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Abstract
Clinical trials with adaptive sample size reassessment based on an unblinded anal-

ysis of interim results are perhaps the most popular class of adaptive designs (see

Elsäßer et al., 2007). Such trials are typically designed by prespecifying a zone for

the interim test statistic, termed the promising zone, along with a decision rule for

increasing the sample size within that zone. Mehta and Pocock (2011) provided some

examples of promising zone designs and discussed several procedures for controlling

their type-1 error. They did not, however, address how to choose the promising zone

or the corresponding sample size reassessment rule, and proposed instead that the

operating characteristics of alternative promising zone designs could be compared by

simulation. Jennison and Turnbull (2015) developed an approach based on maximiz-

ing expected utility whereby one could evaluate alternative promising zone designs

relative to a gold-standard optimal design. In this paper, we show how, by eliciting

a few preferences from the trial sponsor, one can construct promising zone designs

that are both intuitive and achieve the Jennison and Turnbull (2015) gold-standard for

optimality.
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1 INTRODUCTION

At the design stage of a clinical trial one determines the required sample size by specifying a treatment effect that is both

clinically meaningful and realistic, and ensures that the sample size is large enough to detect the treatment effect with high

power. Sometimes, however, there is uncertainty about the magnitude of the treatment effect and a conservative estimate is used,

resulting in a sample size that is too large to justify an up-front commitment to the usual fixed-sample design. Two alternative

approaches are available to resolve this difficulty—group sequential and adaptive. The classical group sequential design starts

out with a large sample size, whereby the study is adequately powered to detect small but clinically meaningful treatment effects.

The trial is, however, monitored at administratively convenient time points with the possibility of early termination if there is

overwhelming evidence of efficacy or futility. The type-1 error is controlled by the 𝛼-spending methodology of Lan and DeMets

(1983). In contrast the adaptive sample size reassessment design starts out with a smaller sample size whereby it is adequately

powered to detect a realistic treatment effect that is somewhat larger than the smallest clinically meaningful improvement. There
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is provision, however, to increase the sample size and thus repower the study at an interim analysis time point, should the

observed data make it desirable to do so. In this paper, we consider sample size reassessment methods that utilize unblinded

estimates of the actual treatment effect rather than relying solely on blinded estimates of nuisance parameters like interpatient

variability (see Proschan, 2009 for further clarity). Several approaches (e.g., Chen, DeMets & Lan, 2006; Cui, Hung, & Wang,

1999; Lehmacher & Wassmer, 1999; Müller & Schäfer 2001; Mehta & Pocock, 2011) have been proposed for controlling the

type-1 error in this setting. One can also design trials that include both group sequential early stopping and adaptive sample size

reassessment. The Champion Phoenix trial discussed in Bhatt and Mehta (2016) is an example of such a design.

The relative merits of group sequential versus adaptive sample size re-assessment designs have been widely discussed (e.g.,

Emerson, Levin, & Emerson, 2011; Glimm, 2012; Mehta & Liu, 2016; Liu, Hsiao & Mehta, 2018) and will not be repeated

here. Instead we will focus on adaptive sample size reassessment designs. Such designs are characterized by a range of values

for the interim test statistic (termed the promising zone) within which the sample size may be increased in accordance with a

decision rule for determining the magnitude of the increase. The operating characteristics of these designs (hereafter referred

to as promising zone designs) depend entirely on the choice of promising zone and the corresponding decision rule. Mehta

and Pocock (2011) provided examples of promising zone designs in the neurology and cardiology therapeutic areas. Jennison

and Turnbull (2015) took up the neurology example to illustrate several alternative design options including a fixed sample

design, a group sequential design with delayed effects and a promising zone design in which the zone and decision rule were

determined by optimizing an objective function reflecting the trade-off between increasing conditional power and paying for

it by increasing sample size. The latter design, being optimal, can serve as a useful benchmark against which to compare the

operating characteristics of the other candidates.

In this paper, we present a new promising zone design that is easy to implement, and easy for all stake-holders to understand

and accept. It is based on the intuitively plausible notion that any additional investment of sample size at an interim analysis

should be contingent on a minimal acceptable return on the investment, expressed in terms of guaranteed conditional power. We

shall see that this requirement imposes a constraint on the promising zone, and hence we shall hereafter refer to this design as

the “constrained promising zone design” or CPZ design. We shall benchmark the CPZ design against the optimal unconstrained

Jennison and Turnbull (2015) design (the JT design) and against a constrained version of the Jennison and Turnbull (2015)

design (the CJT design). While the minimal acceptable rate of return might differ, depending on the type of trial and sponsor

organization, it is seen that if the same constraint is imposed on both the CPZ and CJT designs, then they have almost identical

operating characteristics.

In Section 2, we introduce a clinical trial in advanced pancreatic cancer that will serve as the motivating example for illustrating

all the design concepts in this paper. In Section 3, we introduce the new promising zone design in which the promising zone is

constrained by the requirement of a minimal return on investment. In Section 4, we describe the optimal Jennison and Turnbull

(2015) design. In Section 5, we compare the operating characteristics of the two designs with and without the added constraint

of a minimal required return on investment. We conclude in Section 6 with an analysis of the trade-off between conditional and

unconditional power, followed by a more philosophical discussion of whether sponsors, by imposing minimal requirements for

conditional power, are being consistent with a sensible utility function.

2 MOTIVATING EXAMPLE

In a recent clinical trial of advanced pancreatic cancer (see ClinicalTrials.gov Identifier NCT02715804), patients were random-

ized between a recombinant human hyaluronidase (the treatment arm) and matching placebo (the control arm). The primary

efficacy endpoint was progression-free survival (PFS). For trials with time to event endpoints such as PFS, the crucial design

parameter for power calculations is the hazard ratio (HR). Allowing for the uncertainty in this parameter, it was determined that

the trial should be designed to provide adequate power for values of HR in the range 0.67–0.75. At HR = 0.67, the optimistic end

of the spectrum, 280 PFS events would be required to achieve about 92% power at a one-sided 𝛼 of 0.025. Given a median PFS

of 8.5 months for the control arm one can show that with 350 patients enrolled over 28 months the study could be completed

in about 40 months with the requisite 280 events. Such a study was well within the resource constraints of the trial sponsor.

However these resources would be inadequate at HR = 0.75, the pessimistic end of the spectrum, where the power would dete-

riorate to 67%. To achieve 90% power at HR = 0.75, 500 PFS events are needed, and hence the study would require a larger

sample size and longer follow-up—for example, one could obtain 500 PFS events by enrolling 600 patients over 36 months and

following them for an additional 12 months. Although it might be difficult to make an up-front commitment to such a large trial,

it is entirely practicable to make a milestone-based investment. In this approach, the financing of the trial would occur in two

tranches. The first tranche would suffice to fund the smaller 280 PFS event trial, which would then be adequately powered to
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detect HR = 0.67. The second tranche would be milestone-based. At an interim analysis based on the first 140 PFS events, if

the conditional power for detecting HR = 0.75 were to fall in a prespecified promising zone, an additional investment would be

forthcoming that would permit the trial to remain open until a total of 420 PFS events were obtained. We shall use this example

to illustrate our new constrained promising zone design and shall compare its operating characteristics with those of the optimal

Jennison and Turnbull (2015) design. Since this is an event-driven trial, its power depends on number of PFS events rather than

number of patients. Accordingly we shall use the term sample size to mean PFS events in all the design specifications below.

It will be assumed that the actual patient enrollment suffices to obtain the required number of PFS events in a reasonable time

frame. Otherwise patient enrollment will play no further role in the discussions that follow.

3 THE CONSTRAINED PROMISING ZONE DESIGN

In the usual set-up of a two-arm randomized clinical trial, let 𝛿 denote the (unknown) treatment effect, or mean improvement in

response on the treatment arm relative to the control arm. We wish to test the null hypothesis 𝐻0: 𝛿 = 0 against the one-sided

alternative hypothesis that 𝛿 > 0. Let 𝛿 be its maximum likelihood estimate and 𝐼 be its Fisher information, based on a total

of 𝑛 subjects randomized equally to the two arms. Let 𝑍 = 𝛿
√
𝐼 be the corresponding Wald statistic. Then, asymptotically,

𝑍 ∼ 𝑁(𝛿
√
𝐼, 1). Although the pancreatic cancer trial has a time to event endpoint it can nevertheless be accommodated in the

above framework by fitting a Cox proportional hazards model to the data, with 𝛿 as the coefficient of the treatment variable.

Let 𝛿 be the maximum partial likelihood estimate of 𝛿 and let 𝐼 be the corresponding Fisher information. Then by the results

of Schoenfeld (1981) it can be shown that 𝐼 = 𝑛∕4 asymptotically, where 𝑛 is the number of PFS events, so that 𝑍 = 𝛿
√
𝑛∕2 is

𝑁(𝛿
√
𝑛∕2, 1). Suppose an interim analysis is performed after 𝑛1 PFS events. Let 𝛿1, 𝐼1, and 𝑍1 be the corresponding interim

statistics. Then, by the result of Tsiatis (1981), 𝑍1
√
𝐼1 and 𝑍

√
𝐼 −𝑍1

√
𝐼1 are independent. These asymptotic results suffice

to design the trial as though the accruing patient level data were iid normal with unit variance and a mean difference 𝛿 between

the control and intervention arms of the trial. Hereafter we will assume as much, will use the term sample size or PFS events

interchangeably, and will denote it by the symbol 𝑛.

At the interim analysis, when 𝑛1 events have arrived and 𝑧1 is the observed value of the Wald statistic, let CP𝛿(𝑧1, 𝑛) = 𝑃𝛿(𝑍 ≥
𝑧𝛼|𝑧1) be the conditional power for attaining level-𝛼 statistical significance at the final analysis, where 𝑧𝛼 = Φ−1(1 − 𝛼). Then,

as shown in Gao, Ware, and Mehta (2008),

CP𝛿(𝑧1, 𝑛) = Φ

{
𝛿
√
𝑛 − 𝑛1

2
−

𝑧𝛼

√
𝑛 − 𝑧1

√
𝑛1√

𝑛 − 𝑛1

}
. (1)

If, based on the results of the interim analysis, the sample size is increased from 𝑛 to 𝑛∗, then the final analysis must be adjusted

appropriately to preserve the type-1 error. One may adjust either the final test statistic, as proposed by Cui et al. (1999), or the

final critical value, as proposed by Müller and Shäfer (2001). In either case, by the results in Gao et al. (2008), the conditional

power formula is altered to

CP𝛿(𝑧1, 𝑛∗) = Φ

{
𝛿
√
𝑛∗ − 𝑛1

2
−

𝑧𝛼

√
𝑛 − 𝑧1

√
𝑛1√

𝑛 − 𝑛1

}
(2)

with 𝑛 being replaced by 𝑛∗ only in the numerator of the first term but nowhere else.

Since the true treatment effect 𝛿 is unknown, it is usual to either substitute an estimate derived from the interim data or to

use a constant having desirable properties. The constant 𝛿min – representing the smallest clinically meaningful value of 𝛿 in the

range of interest – is a reasonable choice for evaluating conditional power. Thereby if the true value of 𝛿 were greater than 𝛿min
the conditional power could only increase, whereas the conditional power at smaller values of 𝛿 would be outside the range of

interest. For the pancreatic cancer trial, for example, one would choose 𝛿min = − ln(0.75) = 0.29.

We may partition the interim analysis results into three zones on the basis of CP𝛿min
(𝑧1, 𝑛). The range CP𝛿min

(𝑧1, 𝑛) < 𝐿

constitutes the unfavorable zone. If the conditional power at the interim look falls in this zone, the sample size will remain 𝑛.

The range 𝐿 ≤ CP𝛿min
(𝑧1, 𝑛) ≤ 𝑈 constitutes the promising zone. Within this zone the total sample size will be increased from

𝑛 to 𝑛∗(𝑧1) in accordance with some prespecified function 𝑛∗(.). The range CP𝛿min
(𝑧1, 𝑛) > 𝑈 constitutes the favorable zone.

Within this zone the sample size will remain 𝑛. It is convenient to also specify the promising zone in terms of the Wald statistic.

To that end let 𝑧
(𝐿)
1 be such that CP𝛿min

(𝑧(𝐿)1 , 𝑛) = 𝐿 and let 𝑧
(𝑈 )
1 be such that CP𝛿min

(𝑧(𝑈 )
1 , 𝑛) = 𝑈 . Then the promising zone is the
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interval [𝑧(𝐿)1 , 𝑧
(𝑈 )
1 ]. What distinguishes one promising zone design from another is the choice of this interval and the decision

rule 𝑛∗(𝑧1) for increasing the sample size inside it.

Most sponsors of adaptive trials want to achieve specific milestones at an interim analysis before agreeing to increase the

sample size. In this paper, we shall investigate a milestone-based promising zone design in which the promising zone [𝑧(𝐿)1 , 𝑧
(𝑈 )
1 ]

and the corresponding decision rule 𝑛∗(𝑧1) are completely specified by the following constrained optimization problem:

Constrained Promising Zone (CPZ) Design

Objective: Maximize {CP𝛿min
(𝑧1, 𝑛∗)} by choice of 𝑛∗ for all 𝑧1, subject to

Constraint 1: 𝑛 ≤ 𝑛∗ ≤ 𝑛max

Constraint 2: CP𝛿min
(𝑧1, 𝑛∗) ≥ cpmin

Constraint 3: CP𝛿min
(𝑧1, 𝑛∗) ≤ cpmax

where 𝑛max, cpmin , and cpmax are specified below and implicitly define the promising zone [𝑧(𝐿)1 , 𝑧
(𝑈 )
1 ] within which the sample

size may be modified.

𝑛max is the maximum to which the initial sample size 𝑛 may be increased. This constraint implies that there is a limit above

which it becomes impractical for an organization to continue investing in the trial.

cpmin is the minimum requirement for conditional power inside the promising zone. Unless the conditional power, evaluated at

𝛿 = 𝛿min, can be boosted to at least cpmin by increasing the sample size from 𝑛 to 𝑛max, the interim result is considered to

be in the unfavorable zone and there is no sample size increase. Thus the value of 𝑧1 at which CP𝛿min
(𝑧1, 𝑛max) = cpmin

determines 𝑧
(𝐿)
1 the start of the promising zone.

cpmax is the maximum requirement for conditional power inside the promising zone. It is unnecessary to increase the sample size

any more than would be needed for the conditional power, evaluated at 𝛿 = 𝛿min, to exceed cpmax. Due to the monotonicity

of CP𝛿(𝑥, 𝑦) with 𝑥 and 𝑦, as 𝑧1 increases inside the promising zone, CP𝛿min
(𝑧1, 𝑛max) also increases while the sample size

remains 𝑛max until at some value, 𝑧1 = 𝑧
(𝐶)
1 say, CP𝛿min

(𝑧(𝐶)
1 , 𝑛max) = cpmax. Thereafter, for values of 𝑧1 > 𝑧

(𝐶)
1 inside the

promising zone, the sample size decreases in accordance with a function 𝑛̃(𝑧1) defined by CP𝛿min
(𝑧1, 𝑛̃(𝑧1)) = cpmax, until

at 𝑧1 = 𝑧
(𝑈 )
1 , 𝑛̃(𝑧(𝑈 )

1 ) = 𝑛. For all values of 𝑧1 > 𝑧
(𝑈 )
1 the sample size remains 𝑛. Thus 𝑧

(𝑈 )
1 marks the end of the promising

zone.

We shall refer to this design as the “constrained” promising zone design (or CPZ design). It is easy to show that the sample

size function for this design is given by

𝑛∗cpz(𝑧1, 𝛿min, cpmin) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑛 if 𝑧1 < 𝑧
(𝐿)
1

𝑛max if 𝑧
(𝐿)
1 ≤ 𝑧1 ≤ 𝑧

(𝐶)
1

𝑛̃(𝑧1) if 𝑧
(𝐶)
1 < 𝑧1 ≤ 𝑧

(𝑈 )
1

𝑛 if 𝑧1 > 𝑧
(𝑈 )
1

The dependence of the sample size function on 𝛿min and cpmin is implicit and arises from the fact that 𝑧
(𝐿)
1 , 𝑧

(𝐶)
1 , and 𝑧

(𝑈 )
1 all

depend on 𝛿min and cpmin. (To avoid cumbersome notation we have not included 𝑛max or cpmax as arguments of 𝑛∗cpz.) Fig-

ure 1 displays the CPZ design for the pancreatic cancer example with 𝛿min = 0.29, 𝑛1 = 140, 𝑛 = 280, 𝑛max = 420, cpmin = 0.8,

cpmax = 0.9, and 𝛼 = 0.025. The conditional power graph is displayed in red and the sample size graph is displayed in black.

Observe that at 𝑧1 = 𝑧
(𝐿)
1 , the start of the promising zone, the sample size increases from 𝑛 to 𝑛max and the conditional power

is boosted to cpmin. As 𝑧1 increases further the conditional power continues to climb until, at 𝑧1 = 𝑧
(𝐶)
1 , it reaches its peak of

cpmax. Thereafter the conditional power remains constant while the sample size begins to decline until, at 𝑧1 = 𝑧
(𝑈 )
1 , the promis-

ing zone ends and the sample size is once again equal to 𝑛. Outside the promising zone the conditional power increases with 𝑧1
in accordance with equation (1). The density of 𝑧1 at 𝛿 = 0.29 is also displayed in Figure 1.
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F I G U R E 1 Conditional power and sample

size of CPZ design at 𝛿min = 0.29 and cpmin = 0.8

4 OPTIMAL JENNISON AND TURNBULL DESIGNS

The Jennison and Turnbull design (hereafter referred to as the JT design) is also characterized by a promising zone and a

corresponding decision rule for increasing the sample size within the promising zone. In this case, however, the promising zone

and the corresponding sample size rule are derived implicitly by solving the following optimization problem at any 𝛿 = 𝛿0.

JT Design

Objective: Maximize {CP𝛿0
(𝑧1, 𝑛∗) − 𝛾𝑛∗} by choice of 𝑛∗ for all 𝑧1, subject to

Constraint: 𝑛 ≤ 𝑛∗ ≤ 𝑛max, where 𝑛max is the maximum allowable sample size.

The form of the objective function reflects the net gain in conditional power per unit increase in sample size. The constant 𝛾 may

be interpreted as a tuning parameter or exchange rate between increasing CP and paying for it by increasing 𝑛∗. We discuss its

role below and also in Section 5. Here the only explicit constraint is that the sample size may not be decreased, and should not

exceed 𝑛max. The resulting sample size rule depends on 𝑧1, 𝛿0, and 𝛾 and is denoted by 𝑛∗jt (𝑧1, 𝛿0, 𝛾). (For notational convenience

we have not included 𝑛max as an argument of 𝑛∗jt .) The promising zone interval [𝐿,𝑈 ] (or equivalently [𝑧(𝐿)1 , 𝑧
(𝑈 )
1 ]) is specified

implicitly by the above objective function and sample size constraint. The expected value of the JT objective function at 𝛿 = 𝛿0 is

∫
∞

−∞

{
CP𝛿0

(
𝑧1, 𝑛

∗
jt (𝑧1, 𝛿0, 𝛾) − 𝛾𝑛∗jt (𝑧1, 𝛿0, 𝛾)

}
𝑓𝛿0

(𝑧1)𝑑𝑧1 = 𝑃𝛿0,𝛾
(Reject𝐻0) − 𝛾𝐸𝛿0,𝛾

( ), (3)

where, both here and elsewhere, the symbol  represents the random sample size whose expectation is being computed. The

first term on the right hand side of (3) is the unconditional power of the JT design while the second term is 𝛾 times its expected

sample size. Since the JT objective function is maximized for every value of 𝑧1, it follows that

𝑃𝛿0,𝛾
(Reject𝐻0) − 𝛾𝐸𝛿0,𝛾

( ) is at its maximum for a given 𝛿0 and 𝛾. (4)

Therefore any promising zone design with the same sample size constraint and having the same 𝐸𝛿0,𝛾
( ) must have uncon-

ditional power no larger than 𝑃𝛿0,𝛾
(Reject𝐻0). It follows that if 𝛿 = 𝛿0 then, among all promising zone designs that have the

same initial sample size 𝑛, maximum sample size 𝑛max, and expected sample size 𝐸𝛿0,𝛾
( ), the JT design is optimal in terms

of unconditional power.

One can consider a modification of the JT design by adding the constraint that the sample size should only be increased if by

doing so the conditional power at 𝛿 = 𝛿min reaches cpmin.

Constrained JT (or CJT) Design

Objective: Maximize {CP𝛿0
(𝑧1, 𝑛∗) − 𝛾𝑛∗} by choice of 𝑛∗ for all 𝑧1, subject to
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Constraint 1: 𝑛 ≤ 𝑛∗ ≤ 𝑛max

Constraint 2: CP𝛿min
(𝑧1, 𝑛∗) ≥ cpmin.

The resulting sample size rule depends on 𝑧1, 𝛿0, 𝛾, 𝛿min, and cpmin and is denoted by 𝑛∗cjt (𝑧1, 𝛿0, 𝛾, 𝛿min, cpmin). (Again, for

notational convenience, we have not included 𝑛max as an argument of 𝑛∗cjt .) The expected value of the CJT objective function at

𝛿 = 𝛿0 is

∫
∞

−∞

{
CP𝛿0

(𝑧1, 𝑛∗cjt (𝑧1, 𝛿0, 𝛾, 𝛿min, cpmin)) − 𝛾𝑛∗cjt (𝑧1, 𝛿0, 𝛾, 𝛿min, cpmin)
}
𝑓𝛿0

(𝑧1)𝑑𝑧1

= 𝑃𝛿0,𝛾,𝛿min,cpmin
(Reject𝐻0) − 𝛾𝐸𝛿0,𝛾,𝛿min,cpmin

( ) .

By the same reasoning as was used for the JT design, if 𝛿 = 𝛿0 then among all promising zone designs that have the same

𝑛, 𝑛max, 𝛿min, cpmin, and expected sample size 𝐸𝛿0,𝛾,𝛿min,cpmin
( ), the CJT design is optimal in terms of unconditional power.

To actually create a JT or CJT design one would have to specify a value for 𝛾 by balancing the costs of a higher sample size

against the resulting benefits. This could be a challenge for a complex organization with multiple priorities. Therefore, rather

than create a stand-alone JT design, Jennison and Turnbull (2015) used its optimality properties to benchmark other candidate

designs relative to the best that could be achieved. To be specific, they used 𝛾 as a “tuning parameter” to match 𝑃𝛿0,𝛾
(Reject𝐻0)

with the unconditional power of the neurology clinical trial (Mehta & Pocock, 2011) at a specific 𝛿 = 𝛿0 and thereby evaluated

the extent of the saving in expected sample size for the JT design. In Section 5, we shall follow a similar approach, but will

match the expected sample sizes of the JT and CJT designs with the expected sample size of the CPZ design by appropriate

choice of 𝛾 . We will then compare the unconditional power of the CPZ design to the corresponding unconditional power of the

JT and CJT designs at 𝛿 = 𝛿0 for all 𝛿0 in the range of interest.

5 BENCHMARKING CPZ AGAINST JT AND CJT DESIGNS

We first compare the operating characteristics of the CPZ design to those of the JT design. To do so in a fair way we shall

first equate the expected sample sizes of the two designs for each 𝛿 = 𝛿0 in the range of interest and then compare the two

unconditional power curves. The expected sample size of the CPZ design, evaluated at any 𝛿0 is

𝐸
(cpz)
𝛿0,𝛿min,cpmin

( ) = ∫
∞

−∞
𝑛∗cpz(𝑧1, 𝛿min, cpmin)𝑓𝛿0 (𝑧1)𝑑𝑧1 .

In order to benchmark the unconditional power of the CPZ design relative to the gold-standard JT design we must equate their

expected sample sizes. This is achieved by finding the value of 𝛾∗ such that

∫
∞

−∞
𝑛∗jt (𝑧1, 𝛿0, 𝛾

∗)𝑓𝛿0 (𝑧1)𝑑𝑧1 = 𝐸
(cpz)
𝛿0,𝛿min,cpmin

( ), (5)

where, for notational convenience, the dependence of 𝛾∗ on 𝛿0 has been suppressed. We can then evaluate the unconditional

power of the CPZ and JT designs by integrating over their respective conditional power functions at 𝛿 = 𝛿0. Thus

𝑃𝛿0,𝛿min,cpmin
(CPZ rejects 𝐻0) = ∫

∞

−∞
CP𝛿0

(𝑧1, 𝑛∗cpz(𝑧1, 𝛿min, cpmin))𝑓𝛿0 (𝑧1)𝑑𝑧1 (6)

and

𝑃𝛿0,𝛾∗
(JT rejects 𝐻0) = ∫

∞

−∞
CP𝛿0

(𝑧1, 𝑛∗jt (𝑧1, 𝛿0, 𝛾
∗))𝑓𝛿0 (𝑧1)𝑑𝑧1 . (7)

By construction 𝑃𝛿0,𝛾∗
(JT rejects 𝐻0) must be optimal at 𝛿 = 𝛿0. Thus the extent to which 𝑃𝛿0,𝛿min,cpmin

(CPZ rejects 𝐻0) falls

short can be assessed at every 𝛿0 in the range of interest. This is shown in Figure 2 for the pancreatic cancer example for all

𝛿0 ∈ [0.29, 0.4], 𝛿min = 0.29 and cpmin = 0.8. The graph on the left displays the expected sample size, which is the same for

both designs by construction. The graph on the right shows that the unconditional power of the optimal JT design is about 2–3%

higher than that of the CPZ design for all values of 𝛿0 in the range of interest. It is important to note that the results in Figure 2 are

for comparing one CPZ design, in which the promising zone [𝑧(𝐿)1 , 𝑧
(𝑈 )
1 ] and sample size increase rule 𝑛∗cpz(𝑧1, 𝛿min, cpmin) are
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F I G U R E 2 Unconditional power comparison of JT and CPZ designs at the same 𝐸( )

F I G U R E 3 Sample size and conditional power comparison of JT and CPZ at 𝛿0 = 𝛿min = 0.29

fixed by choice of cpmin = 0.9 at 𝛿min = 0.29, to a family of JT designs, one design for each 𝛿0 ∈ [0.29, 0.4], where every such

design is optimized at a different 𝛾∗ that depends on the corresponding 𝛿0. This is the only way to ensure that that the expected

sample size curves of the two designs will match, albeit by giving JT a small advantage in terms of unconditional power when

𝛿0 ≠ 𝛿min.

Unconditional power, however, is not the only criterion that sponsors of clinical trials consider when deciding whether to

increase the sample size. We next examine the operating characteristics of the two designs at 𝛿0 = 𝛿min = 0.29, conditional on

the value of 𝑧1 obtained at the interim analysis. The left panel of Figure 3 plots the sample size functions 𝑛∗jt (𝑧1, 𝛿min, 𝛾
∗) and

𝑛∗cpz(𝑧1, 𝛿min, cpmin), for the JT and CPZ designs respectively, while the right panel plots the corresponding conditional power

functions CP𝛿min
(𝑧1, 𝑛∗jt (𝑧1, 𝛿min, 𝛾

∗)) and CP𝛿min
(𝑧1, 𝑛∗cpz(𝑧1, 𝛿min, cpmin)), for 𝛿min = 0.29, cpmin = 0.8 and 𝑧1 between −1 and

4. The promising zone of the JT design starts earlier than that of the CPZ design and has a wider interval. However, the JT

design does not satisfy the one property that is desired by many proponents of adaptive sample size increase—that the sample

size should only be increased if by doing so one can attain a conditional power at least equal to cpmin. It is seen that although

the sample size increases from 280 to 420 PFS events at the start of the promising zone, the conditional power under the JT

design only jumps from 16 to 39%. This would not be considered an acceptable rate of return for most trial sponsors. Their

main purpose for adding resources at the interim analysis time point is to lower the risk of trial failure to an acceptable level. In

contrast the conditional power of the CPZ design jumps from 55 to 80% as soon as 𝑧1 enters the promising zone. Thus although

the CPZ design falls about 2–3% short of the benchmark in terms of unconditional power it might actually be the preferred

option because of its superior conditional profile.
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F I G U R E 4 Unconditional power comparison of constrained JT and CPZ at the same E( )

F I G U R E 5 Sample size and conditional power of CJT and CPZ at 𝛿 = 0.29

We next compare the operating characteristics of the CPZ design to those of the CJT design. To do this in a fair way we equate

the expected sample sizes of the two designs by finding the value of 𝛾∗ at which

∫
∞

−∞
𝑛∗cjt (𝑧1, 𝛿0, 𝛾

∗, 𝛿min, cpmin)𝑓𝛿0 (𝑧1)𝑑𝑧1 = 𝐸
(cpz)
𝛿0,𝛿min,cpmin

( )

for cpmin = 0.8 at 𝛿min = 0.29 and every 𝛿0 ∈ [0.29, 0.4]. The resulting plots of the two expected sample size curves are dis-

played in the left panel of Figure 4. By construction the plots overlap. The right panel of Figure 4 displays the corresponding

unconditional power curves for the two designs, evaluate by computing

𝑃𝛿0,𝛿min,cpmin
(CPZ rejects 𝐻0) = ∫

∞

−∞
CP𝛿0

(𝑧1, 𝑛∗cpz(𝑧1, 𝛿min, cpmin))𝑓𝛿0 (𝑧1)𝑑𝑧1 (8)

and

𝑃𝛿0,𝛾∗,𝛿min,cpmin
(CJT rejects 𝐻0) = ∫

∞

−∞
CP𝛿0

(𝑧1, 𝑛∗cjt (𝑧1, 𝛿0, 𝛾
∗, 𝛿min, cpmin))𝑓𝛿0 (𝑧1)𝑑𝑧1 (9)

for cpmin = 0.8, 𝛿min = 0.29 and all 𝛿0 ∈ [0.29, 0.4]. It is seen that the two unconditional power curves match over the entire

range of 𝛿0 values implying that the CPZ design is optimal with respect to unconditional power in the class of all promising zone

designs that have the same required milestone cpmin at 𝛿 = 𝛿min, initial sample size 𝑛, maximum sample size 𝑛max, and expected

sample size 𝐸
(cpz)
𝛿0,𝛿min,cpmin

( ).
We finally examine the operating characteristics of the two designs at 𝛿0 = 𝛿min, conditional on the value of 𝑧1 obtained at the

interim analysis. The left panel of Figure 5 plots the sample size functions 𝑛∗cjt (𝑧1, 𝛿min, 𝛾
∗, 𝛿min, cpmin) and 𝑛∗cpz(𝑧1, 𝛿min, cpmin),
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for the CJT and CPZ designs, respectively, while the right panel plots the corresponding conditional power functions

CP𝛿min
(𝑧1, 𝑛∗cjt (𝑧1, 𝛿min, 𝛾

∗, 𝛿min, cpmin)) and CP𝛿min
(𝑧1, 𝑛∗cpz(𝑧1, 𝛿min, cpmin)), at 𝛿min = 0.29, cpmin = 0.8, and 𝑧1 between -1 and

4. Both designs have the desirable property of guaranteeing that the conditional power should be at least cpmin = 0.8 in the

promising zone. Also, the sample size and conditional power plots almost overlap; the slight discrepancy is due to the imposi-

tion of the cpmax = 0.9 constraint on the CPZ design but not on the CJT design.

The conditional operating characteristics displayed in Figures 3 and 5 were evaluated at 𝛿0 = 𝛿min = 0.29. We have, however,

examined the conditional operating characteristics at other values of 𝛿0 ∈ [0.29, 0.4] and have obtained qualitatively similar

results.

6 DISCUSSION

The constrained promising zone design for making mid-course corrections to the sample size in an on-going trial is intuitive,

easy to construct and easy to explain. The design is attractive to sponsors because it guarantees that additional sample size

resources will be committed to the trial only if, after an interim analysis, the conditional power exceeds a minimum threshold at

the smallest clinically meaningful treatment effect. Moreover we were able to show, with the help of tools developed by Jennison

and Turnbull (2015), that among all promising zone designs that share the same constraints for initial sample size, maximum

sample size, and minimum required conditional power, the CPZ design is optimal in terms of unconditional power. It is, however,

interesting to study how the optimal unconditional power profile changes with the cpmin constraint. This is shown in Figure 6

where the unconditional power at 𝛿0 = 𝛿min = 0.29 is plotted against the cpmin constraint evaluated at 𝛿min = 0.29, for the CPZ

design, the CJT design and the unconstrained JT design, all sharing a common expected sample size at each value of cpmin in

the range 0.2–0.8. In these plots the CPZ design is first created for a given cpmin constraint. Next the CJT design is created at

the same cpmin constraint with 𝛾 selected so as to match the expected sample size of the CPZ design. Finally, the unconstrained

JT design is created by disabling the cpmin constraint and selecting a different 𝛾 so as to match the expected sample size of the

other two designs.

Consistent with the results in Section 5 the unconditional power curves for the CPZ and CJT designs overlap completely

while the unconditional power curve of the unconstrained JT design dominates over the other two. In all three cases, however,

the unconditional power increases with decreasing cpmin. One could therefore question why a sponsor might prefer a design that

had a higher cpmin constraint over one with a lower cpmin constraint or indeed over the unconstrained JT design, which has the

highest unconditional power of all. There is no single correct answer to this question. The perspective of a large pharmaceutical

company running numerous clinical trials might differ from that of a small pharmaceutical or biotechnology company with just

one product in phase 3 testing. The former can afford to take the long view and opt for designs that maximize unconditional

power, notwithstanding their relatively unfavorable conditional operating characteristics, while the latter, with responsibility for

one medical compound only, might feel that unconditional power is irrelevant once the study is underway, and might prefer a

strategy that gives a larger boost to conditional power if promising interim results are achieved. In this respect, Figure 6 can

F I G U R E 6 Unconditional power versus cpmin at

𝛿0 = 0.29
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be used to evaluate the trade-off between choosing a higher cpmin constraint or higher unconditional power when designing a

trial with adaptive sample size reassessment. For the pancreatic cancer trial, for example, there is a 4% gain in unconditional

power (74 to 78%) if a CPZ design with cpmin = 0.6 is selected rather than a CPZ design with cpmin = 0.8. On the other hand the

sponsor might not feel comfortable increasing the sample size by 280 to 420 PFS events unless at least 80% conditional power

can be achieved by doing so.

The power curve in Figure 6 for the unconstrained JT design displays the best that could be achieved, in terms of unconditional

power, if the corresponding cpmin constraint were disabled. For example, there is a 2% additional gain in unconditional power

(74–76%) relative to a CPZ design with cpmin = 0.8, and a 1.5% additional gain in unconditional power (78 to 79.5%) relative to

a CPZ design with cpmin = 0.6, if the respective cpmin constraints are disabled. It should be noted, however, that in these settings

the corresponding minimal conditional power that can be achieved is small and may be unacceptable to the trial sponsor. For

example, we can show that for the CPZ design with cpmin = 0.6, the corresponding unconstrained JT design has a gain in

conditional power from 9 to 26% at the cost of a 50% increase in sample size, making this design less compelling to the sponsor

at the interim analysis time point notwithstanding its superior unconditional power.

There exists some confusion regarding the use of the term “promising zone design.” The term first appeared in the paper by

Mehta and Pocock (2011) where they extended the results of Chen, DeMets, and Lan (2004) and obtained a wider range for the

interim test statistic over which the sample size could be increased without having to adjust the conventional Wald statistic at

the final analysis. Although not their intent, this wider range of interim values has been interpreted to be the promising zone.

We wish to clarify that the term promising zone is not in any way linked to the adjustment needed to perform a valid level-𝛼

test at the final analysis. Rather any region for the interim statistic in which the sample size is increased should be considered

a promising zone, and the corresponding design should be termed a promising zone design. Whether or not it is necessary to

adjust the final test statistic is a separate matter. In the current work, we do not impose any restriction on the promising zone

of the type that was used to extend the results of Chen et al. (2004) by Mehta and Pocock (2011). Therefore if the sample

size is increased, the final analysis must utilize the Cui et al. (1999) adjustment or, equivalently, the Müller and Schäfer (2001)

adjustment. The equivalence between these two types of adjustments for sample size reassessment was shown by Mehta (2016).

These adjustments are incorporated in the formula (2) for conditional power under a sample size increase. This formula is derived

from results in Gao et al. (2008).

A referee has asked whether we might comment on the efficiency of our earlier adaptive designs relative to the optimal

designs proposed in the current paper. To address this question we revisited the neurology trial that was presented in Mehta

and Pocock (2011) and subsequently discussed by Jennison and Turnbull (2015) who termed it the MP design. The primary

endpoint of the MP design was the negative symptoms assessment (NSA), a standardized score for measuring symptoms of

schizophrenia. The smallest clinically meaningful treatment effect was 𝛿min = 1.6 with 𝜎 = 7.5. The relevant sample sizes were

𝑛 = 442, and 𝑛max = 884 with an interim analysis at 𝑛1 = 208. The promising zone was specified by conditional power between

0.365 and 0.8, where conditional power was evaluated at the maximum likelihood estimate for 𝛿. The sample size rule called

for increasing the sample size so as to achieve a desired CP of 0.8. To assess the efficiency of this design we constructed a CPZ

design with matching sample size constraints, and cpmin = 0.8 at 𝛿min = 1.6, the smallest clinically meaningful treatment effect.

The promising zone was obtained by grid search so as to match the expected sample size of the MP design at each value of 𝛿0 in

the range of interest. Table 1 displays the expected sample size and unconditional power of the MP and CPZ designs for values

of 𝛿0 between 1.6 and 2.0. The table shows that the MP design suffered about a 2% power loss relative to the optimal CPZ design

with cpmin = 0.8.

A major difference between the CPZ designs and the designs that were presented in Mehta and Pocock (2011) is the manner

in which conditional power is evaluated. In Mehta and Pocock (2011) conditional power was evaluated at the estimated value

of 𝛿. This has been criticized by Glimm (2012) and also by Emerson et al. (2011) in their respective commentaries on the paper

by Mehta and Pocock (2011). Glimm (2012) pointed out that 𝛿, the MLE of 𝛿, was used twice; once in the computation of

T A B L E 1 Unconditional power of MP and CPZ designs keeping 𝐸( ) the same

𝜹𝟎 MP Pwr CPZ Pwr MP 𝑬( ) CPZ 𝑬( )
1.6 65% 67% 499 499

1.7 71% 72% 498 498

1.8 75% 77% 497 496

1.9 79% 81% 494 494

2.0 83% 84% 491 492
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CP
𝛿
(𝑧1, 𝑛) and again in the computation of 𝑧1. Since 𝛿 is a random variable, Glimm was concerned that its double use might

lead to undesirable trial modifications and he recommended careful inspection of the operating characteristics of such designs.

This concern does not arise for CPZ designs because in their case conditional power is evaluated at 𝛿min, the smallest clinically

meaningful value of 𝛿. Sometimes, however, a trial sponsor might not be able to specify 𝛿min due to insufficient information on

the new therapy or disease. In that case, the use of 𝛿 might be a reasonable approach and a comparison with CPZ designs with

different choices for cpmin could be used as a sensitivity analysis to determine the robustness of the operating characteristics.

We have seen for example from Table 1, that the MP design, in which that target conditional power of 0.8 was evaluated by

the MLE, lost only about 2% power relative to a matching CPZ design with the same target conditional power evaluated at the

smallest clinically meaningful treatment effect.

This paper has focused exclusively on statistical considerations. Many operational and regulatory issues relating to timeliness

of data, preservation of confidentiality, operational bias, and communication with investigators must also be addressed before

an adaptive design can be implemented. The guidance documents on adaptive designs by the FDA (2010), FDA (2015), and the

EMEA (2007), are excellent sources of information on these issues.
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