scene
analysis cue to suppress IM (Füllgrabe et al., 2015). Consistent
with this, here, task-evoked responses near cIFS were IM-
independent, unlike in the vicinity of STG.

Inded, prior work hints that IM emerges at the level of
auditory cortex, a part of the STG (Gutschalk et al., 2008).

FIGURE 3 | Hemodynamic responses link individual differences in vulnerability

toward IM to the vicinity of STG (A) STG activity and behavioral vulnerability to

the high-IM SPEECH condition are robustly anti-correlated, across both

hemispheres in experiments 1 and 2 (black vs. blue symbols, respectively). (B)

There was no appreciable association between HbO peaks and the low-IM

NOISE condition. (C) When target and masker were presented to opposite

ears in the SPEECH-oppo configuration, HbO peaks did not predict

psychophysical thresholds.

We here tested maskers that were spectrally interleaved with
the target, designed to produce either high IM (SPEECH) or
low IM (NOISE). EM, when present, was limited to spectral
regions outside the frequency bands that comprised most of
the target energy. Consistent with this, for speech detection,
behavioral thresholds were comparable between SPEECH and
NOISE. However, our behavioral pilot results also confirmed that
speech identification was much more difficult in the presence of
SPEECH than NOISE (Freyman et al., 1999; Arbogast et al., 2002;
Brungart et al., 2006; Wightman et al., 2010).

This behavioral pattern parallels a behavioral phenomenon in
vision—called Crowding. In Crowding, the presence of visual
target identification is severely impaired by nearby clutter or
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“flankers” (Bouma, 1970; Rosen et al., 2014). In the current
IM design, the spectrally sparse masker and target can be
conceptualized as mutually flanking each other. Moreover,
analogous to the current behavioral results, flankers that
Crowd target identification do not affect target detection (Pelli
et al., 2001). Furthermore, using a behavioral paradigm that is
comparable to the current speech identification task, prior work
shows that IM can occur even when the masker is softer than the
target (Brungart, 2001a; Ihlefeld and Shinn-Cunningham, 2008).
Analogously, Crowding can occur even when the flankers are
smaller than the target (Pelli et al., 2001). Of importance to the
current work, there is good evidence that the Crowding effect
occurs in the visual cortex (Millin et al., 2014; Zhou et al., 2018a).
In particular, flankers presented through one eye crowd a target
presented through the other eye (Flom et al., 1963; Taylor and
Brown, 1972; Tripathy and Levi, 1994). These striking similarities
of IM and Crowding suggest that they result from analogous
sensory processes, further supporting the prior notion that IM
arises at the level of cortex.

3.3. Cortical Mechanisms of IM
The current results show that for similar behavioral sensitivities
and similar long-term acoustic energy, individual differences in
vulnerability to high-IM in the same ear correlated with increased
need for supply of oxygen in the vicinity of STG, as compared
to low-IM. However, converging evidence from prior work with
electroencephalography (EEG) recordings also shows that the
temporal fidelity by which cortical local field potentials encode
sound, as opposed to their absolute response strength, correlates
with task demands and predicts masked speech intelligibility
(Choi et al., 2014; O’Sullivan et al., 2015; Viswanathan et al.,
2019). Note that unlike with hemodynamic responses recorded
with fNIRS, which emerge within proximity of the recording
sensors at STG, it is generally more difficult to pinpoint where in
the brain the EEG traces originate. In addition, even listeners with
audiologically normally hearing can vary dramatically in their
ability to resolve and utilize temporal fine structure cues (Ruggles
et al., 2011; Bharadwaj et al., 2019). Moreover, an individual’s
sensitivity to monaural or binaural temporal fine structure
predicts masked speech intelligibility, especially in temporally
fluctuating background sound (Lorenzi et al., 2006; Papesh et al.,
2017). Intriguingly, the neural mechanisms shaping temporal
fidelity are thought to be of subcortical origin (Parthasarathy
et al., 2020). Furthermore, prior work with MEG indicates that
a thalamo-cortical loop gates temporal signatures of sound to the
cortical processing level (Bharadwaj et al., 2016). Consistent with
this, recent cortical recordings in humans also demonstrate that
neural tuning properties of the STG rapidly and flexibly shift in
gain, temporal sensitivy and spectrotemporal tuning, depending
on the stimulus (Khalighinejad et al., 2019; Keshishian et al.,
2020).

Together, these findings raise the possibility that an
individual’s need for gating or adapting the neural code in STG
should increase with decreasing temporal fidelity of subcortical
information, as they need to work harder to overcome poor
subcortical encoding of the target. Increased inhibitory activity in
STG associated with stronger modulation or gating of subcortical

temporal fidelity in vulnerable listeners should therefore increase
the amplitude of hemodynamic responses (Stefanovic et al., 2004;
Vazquez et al., 2018). Broadly increased inhibition would not
necessarily be picked up via EEG analysis looking for temporal
coherence and/or EEG recordings summing neural activity
farther from STG. Thus, the current results are consistent
the idea that increased gating or modulation of subcortical
information via STGmay be a potential mechanism contributing
for individual variability in IM vulnerability. Future work is
needed to explore how metabolic need and the fidelity of cortical
temporal coding interact.

3.4. Spatial Specificity
The spacing of fNIRS optodes determines both the depth of the
brain where recorded traces originate, as well as their spatial
resolution along the surface of the skull. Here, optode sources
and detectors were spaced 3 cm apart and arranged cross-wise
around the center of each ROI (Figure 1A). To estimate the
hemodynamic activity in each ROI, we averaged across the four
channels of each ROI. This averaging greatly improved test-
retest reliability of each ROI’s activation trace during pilot testing,
both here and in our prior work (Zhang et al., 2018). A caveat
of this approach is that it reduces the spatial resolution of the
recordings. Thus, it is unclear whether increased hemodynamic
activity near STG is due to increased STG recruitment, or due
to a more broadly activated brain network in the vicinity of STG.
For instance, there is precedence for activation of additional brain
regions as a compensatory strategy for coping with age-related
cognitive decline (Presacco et al., 2016; Jamadar, 2020). Listeners
who are more vulnerable may use either a broadened brain
network or increase STG recruitment, two possibilities that the
current data cannot differentiate. However, either interpretations
is consistent with the idea that a central processing limitation
exists that includes STG and shapes vulnerability to IM.

3.5. Diagnostic Utility
The current results bear clinical relevance. A technique we here
used to design our stimuli, vocoding, is a core principle of speech
processing with current cochlear implants. A pressing issue for
the majority of cochlear implant users is that they cannot hear
well in situations with masking, an impairment in part attributed
to cortical dysfunction (Anderson et al., 2017; Zhou et al.,
2018b). Sending target and masker sound to opposite ears can
improve target speech identification in some, but not all, bilateral
cochlear implant users of comparable etiology, suggesting that
central auditory processing contributes to clinical performance
outcomes (Goupell et al., 2016). This makes it desirable to
assess auditory brain health in cochlear implant users. However,
a challenge for imaging central auditory function in cochlear
implant users is that cochlear implants are ferromagnetic
devices. Thus, cochlear implants often either unsafe for use
in magnetic resonance imaging (MRI) scanners and/or cause
sizeable artifacts when imaged with MRI or EEG (Hofmann
and Wouters, 2010). Moreover, when imaged under anesthesia,
cochlear implant stimulation can fail to elicit cortical responses,
making it potentially impractical to record cortical responses
during CI surgeries (Nourski et al., 2013). In contrast, fNIRS,

Frontiers in Neuroscience | www.frontiersin.org 7 July 2021 | Volume 15 | Article 675326

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Informational Masking Linked to STG

a quiet and light-based technology, is safe to use with cochlear
implants. Albeit limited to a small number of participants,
the current paradigm demonstrates feasibility: fNIRS-recorded
cortical responses tomasked speechwith impoverished, cochlear-
implant-like qualities, can explain approximately a third of the
variance in individual vulnerability to IM–an approach that, it is
hoped, may prove useful in future clinical practice.

4. METHODS AND MATERIALS

4.1. Participants
Our sample size (14 participants for each of the two fNIRS
experiments and 11 participants for a behavioral pilot control)
was selected a priori using effect size estimates from prior work
on IM (Arbogast et al., 2002; Zhang et al., 2018). Briefly, using
prior psychometric functions of IM sensitivity, a sample size of
8 participants suffices to demonstrate behavioral differences in
the task conditions tested here (Arbogast et al., 2002; Brungart
and Simpson, 2007; Ihlefeld and Shinn-Cunningham, 2008).
For the fNRIS recordings, where prior data with the specific
recording system and auditory task did not exist, we ran a
bootstrapping analysis, sampling with replacement our prior
recordings on a related task (Zhang et al., 2018). We needed
at least 12 participants to reliably arrive at the effect size that
we previously observed with 10% tolerance (Zhang et al., 2018).
We then conservatively chose slightly more participants than we
had estimated. In total, we recruited 40 paid listeners, who were
right-handed native speakers of English, and between 19 and
25 years old (17 females). Assessment of pure-tone audiometric
detection thresholds (PTAs) at all octave frequencies from 250
to 8 kHz of 20 dB HL or better verified that all listeners had
normal hearing. Specifically, the across-ear differences in pure
tone thresholds was 10 dB or less, at all of the audiometric
frequencies. All listeners gave written informed consent prior to
participating in the study. All testing was administered according
to the guidelines of the Institutional Review Board of the New
Jersey Institute of Technology.

4.2. Speech Stimuli
There were 16 possible English words, each utterance recorded
without co-articulation by each of two male talkers (Kidd Jr et al.,
2008). The words consisted of the colors <red, white, blue, and
green> and the objects <hats, bags, cards, chairs, desks, gloves,
pens, shoes, socks, spoons, tables, and toys>. The colors were
designated as keywords. Target word sequences were generated
by picking a total of 25 random words from the overall set of 16,
including between three and five target words, and concatenating
them in random order with replacement (a set of more than 1026

possible permutations for the target sequence,
(27
3

)

· 1222 · 43 +
(28
4

)

· 1221 · 44 +
(29
5

)

· 1220 · 45 > 1.6 · 1016). Similarly, masker
sequences were made by picking 25 random words from the
overall set of 16, constrained such that target and masker words
always differed from each other, for any given word position in
the target and masker sequence. One talker was used for the
target, the other for the masker. Prior to concatenation, each
utterance was initially time-scaled to a duration of 300 ms (Hejna
and Musicus, 1991). In addition, 300 ms silences were included

between consecutive words, such that the total duration of each
target sequence equaled 15 s.

4.3. Vocoding
Next, the target word sequences were vocoded through an
analysis-, followed by a synthesis-filtering stage. For the analysis
stage, each word sequence was filtered into 16 adjacent spectral
bands, with center frequencies from 300 to 10 kHz. These
spectral bands were spaced linearly along the cochlea according
to Greenwood’s scale, with a distance of more than one
equivalent rectangular cochlear bandwidth between neighboring
filters (Greenwood, 1990; Chen et al., 2011). Analysis filters
had a simulated spectral width of 0.37 mm along the cochlea
(Greenwood, 1990) or approximately 1/10th octave bandwidth,
had a 72 dB/octave frequency roll-off and were implemented
via time reversal filtering, resulting in zero-phase distortion.
In each narrow speech band, the temporal envelope of that
band was then extracted using Hilbert transform. Broadband
uniformly distributed white noise carriers were multiplied by
these envelopes. For the synthesis stage, these amplitude-
modulated noises were then processed by the same filters
that were used in the analysis stage. Depending on the
experimental condition, a subset of these 16 bands was then
added, generating an intelligible, spectrally sparse, vocoded
target sequence.

4.4. Target/Masker Configurations
A target sequence was always presented simultaneously with
a masker sequence. Analogous to an established behavioral
paradigm for assessing IM, we used two different masker
configurations, consisting of different-band-speech or different-
band-noise (Arbogast et al., 2002). In the SPEECH condition,
the masker sequence was designed similarly to the target except
that it was constrained such that (1) the target and masker
words were never equal at the same time and (2) the masker
was constructed by adding the remaining seven spectral bands
not used to build the target sequence. In the NOISE condition,
the masker sequence consisted of 300-ms long narrowband
noise bursts that were centered at the seven spectral bands not
used to build the target sequence. All processing steps were
identical to the SPEECH condition, expect that, instead of being
multiplied with the Hilbert envelopes of the masker words,
the noise carriers were multiplied by 300-ms long constant-
amplitude envelopes that were ramped on and off with the
target words (10 ms cosine squared ramps). Figure 1A shows
a representative spectral energy profile for a mixture of target
(brown) and SPEECH (black) sequences. Note that the spectrum
of a mixture of target and NOISE samples comprised of similar
frequency bands would look visually indistinguishable from
target in SPEECH and is thus not shown here (c.f. Arbogast et al.,
2002).

In experiment 1, target and either a different-band speech
or a different-band-noise masker were presented binaurally
(Figure 1B). The target had a left-leading interaural time
difference (ITD) of -500 µs. The masker sequence had a right-
leading 500 µs ITD, resulting in two possible target/masker
configurations, called SPEECH (different-band-speech with 500
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µs ITD) vs. NOISE (different-band-noise with 500 µs ITD). The
target and masker were each presented at 59 dBA, as calibrated
with a 1-kHz tone that was presented at the same root mean
square as the target and masker and recorded with KEMAR
microphones (Knowles Electronics model KEMAR 45BB). As
a result, the broadband Target-to-masker energy ratio (TMR)
equaled 0 dB. However, at each of the center frequencies of the
nine vocoded spectral bands that made up the target, the TMR
equaled 93 dB or more.

In experiment 2, the masker always consisted of a different-
band-speech sequence. Target and masker sequences were
presented in two possible configurations. The first configuration
was identical to the SPEECH condition of experiment 1, with
the target presented binaurally with a –500 µs ITD and a
SPEECH masker at 500 µs ITD. In the second “SPEECH-oppo”
configuration, a target and different-band-speech masker were
presented to opposite ears, with the target presented monaurally
to the left, and a different-band-speech masker monaurally to the
right ear (Figure 2).

4.5. Behavioral Task
The auditory task consisted of 12 45-s long blocks. To familiarize
the listener with the target voice, at the beginning of each block,
we presented a 3-s long cue sentence with the target talker’s
voice and instructed the listeners to direct their attention to
this talker. The cue sentence was “Bob found five small cards,”
and was processed identically to the target speech for that block
(same spectral bands, same binaural configuration). Each block
then consisted of a 15-s long acoustic mixture of one randomly
generated target and one randomly generated masker sequence,
followed by a rest period of 30 s of silence. Moreover, at the
end of each auditory task block, we added a random silent
interval (mean: 3.8 s, variance: 0.23 s, uniform distribution).
In experiment 1, we randomly interleaved six SPEECH blocks
with six NOISE blocks, whereas in experiment 2, we randomly
interleaved six SPEECH blocks with six SPEECH-oppo blocks.
The spectral bands of the vocoded target and masker were fixed
within each block and randomly interleaved across blocks.

Listeners were instructed to press a button each time the target
talker to their left side uttered any of the four color keywords,
while ignoring all other words from both the target and the
masker. A random number (between three and five) of color
words in the target voice would appear during each block. No
response feedback was provided to the listener.

4.6. Behavioral Detection Threshold
Throughout each block we counted NB, the number of intervals
that the listener pushed the button of the response interface. If
a button push occurred within 200–600 ms after the onset of a
target keyword, the response was scored as a hit. Absence of any
button push response in the same time period was scored as a
miss. The observed percent correct was calculated by dividing the
number of hits by the total number of target keywords during
that block.

The baseline guessing rate was estimated via a bootstrapping
analysis that calculated the chance percent correct that a
simulated listener would have obtained by randomly pushing a

button N times throughout that block. Specifically, to estimate
the chance percent of keywords guessed correctly via random
button push, for each particular listener and block, we randomly
shuffled NB button push intervals across the duration of that
particular block’s target sequence and counted the number
of keywords guessed correctly, then repeated the process by
randomly shuffling again for a total of 100 repetitions. To correct
for bias, the observed vs. chance percent correct scores were then
converted to d’-scores, by calculating the difference in z-scores
of observed percent correct vs. chance percent correct (Klein,
2001). To prevent infinite d’ values, hit and guessing rates were
bracketed such that they could not fall below 0.001 and could not
exceed 0.999.

4.7. Behavioral Pilot Control
Behavioral pilot testing established the presence of IM in our
stimuli, while also verifying that the high- vs. low-IM conditions
tested via fNIRS resulted in comparable speech intelligibility.
Inside a double-walled sound-attenuating booth (Industrial
Acoustic Company), we tested 11 normal-hearing listeners using
the same auditory testing equipment and the same speech
detection task that we used during the fNIRS recordings, except
that listeners had their eyes open during this pilot testing.

In addition, using vocoded stimuli that were recorded by
the same talkers as the stimuli used for the speech detection
task, we assessed speech identification thresholds by using the
coordinate responsemeasure task (Brungart, 2001b; Kidd Jr et al.,
2008). Briefly, this task presents listeners with the following
sentence structure: “Ready [call sign] go to [color] [number]
now.” There were eight possible call signs < Arrow, Baron,
Charlie, Eagle, Hopper, Laker, Ringo, Tiger>, the same four colors
as in the detection task <red, blue, white, green>, and seven
numbers (numbers one through eight, except “seven” because,
unlike the other numbers, it consists of two syllables). The target
sentence was spoken by the same talker for every trial and always
had “Baron” as call sign; the masker was either SPEECH or
NOISE from a different talker, and using a different call sign
than “Baron.” Listeners were instructed to answer the question
“Where did Baron go?” by identifying the color in the target
sentence. The masker was held fixed at 65 dB SPL, whereas the
target level varied randomly from trial to trial from 45 to 85 dB
SPL, resulting in five possible TMRs from –20, –10, 0, 10, and 20
dB. The target levels were randomized such that all five TMRs
were tested in random order before all of them were repeated in
different random order. Listeners competed 20 trials per TMR,
both in SPEECH and in NOISE. In addition, to verify that all
listeners could understand the vocoded speech in quiet at the
softest target level, prior to testing masked thresholds, listeners
completed 20 trials in quiet at 45 dB SPL.

In quiet, all listeners scored at or near ceiling in the
identification task (Figure 4A), consistent with previous
results that nine-band speech stimuli remain highly intelligible
despite vocoding (Shannon et al., 1995). Speech identification
thresholds were much worse in SPEECH than NOISE thresholds
(Figure 4B), confirming that the current stimulus processing
produces IM (Arbogast et al., 2002). Using Bayesian inference,
each listener’s SPEECH and NOISE percent correct speech
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FIGURE 4 | Speech identification and detection performance during pilot testing for SPEECH vs. NOISE confirm that the SPEECH masker causes IM. The target had

a left-leading ITD of -500’s; the masker a right-leading ITD of 500µs. (A) Quiet thresholds. Percent correct keywords identified without masker. (B) Speech

identification task. Percent correct keywords identified with SPEECH (black) or NOISE (red) masking. (C) Speech detection task. Sensitivity to keywords with SPEECH

(black) or NOISE (red) masking. Significance codes: ***p < 0.001, *p < 0.05.

identification curves were fitted with sigmoidally shaped
psychometric functions, as a function of TMR (Matlab toolbox:
psignifit; Wichmann and Hill, 2001). Identification thresholds
were defined as the TMR at 50% correct of these fitted functions.
Paired t-tests comparing speech identification thresholds
between SPEECH and NOISE found that performance was
significantly worse in SPEECH [paired t-test, t(10) = 25.4, p <

0.001]. The effect size, calculated as the Cohen’s d ratio of the
difference in SPEECH and NOISE thresholds divided by the
pooled standard deviation across listeners, equaled 4.6. Similarly,
speech keyword detectability was better in NOISE than SPEECH,
by an average 0.4 d’-units [Figure 4C; paired t-test, t(10) = –2.6,
p= 0.027]. Cohen’s d equaled 1.0.

We wished to eliminate the possibility of artifacts from eye
movements and visual attention in our hemodynamic traces.
Moreover, we wished to have comparable task difficulty across
the tested conditions with fNIRS. Therefore, we next selected
the keyword detection task for neuroimaging, because listeners
could perform it with minimal body movement and closed
eyes. Moreover, task performance was more comparable across
maskers for speech detection vs. the identification task.

4.8. Neuroimaging Procedure
For both experiments, each listener completed one session of
behavioral testing while we simultaneously recorded bilateral
hemodynamic traces in the vicinity of STG and cIFS, using
fNIRS. Throughout testing listeners held their eyes closed. Traces

were acquired in 23-min sessions, consisting of 11 blocks of a
controlled breathing task (9 min), followed by a brief break (ca.
2 min) and twelve blocks of auditory assessment (12 min). The
controlled breathing task was identical to our prior methods [see
details in Zhang et al. (2018)]. Briefly, the task consisted of 11 45-
s-long blocks. In each block, listeners were instructed to breathe
in for 5 se breathe out again for 5 s. This breathe-in-breathe-out
pattern repeated for 6 times (30 s in total) before the listeners
were instructed to hold breath for 15 s. The hemodynamic traces
collected during this task establish a baseline dynamic range,
from baseline to saturation, over which the optical recordings
could vary for each particular listener, recording day and ROI.
The auditory assessment was the behavioral detection task
described above (see Behavioral Pilot Control).

4.9. Recording Setup for fNIRS
The listener wore insert earphones (Etymotic Research ER-
2) and a custom-made fNIRS head-cap and held a wireless
response interface in the lap (Microsoft Xbox 360 Wireless
Controller; Figure 1A). Acoustic stimuli were generated on a
laptop (Lenovo ThinkPad T440P) with Matlab (Release R2016a,
The Mathworks, Inc., Natick, MA, USA), D/A converted
with a sound card (Emotiva Stealth DC-1; 16 bit resolution,
44.1 kHz sampling frequency) and presented over the insert
earphones. This acoustic setup was calibrated with a 2-cc
coupler, 1/2" pressure-field microphone and a sound level
meter (Bruel&Kjaer 2250-G4). The testing suite had intermittent
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background sound level with peak levels of 44 dBA (moderately
quiet university hallway with noise from staff walking by).
Together with the ER-2 insert earphones, which provide
approximately 30 dB attenuation, the effective background noise
level reaching the listener’s tympanic membrane was 14 dB A, i.e.,
moderately quiet.

A camera-based 3D-location tracking and pointer tool system
(Brainsight 2.0 software and hardware by Rogue Research Inc.,
Canada) was used to place the optodes above the left and right
cIFS and STG, referenced to standardized brain coordinates
(Talairach Atlas; Lancaster et al., 2000). A custom-built head cap,
fitted to the listener’s head via adjustable straps, embedded the
optodes and held them in place.

Hemodynamic traces were recorded with a 4-source and 16-
detector continuous-wave fNIRS system (690 and 830 nm optical
wavelengths, 50 Hz sampling frequency; CW6, TechEn Inc.). The
system therefore limited us to 2 sources and 8 detectors on each
side of the head. The spatial layout of the optical source-detector
pairs was custom-designed to cover each of the four ROIs
cross-wise using deep channels with source-detector distances
of 3 cm (solid lines in the bottom insert in Figure 1A) and one
short separation channel with a source-detector distance of 1.5
cm (dashed lines in bottom insert of Figure 1A). Specifically,
on each side of the head, leveraging time-multiplexing, two of
the detectors were used for both sources—alternating between
serving as a short vs. a deep channel (denoted by the blue
dots near the center of the bottom of Figure 1A). For each of
the resulting 16 deep and 4 shallow source-detector pairs, we
then used simulated photon paths to estimate a sensitivity map
across the surface of brain by mapping the light paths through a
standardized head (Figure 1C, AtlasViewer; Aasted et al., 2015).

4.10. Signal Processing of the fNIRS Traces
Raw fNIRS traces were processed to estimate
hemodynamic activation strength (Figure 1A and
Supplemental Information 2). We first used HOMER2 to
process the raw recordings during both the breath holding
and auditory tasks, at each of the 16 deep and four shallow
source-detector channels (Huppert et al., 2009). Specifically, the
raw recordings were band-pass filtered between 0.01 and 0.1
Hz, using time-reversal filtering with a fifth order zero-phase
Butterworth filter for high pass filtering and time-reversal
filtering with a third order zero-phase Butterworth filter for
low pass filtering (commands filtfilt and butter in Matlab 2016).
Next, we removed slow temporal drifts in the band-pass filtered
traces by de-trending each trace with a 20th-degree polynomial
(Pei et al., 2007). To suppress artifacts due to sudden head
movement, these de-trended traces were then transformed
with Daubechies-2 base wavelet functions. Wavelet coefficients
outside the one interquartile range were removed, before the
remaining coefficients were inversely transformed (Molavi and
Dumont, 2012). We then applied a modified Beer-Lambert law
to these processed traces, resulting in the estimated oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR)
concentrations for each channel (Cope and Delpy, 1988; Kocsis
et al., 2006). To obtain hemoglobin changes relative to the
maximum dynamic recording range for each individual listener

and recording site, we then applied a normalization step.
Specifically, for each listener and each of the 20 source-detector
channels, we divided the HbO and HbR concentration from the
task conditions by the peak of the HbO concentration change
during the controlled breathing task, resulting in normalized
HbO and HbR traces for each channel. Finally, we averaged
the four deep channels at each ROI, resulting in a total of four
task-evoked raw hemoglobin traces per ROI and listener (deep
and shallow, HbO and HbR). We previously found that this
dynamic range normalization step helps reduce across-listener
variability in our listener population with a diverse range of skin
pigmentations, hair consistencies and skull thicknesses (Zhang
et al., 2018).

4.11. Hemodynamic Activation
To estimate auditory-task-evoked neural activity predicted
by fixed effects of high- vs. low-IM, for each of the two
experiments, we next fitted a linear mixed effect model
(LMEM) to the pre-processed deep HbO and HbR traces (see
Supplemental Information 2 for details on the equations). The
LMEMmodel assumes that three main sources of variance shape
the HbO and HbR traces: (1) a task-evoked response with IM
independence (significant task-evoked activation that does not
covary with IM vulnerability), (2) a task-evoked response with IM
dependence (significant task-evoked activation that covaries with
IM vulnerability), and (3) nuisance signals, deemed to be unlikely
of neural origin. In addition, the LMEM includes the following
factors that are known to drive neural response changes in STG
and cIFS: audibility as modeled through left and right across-
frequency average PTAs, and plasticity as modeled through
change in output attributed to block number. To allow direct
comparison of the masker evoked responses across different
ROIs, all βi were referenced relative to the SPEECH recordings
in left cIFS.

To estimate whether a neural response captures behavioral
phenotypes for vulnerability to IM, for each listener, masker
configuration and ROI, we calculated the predicted total HbO
and HbR responses from the LMEM weights, ignoring nuisance
signals, PTA and plasticity. We next identified when the
reconstructed HbO or HbR traces reached their maxima during
the task interval, and measured the amplitudes at those single
time points. Using these peak height of the reconstructed HbO
or HbR traces as a measure of that ROI’s neural recruitment for
that masker, we then evaluated whether that ROI’s hemodynamic
recruitment correlated with the listener’s behavioral d’ sensitivity
to IM.
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