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Abstract: Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation,
including a defective skin barrier, immune cell activation, and microbial exposure. Although mela-
tonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence
from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin
via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments.
In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs)
to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD.
The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size
for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the
release of TNF-α and β-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated
RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent
concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse
model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and
fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ
and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal
delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.

Keywords: melatonin; extracellular vesicle-mimetic nanovesicles; transdermal delivery; atopic
dermatitis; anti-inflammation

1. Introduction

Atopic dermatitis (AD) is a skin disease characterized by a chronic inflammation
of the skin. AD usually occurs in early childhood, and symptoms can persist even in
adulthood. The disease burden of AD is increasing worldwide, with approximately 20%
of children suffering from it [1,2]. AD causes pruritus, dryness, and other skin lesions,
including serious exudate, excoriation, patches, and lichenification [3]. The symptoms may
disappear with age; however, most children are also affected by other atopic diseases, such
as allergic rhinitis and asthma [4–6]. The pathogenesis of AD involves the dysfunction
of the skin barrier and inflammation, which are influenced by various environmental,
immunological, and genetic factors. A recent study found that genetic defects of filaggrin,
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an epidermal skin barrier protein, were correlated with the development of AD [7,8]. In
addition, an allergen can stimulate dendritic cells in the skin, causing Th2 lymphocytes to
release high concentrations of pro-inflammatory cytokines (IL-4, IL-5, and IL-13) to activate
serine proteases, which can impair the function of the skin barrier [9]. Although various
treatments, such as topical corticosteroids, antihistamines, and immunosuppressants, are
used, AD is difficult to treat, and long-term treatments have been known to cause adverse
effects [10]. Therefore, there is a need to find a treatment that has few adverse effects and
an excellent therapeutic effect.

Melatonin (N-acetyl-5-methoxytryptamine) is released by the pineal gland, cerebel-
lum, bone marrow, and skin as an endogenous hormone [11]. The synthesis and secretion
of melatonin is regulated in a circadian manner; therefore, melatonin regulates the cir-
cadian clock and sleep [12,13]. Melatonin exhibits antioxidant, anti-inflammatory, and
anti-cancer activities, in addition to several other crucial properties [14–17]. Accumulating
evidence has shown that melatonin can be used as a treatment for AD. Topical treatment
with melatonin significantly inhibits the development of AD-like skin lesions. Melatonin
reduces serum IgE levels and inhibits IL-4 and IFN-γ secretion from activated CD4+ T
cells in dinitrofluorobenzene (DNFB)-treated NC/Nga mice [18]. In addition, melatonin
protects keratinocytes from UV-induced apoptosis [19] and enhances the function of skin
fibroblasts [20], thereby enhancing the role of the skin barrier. Although melatonin could
be used as a treatment for AD, clinical trials investigating the therapeutic potential of mela-
tonin in human patients with AD are limited. Therefore, the development of an efficient
transdermal drug delivery system for melatonin could be helpful for the development of
AD treatment.

Extracellular vesicles (EVs) are nanometer-sized proteolipids that are naturally se-
creted by most cells, including bacteria, archaea, and eukaryotic cells. EVs contain cell-
derived proteins, phospholipids, and nucleic acids, and deliver these molecules to target
cells and change cell phenotypes [21,22]. Recently, studies have been carried out using
EVs as drug delivery systems [23–25]. EVs have several advantages over conventional
drug delivery systems, showing high stability in blood, biocompatibility, and tissue per-
meability [26,27]. In addition, EVs can be easily engineered to display target molecules.
Although EVs have proven to be promising drug delivery systems, there are several dif-
ficulties associated with their clinical use, including low production yields and tedious
isolation procedures.

Recently, EV-mimetic nanovesicles (NVs) have been developed to overcome the chal-
lenges of EVs. EV-mimetic NVs have biophysical characteristics similar to those of natural
EVs, and they can be easily isolated with high yields [28–30]. EV-mimetic NVs can be
generated using various methods, such as extrusion, sonication, high pH treatment, and
microfluidic fabrication [30,31]. They can be loaded with several types of therapeutic
drugs [32]. For example, doxorubicin-loaded EV-mimetic NVs showed targeted delivery
to tumor tissue, with a superior anti-cancer effect compared to free doxorubicin [28]. In
addition, dexamethasone-loaded EV-mimetic NVs showed excellent anti-inflammatory
effects in a bacterial outer membrane vesicle (OMV)-induced SIRS model [29]. However,
studies on melatonin-loaded EV-mimetic NVs (MelaNVs) as a treatment for AD have yet
to be conducted. In this study, we showed that MelaNVs have anti-inflammatory effects
in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells. The topical
administration of MelaNVs improved AD symptoms, indicating the potential of MelaNVs as
a treatment for AD.

2. Materials and Methods
2.1. Cell Culture

Both human embryonic kidney 293 (HEK293) and RAW264.7 cells were cultured in
Dulbecco’s Modified Eagle Medium with high glucose medium (HyClone) supplemented
with 10% (v/v) fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA)
and 100 U/mL penicillin/streptomycin (Thermo Fisher Scientific) at 37 ◦C and 5% CO2 in
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a humidified incubator. HEK293 cells were purchased from the American Type Culture
Collection (Manassas, VA, USA) and RAW264.7 cells were obtained from the Korean Cell
Line Bank (Seoul, Korea).

2.2. Generation of Melatonin-Loaded Extracellular Vesicle-Mimetic NVs

HEK293 cells were scraped and resuspended at a concentration of 1 × 107 cells/mL
in PBS, with or without 1000 µg/mL of melatonin. Mini-extruders (Avanti Polar Lipids)
were used for extruding cell suspensions, with a three-step extrusion process through
10-, 5-, and 1-µm polycarbonate membrane filters (Whatman). The filtrates underwent
density gradient ultracentrifugation with iodixanol at 100,000× g for 1 h. Control NVs and
MelaNVs were concentrated between 10% and 50% iodixanol layers, and then extracted
from the interface of the two layers for further experiments. The quantification of the total
protein concentration in NVs and MelaNVs was performed using a commercially available
Bradford assay (Bio-Rad, Hercules, CA, USA).

2.3. Cryo-Electron Microscopy and Nanoparticle Tracking Analysis

For cryo-electron microscopy, 5 µL of NVs and MelaNVs were placed onto 300-mesh
EM carbon grids and frozen with liquid nitrogen using Vitrobot (Thermo Fisher Scientific).
The sample was analyzed with Talos L120C cryo-TEM (Thermo Fisher Scientific) at a
magnification of ×13,000 to obtain image data. The concentration of the particles of interest
present in either NVs or MelaNVs was measured using a NanoSight LM10 system (Malvern
Instruments Ltd., Malvern, UK) and Nanoparticle Tracking Analysis software (version 2.3).

2.4. Western Blotting

Protein extracts from HEK293 cells, NVs, and MelaNVs were separate by SDS-PAGE
and transferred to poly(vinylidene fluoride) (PVDF) membranes. Subsequently, the mem-
branes were blocked with 3% skim med milk for 1 h, followed by treatment with primary
antibodies against CD81, CD9, and GM130. After washing the membrane three times
with TBST (tris-buffered saline with 0.05% Tween-20), treatment with secondary antibodies
was performed. After another round of washing with TBST, signals were detected using
chemiluminescence (Amersham Pharmacia Biotech, Buckinghamshire, UK).

For the detection of COX-2, TNF-α, and protease-activated receptor-2 (PAR-2), mouse
dorsal tissue was crushed with radioimmunoprecipitation (RIPA) buffer in the presence
of protease inhibitors and phenylmethylsulfonyl fluoride. Then, proteins (25 µg per
sample) were separated by SDS-PAGE and transferred onto PVDF membranes. The PVDF
membranes were blocked with 5% bovine serum albumin solution at room temperature for
2 h and incubated at 4 ◦C for 18 h with the appropriate primary antibodies. The results
were visualized using the Supernova ECL western blotting detection system (Cyanagen srl,
Italy). Images were taken with Seni-Q 2000 (Lugen Sci Co., Ltd., Seoul, Republic of Korea)
and the signal intensity was quantified using ImageJ software. The following commercially
available antibodies were used: anti-PAR-2 (SC-13504) antibody, anti-CD81 (SC-166029)
antibody, anti-β-Actin antibody (SC-47778), goat anti-rabbit IgG, and goat anti-mouse IgG
conjugated to HRP purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), and
mouse anti-CD9 (555370) and mouse anti-GM130 (610822) antibodies purchased from BD
Biosciences (San Diego, CA, USA). Anti-Cox2 (#122825) antibody and anti-TNF-α (#11948)
antibody were obtained from Cell Signaling Technology (Danvers, MA, USA).

2.5. Quantification of Melatonin in Extracellular Vesicle-Mimetic NVs

Melatonin was quantified using a commercially available melatonin ELISA kit (Ab-
cam, Cambridge, UK). Melatonin was extracted from the MelaNVs using the ethyl acetate
extraction method before performing ELISA. Briefly, 50 µg of MelaNVs in protein amount
was mixed with the same volume of cold ethyl acetate, and the sample was incubated on
ice for 2 min. After centrifugation at 1000× g for 10 min at 4 ◦C, the upper organic layer
containing melatonin was obtained. The sample was dried overnight under a stream of
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inert gas. The resulting pellet was reconstituted with a stabilizer solution provided with
the kit, and the ELISA assay was conducted according to the manufacturer’s instructions.

2.6. In Vitro β-Hexosaminidase Release Assay

RBL-2H3 cells were treated with 1 mg/mL compound 48/80 with or without NVs,
MelaNVs, or free melatonin. After incubation at 37 ◦C for 20 min, 50 µL of the supernatant
was mixed with 200 µL of 1 mM p-nitrophenyl N-acetyl-beta-D-glucosamine in 50 mM
citrate buffer (pH 4.5). The mixture was incubated again at 37 ◦C for 1 h. The reaction was
quenched with 500 µL of sodium carbonate buffer (50 mM, pH 10.0). A microplate reader
(BMG Labtech, Ortenberg, Germany) was used to measure the absorbance at 405 nm [33].

2.7. Animal Care

Eight-week-old male BALB/c mice (ORIENT Inc., Seongnam, Korea) were kept in
cages under 25 ◦C and 12 h light/dark cycle conditions. Experiments involving animals
were approved by the Institutional Animal Care and Use Committee of Soonchunhyang
University (SCH20-0070).

2.8. Atopic Dermatitis-Like Mouse Model

The dorsal hair of five mice from each group was removed using hair removal cream.
Mice were assigned to one of seven groups (five mice each): control (non-treated); 2,4-
dinitrofluorobenzene (DNCB, negative control); dexamethasone (DEX, positive control;
2.5 mg/kg/day of DEX in distilled water); MelaNVs (1000 µg/mL in protein concentrations);
NVs without melatonin (same concentrate as MelaNVs). Allergic inflammation was induced
with 200 µL of 1% DNCB in 4:1 (v/v) acetone/olive oil administered topically on nine
occasions [34]. Five days after the initial administration, 0.5% DNCB was applied to the
backs and ears of the mice once every 16 days. After 45 days, all experimental and control
groups of mice were sacrificed, and blood, ear, and dorsal skin samples were collected.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

To measure the serum IgE levels, mouse sera were obtained by centrifuging whole
blood samples (20,000× g for 30 min at 4 ◦C). The resulting supernatant was collected for
further experiments. For the determination of the IFN-γ levels, the mouse dorsal skins
were sonicated three times each on an amplitude value (AMP) of 70% using a sonicator
in RIPA buffer with 10% protease inhibitor cocktail (Millipore Cop., Billerica, MA, USA)
and 10% phenylmethylsulfonyl fluoride (PMSF). The level of IFN-γ was quantified and
normalized using an ELISA kit (BD Biosciences, San Diego, CA, USA). The ELISA plates
were read at 450 nm on a Microplate reader (TECAN, Männedorf, Switzerland), and protein
assay kit. The total protein levels were calculated as picograms per milligram (pg/mg).

2.10. Histological Analysis

The dorsal skin samples were fixed with 10% formalin, dehydrated, and embedded
in paraffin. For histological analysis, the samples were sectioned (5 µm) using an EXAKT
grinding system (EXAKT 400CS; Norderstedt, Germany). Hematoxylin and eosin (H&E)
staining was performed to measure dermal and epidermal thickness, Toluidine blue stain-
ing for detecting mast cell infiltration, and Masson trichrome staining to visualize collagen
in the skin barrier. Slide scan images were obtained using APERIO CS2 and Image Scope
software (Leica Microsystems, Buffalo Grove, IL, USA) was used for the calculations.

2.11. Statistical Analysis

All data are presented as the mean ± standard error of the mean (SEM). Statistical
significance was determined by one- or two-way analysis of variance (ANOVA) between
the groups. Tukey’s post-hoc test was used for three or more groups. The cutoff for
statistical significance was p < 0.05.
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3. Results
3.1. Generation and Characterization of NVs and Melatonin-Loaded NVs

To produce control NVs and MelaNVs, HEK293 cells were harvested and resuspended
at a concentration of 1 × 107 cells/mL in PBS with or without 500 µg/mL melatonin.
The cell suspension was extruded using 10-, 5-, and 1-µm pore-sized polycarbonate mem-
branes. The NVs and MelaNVs were purified from the interface of 10% and 50% iodixanol
after density gradient ultracentrifugation. Cryo-electron microscopy images showed that
NVs and MelaNVs had a spherical nanovesicular morphology without noticeable damage
(Figure 1A). The nanoparticle tracking analysis results showed that the NVs and MelaNVs
had a mode size of approximately 100 nm, with a size distribution range of 30–500 nm
(Figure 1B). The western blotting results showed that NVs and MelaNVs were enriched
with EV marker proteins, such as CD81 and CD9, and de-enriched with GM130, which
is a Golgi marker protein (Figure 1C). From 1.0 × 107 of HEK293 cells, 2.03 × 1010 and
2.10 × 1010 particles of NVs and MelaNVs were obtained, respectively (Figure 1D). More-
over, from 1.0 × 107 of HEK293 cells, 122.4 and 124.2 µg of NVs and MelaNVs were obtained,
respectively (Figure 1E). The ratio of particles to µg protein of NVs and MelaNVs were
1.57 × 1010 and 1.62 × 1010 particles/µg, respectively. The melatonin loading amount in
MelaNVs was determined using a melatonin ELISA kit. The results showed that 1 µg of
MelaNVs contained 97.1 ng of melatonin (Figure 1F). These results indicate that MelaNVs
are EV-mimetic NVs containing melatonin, suggesting that MelaNVs can be used for the
efficient delivery of melatonin.
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Figure 1. Comparison between extracellular vesicle-mimetic nanovesicles (NVs) and melatonin-loaded extracellular vesicle-
mimetic nanovesicles (MelaNVs). (A) Representative images from cryo-electron microscopy data of NVs and MelaNVs. Scale
bar, 100 nm. (B) Distribution of the observed size of NVs and MelaNVs. Nanoparticle tracking analysis were used for the
measurement (n = 5). (C) Western blotting against CD81, CD9, and GM130 for cells, NVs, and MelaNVs (10 µg of proteins).
(D,E) Production yield of NVs and MelaNVs in terms of particle number (D) and total protein (E) when 1 × 107 HEK293
cells were used (n = 5). (F) Quantification of melatonin in NVs and MelaNVs using melatonin ELISA kit (n = 3). Data are
presented as mean ± SEM. *** p < 0.001 vs. NVs group.

3.2. In Vitro Anti-Inflammatory Effect of MelaNVs in RAW264.7 and RBL-2H3 Cells

To determine the anti-inflammatory effect of MelaNVs, whether MelaNVs could sup-
press the inflammatory response of LPS-treated RAW264.7 cells was tested. The treatment
of RAW264.7 cells with 5 µg/mL of LPS induced the release of the pro-inflammatory
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cytokine TNF-α. Co-treatment of MelaNVs with LPS resulted in the suppression of TNF-α
release in a dose-dependent manner. MelaNVs treated with 1 µM melatonin inhibited TNF-
α release by 15% compared to the LPS-treated group (Figure 2A). Treatment with higher
doses of MelaNVs did not increase the suppression of TNF-α release (data not shown).
EV-mimetic formulations of drugs are known to enhance the drug delivery efficacy of
loaded drugs, possibly via interactions with membrane proteins between the cells and
vesicles [28,29]. To determine whether MelaNVs exhibited superior anti-inflammatory
effects compared to the same amount of free melatonin, RAW264.7 cells were treated
with MelaNVs or the same amount of free melatonin, and their anti-inflammatory effects
were compared. The results showed that MelaNVs had better anti-inflammatory effects
compared to the same amount of free melatonin (Figure 2B). We further confirmed the
anti-inflammatory effects of MelaNVs in C48/80-stimulated RBL-2H3 cells. RBL-2H3 cells,
which are basophil cell lines, are functionally homologous to mucosal mast cells and are
mainly used to study allergic reactions. The treatment of RBL-2H3 cells with 1 mg/mL of
compound 48/80 (C48/80) induced the release of β-hexosaminidase, which is frequently
used to measure the degree of mast cell degranulation. Co-treatment of MelaNVs with
C48/80 significantly inhibited β-hexosaminidase release in a dose-dependent manner
(Figure 2C). Co-treatment of RBL-2H3 with C48/80 and NVs without melatonin did not
induce changes in β-hexosaminidase release. However, co-treatment with C48/80 and
MelaNVs (in 1 µM melatonin) inhibited β-hexosaminidase release by 25%, while 1 µM
of free melatonin inhibited β-hexosaminidase release by 10% (Figure 2D). These results
suggest that MelaNVs can maximize the anti-inflammatory effect of melatonin by facilitating
the delivery of melatonin into cells.
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in conditioned medium of RBL-2H3 cells either treated with NVs, MelaNVs, or free melatonin under C48/80 treat-
ment condition (n = 3). Data are presented as mean ± SEM. *** p < 0.001 vs. control, # p < 0.05, ## p < 0.01,
### p < 0.001 vs. C48/80 group, $$$ p < 0.001 vs. NVs group, && p < 0.01 vs. MelaNVs group. LPS: lipopolysaccha-
rides; C48/80: compound 48/80; Mela: melatonin.

3.3. MelaNVs Ameliorate DNCB-Induced AD and Suppress Mast Cell Infiltration and Fibrosis in
AD-like Skin Lesions

We investigated whether MelaNVs could improve the symptoms of AD in a DNCB-
induced AD mouse model. We established an AD mouse model by treating the ears and
dorsal skin of mice with 1% DNCB three times a week for 3 weeks (9 times in total). The ears
and dorsal skin were treated with MelaNVs in the presence of 0.5% DNCB once a day for
16 days (Figure 3A). Treatment with DNCB induced AD-like skin lesions showing erythema,
edema, and dryness, suggesting that DNCB successfully induced AD-like phenotypes
(Figure 3B,C). The topical administration of MelaNVs significantly improved the symptoms
of AD by reducing skin inflammation and ear thickness. However, treatment with NVs did
not improve the AD-like phenotypes (Figure 3B,C). We also measured dermatitis severity
scores according to previously described criteria [35]. The administration of MelaNVs
significantly reduced dermatitis severity scores compared to DNCB- and NV-treated mice
(Figure 3D).
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Figure 3. MelaNVs improve AD symptoms and reduce the dermatitis severity score in the DNCB-
induced AD mouse model. (A) Schematic diagram of experimental schedule. AD-like skin lesions
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were induced in ears and dorsal skin of BALB/c mice with 200 µL of 1% DNCB (administered 9 times).
Mice were treated with 0.5% DNCB in the presence DEX (2.5 mg/kg), NVs (1000 µg/mL protein), or
MelaNVs (1000 µg/mL protein, 1 mg/kg in melatonin) daily for 16 days. (B) Representative images
of ear and dorsal skin of mice in each group on day 37. (C) Measure of ear thickness on day 37 (n = 5).
(D) Dermatitis scores (SCORAD) on day 37 (n = 5). Data are presented as mean ± SEM. *** p < 0.001
vs. control, ## p < 0.01, ### p < 0.001 vs. DNCB group, $$$ p < 0.001 vs. DEX group, & p < 0.05 vs.
MelaNVs group.

H&E staining of dorsal skin showed that the application of MelaNVs effectively reduced
the epidermal thickness of the dorsal skin (Figure 4A). The measurement of the epidermal
thickness further strengthened H&E results (Figure 4E).
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Figure 4. MelaNVs treatment decreases epidermal thickness and suppresses mast cell infiltration
and fibrosis in AD-like skin lesions. (A–D) Representative images of hematoxylin and eosin (H&E)
staining (scale bar, 300 µm) (A), toluidine blue staining (scale bar, 200 µm) (B), Masson’s trichrome
Scheme 100 µm) (C), and immunohistochemical staining (scale bar, 100 µm) (D) of dorsal skin of
mice in each group. (E) Comparison of epidermal thickness of dorsal skin lesions for different
experimental groups determined by H&E staining. (F) Observed infiltration of mast cells in dorsal
skin lesions determined by toluidine blue staining. Data are presented as mean ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. control, ## p < 0.01, ### p < 0.001 vs. DNCB group, $ p < 0.01, $$$ p < 0.001
vs. DEX group, & p < 0.05 vs. MelaNVs group.

Next, we assessed mast cell infiltration in AD-like skin lesions by performing toluidine
blue staining of the dorsal skin of mice in each group. As a result, DNCB treatment
was found to considerably increase the number of mast cells in the AD-like skin lesions.
Treatment with MelaNVs effectively suppressed the infiltration of mast cells into the dorsal
skin, while the NV treatment did not show a significant decrease in mast cell infiltration
(Figure 4B,F). Next, we evaluated the protective effects of MelaNVs against fibrosis in
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AD-like skin lesions. Fibrotic remodeling is a major characteristic of AD-like skin lesions.
Collagen and fibronectin deposition in the dorsal skin were determined using Masson’s
trichrome staining and immunohistochemistry, respectively. Masson’s trichrome staining
of dorsal skin showed that collagen deposition was effectively reduced in MelaNVs-treated
mice compared to that in DNCB-treated mice (Figure 4C). The immunohistochemistry
results also showed that fibronectin expression in AD-like skin lesions was reduced in
MelaNV-treated mice (Figure 4D). These results suggest that MelaNVs effectively improved
AD symptoms and inhibited the infiltration of mast cells and fibrosis in AD-like skin lesions.

3.4. MelaNVs Decrease Serum IgE Levels, Restore Th1/Th2 Cytokine Balance, and Suppress the
Release of Inflammatory Cytokines in AD-like Skin Lesions

To determine whether the topical administration of MelaNVs could reduce serum
IgE levels and restore Th1/Th2 cytokine balance, serum IgE, IFN-γ, and IL-4 levels were
evaluated by ELISA. As a result, DNCB treatment was found to significantly increase the
serum IgE levels compared to the controls (Figure 5A). In addition, the topical application of
MelaNVs significantly reduced serum IgE levels, whereas treatment with NVs did not cause
a significant reduction in serum IgE levels (Figure 5A). DNCB treatment lowered serum IFN-
γ levels and increased the serum IL-4 levels. Treatment with MelaNVs significantly increased
IFN-γ levels and decreased IL-4 levels, although this was not statistically significant
(Figure 5B,C). Interestingly, treatment with NVs also significantly increased the serum IFN-
γ levels (Figure 5B). Despite a decrease in the IL-4 levels after NV treatment, no significant
difference was observed compared to the DNCB group (Figure 5C).
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## p < 0.01, ### p < 0.001 vs. DNCB group, $$ p < 0.01, $$$ p < 0.001 vs. DEX group, & p < 0.05, && p < 0.01, &&& p < 0.001
vs. MelaNVs group.

Then, whether MelaNVs could suppress the pro-inflammatory cytokines in AD-like
skin lesions was investigated. As a result, the expression of COX-2 and TNF-α, both of
which are known to promote inflammation, was found to be suppressed in AD-like skin
lesions (Figure 5D–F). Protease-activated receptor-2 (PAR-2) is known to be activated in
AD and is associated with the release of pro-inflammatory cytokines and the disruption
of the skin barrier in AD-like skin lesions [36]. The topical administration of MelaNVs
effectively suppressed PAR-2 expression in AD-like skin lesions (Figure 5D,G) compared
to the DNCB- and NV-treated groups. These results suggest that MelaNVs decreased
serum IgE levels, balanced Th1/Th2 cytokine levels, and suppressed the expression of
pro-inflammatory cytokines.

4. Discussion

Although the precise pathogenesis of AD has yet to be fully elucidated, a defective
skin barrier, immune cell activation (mast cells and Th1 and Th2 cells), and environmental
factors are known to be involved in the progression of AD [37]. Melatonin is a powerful
antioxidant that can help to maintain skin barrier function by protecting keratinocytes
from apoptosis [19] and enhancing the function of skin fibroblasts [20]. In addition, the
peritoneal injection of melatonin to the DNFB-treated AD mouse model inhibits serum
IgE levels and cytokine secretion of IL-4 and IFN-γ from activated CD4+ T cells [18].
Melatonin has also been shown to inhibit the degranulation, infiltration, and activation of
mast cells [38]. In our previous studies, we demonstrated that melatonin suppresses high
glucose- or p-Cresol-induced fibrosis in human renal proximal tubule epithelial cells [39,40].
Based on these results, we hypothesized that melatonin-loaded EV mimetics would have
excellent inhibitory effects on AD. In this study, we demonstrated that MelaNVs improved
the symptoms of AD and inhibited mast cell infiltration and fibrosis in AD-like skin
lesions. In addition, we showed that MelaNV decreased IgE levels, restored IFN-γ and
IL-4 levels, and inhibited the inflammatory response in AD-like skin lesions. While Kim
et al. intraperitoneally injected 20 mg/kg of melatonin to observe its inhibitory effects
on AD, in this study, we topically administered 1 mg/kg of MelaNVs. This suggests that
the transdermal delivery of melatonin using MelaNVs can increase treatment efficacy and
reduce the potential adverse effects of melatonin.

Several types of delivery systems, including ethyl cellulose nanoparticles [41], lipid
carriers [42], and polycaprolactone nanoparticles [43], have been developed to increase
the efficiency of melatonin delivery. Bessonea et al. demonstrated that ethyl cellulose
nanocapsules loaded with melatonin have a superior melatonin delivery efficiency to the
cornea compared to free melatonin [41]. In our study, we demonstrated that MelaNVs have
better anti-inflammatory effects than the same amount of melatonin in C48/80-stimulated
RBL-2H3 cells (Figure 2C). Compared with other drug delivery systems, EV-mimetics have
several advantages, including ease of displaying targeting molecules on the surface NVs
when the cells are genetically engineered to express the targeting molecules and have
low immunogenicity, especially when patient-derived cells are used for NV generation.
Although immune reactions were not observed in the NV- or MelaNV-treated groups, the
potential toxicity of EV-mimetics should be further verified in future studies.

In the in vivo experiment, treatment with bare NVs also showed protective effects,
particularly in terms of epidermal thickness and the IFN-γ, COX2, and TNF-α levels.
Although NVs have been used as a melatonin drug delivery system, NVs may have anti-
inflammatory functions. Tao et al. generated lncRNA-H19 containing EV-mimetic nanovesi-
cles (H19EMNVs) by extruding H19-overexpressing HEK293 cells. H19EMNVs treatment
in a diabetic rat model showed increased healing processes in chronic wounds [44]. Inter-
estingly, control EMNV were also found to exert effects on in vitro tube formation, in vivo
wound healing, and angiogenesis [44]. Park et al. generated EV-mimetics from human bone
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marrow-derived MSCs and demonstrated the anti-inflammatory effect of MSC-derived
NVs in bacterial OMV-treated RAW264.7, and in an OMV-induced sepsis model [45]. Pro-
teins related to angiogenesis, inflammation, and stress protection, such as Jaggec-1 ligand
protein, CD73, and 14-3-3 proteins, were found to exist in NVs. Likewise, certain proteins
or RNAs present in HEK293-derived NVs may exert their anti-atopic dermatitis effects in a
mouse model.

In our study, MelaNVs reduced DNCB-induced PAR-2 expression in AD-like skin
lesions (Figure 5G,H). PAR-2 has been associated with epidermal barrier homeostasis,
immune response, pigmentation, fibrosis, and pruritus in the skin [46–50], and is known
to play a role in the pathogenesis of AD [51,52]. The PAR-2 agonist increased itch and
induced the irresponsiveness of sensory nerves to anti-histamine [53]. Furthermore, PAR-2
affects epidermal keratinocytes to generate the AD-aggravating factor, thymic stromal
lymphopoietin (TSLP) [54]. In Netherton syndrome, which is another skin disease that has
been associated with AD, a loss-of-function mutation in the serine protease inhibitor of
kazal type 5) gene, which encodes LEKTI (lympho-epithelial kazal type related inhibitor
type 5 (SPINK5) in humans, was reported to play a significant role. Here, LEKTI has
been found to primarily regulate tissue kallikrein 5 (KLK5) and kallikrein 7 (KLK7) [55].
In keratinocytes, KLK7 overexpression results in AD [56], and excessive KLK5 activates
PAR-2 [57]. Therefore, the loss of SPINK5 gene functions upregulates KLK5, which in turn
enhances the expression of TSLP, which leads to impairment of the junctional integrity of
the skin during development [58].

In conclusion, our data provide experimental evidence for:

• The anti-inflammatory effects of MelaNVs in LPS-stimulated RAW264.7 cells and
C48/80-stimulated RBL-2H3 cells.

• We demonstrated that MelaNVs could improve AD-like symptoms and suppress mast
cell infiltration and fibrosis in AD-like skin lesions. MelaNVs decreased serum IgE,
restored IFN-γ and IL-4 levels, and inhibited COX-2, TNF-α, and PAR-2 expression.

• These results suggest that MelaNVs have an excellent anti-atopic effect and can be used
for the treatment of AD.

• As MelaNVs are an excellent melatonin delivery system, MelaNVs may also be used in
other skin disease models, including decubitus and eye disease, to deliver melatonin.
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