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Abstract. Some mHealth apps record user activity continuously and
unobtrusively, while other apps rely by nature on user engagement and
self-discipline: users are asked to enter data that cannot be assessed oth-
erwise, e.g., on how they feel and what non-measurable symptoms they
have. Over time, this leads to substantial differences in the length of the
time series of recordings for the different users. In this study, we pro-
pose two algorithms for wellbeing-prediction from such time series, and
we compare their performance on the users of a pilot study on diabetic
patients - with time series length varying between 8 and 87 recordings.

Our first approach learns a model from the few users, on which many
recordings are available, and applies this model to predict the 2nd, 3rd,
and so forth recording of users newly joining the mHealth platform. Our
second approach rather exploits the similarity among the first few record-
ings of newly arriving users. Our results for the first approach indicate
that the target variable for users who use the app for long are not pre-
dictive for users who use the app only for a short time. Our results for
the second approach indicate that few initial recordings suffice to inform
the predictive model and improve performance considerably.

1 Introduction

Recent trends in consumer electronics towards affordable and relatively power-
ful devices capable of sensing health-related attributes have been matched by
an increase in research interest in exploiting this data to assist the healthcare
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practitioner. Not only do these devices help in diagnostics, by recording values of
attributes related to health and subjective well-being; they also allow that the
disease may be monitored with only asynchronous involvement of the practi-
tioner. Self-monitoring of the disease contributes thus to patient empowerment,
and also delivers precious data that can be used for personalization, i.e. for
treatments tailored to the individual needs and characteristics. This potential
requires adequate data to build upon.

A major challenge of mobile health platforms that collect user inputs is that
the amount of data users contribute can vary substantially. As we reported in
[15] when analysing user recordings on the mobile health platform “TrackY-
ourTinnitus” [9], a minority of users interact intensively with the system and
contribute a disproportionately large amount of data, while the majority of users
contribute very few inputs. In this study, we investigate whether predictions can
be made for this majority of users by learning a model on the few users who
provide many data to the system. Also, differently from our work in [15], we
focus here on a one-step-ahead forecast instead of classification.

We propose an approach that learns from users who contribute long sequences
of inputs to predict the subjective perception of wellbeing for users who con-
tribute only short sequences of input data, including users that have very recently
joined the platform. Each user in the system is required to fill in a “End of Day
Questionnaire”, where he reports among other things the overall “feeling in con-
trol”, the variable of prediction interest. These user-level timestamped observa-
tions therefore constitute one user-centric time series, the length of which varies
depending on how long the user has been in the system, and how the doctor’s
recommendation of filling in the questionnaire at the end of every day has been
followed. We denote the set of users with long sequences of recordings as Ulong

and the users with few recordings as Ushort. Our approach deals with the fol-
lowing three questions:

– RQ1: How well can we predict the behaviour of users in Ushort given the data
from the users in Ulong?

– RQ2: Can we predict the entire sequence of observations of a user in Ushort

with a model trained only on data from users in Ulong? (i.e, does a model
learned on data from users with long sequences transfer to those with short
ones?)

– RQ3: How can we incorporate early recordings of users in Ushort incrementally
into the model to improve predictive performance?

The paper is organised as follows: Sect. 2 introduces related literature, fol-
lowed by Sect. 3, which introduces the m-Health application on which the this
work is based. Section 4 discusses our proposed solution, followed by a discussion
in Sect. 5, and closing remarks in Sect. 6.

2 Related Work

In our work, we concentrate on time series in applications of health and wellbe-
ing. The early study [5] by Madan et al. reported on the potential of mobile
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technologies to capture epidemiological behaviour change, including physio-
logical symptoms like running nose, and mental health conditions like stress.
For example, they found that total communication of the affected persons
decreased for the response “sad-lonely-depressed” (cf. [5] for the definition of
this response). While a change in communication intensity can be captured by
Bluetooth connection activity or absence thereof, the information on how a per-
son feels demands user inputs. Ecological Momentary Assessments (EMA) are a
widespread tool for this purpose [3,14].

EMA is an instrument for assessing “behavioral and cognitive processes
in their natural settings” [14]. From the technical perspective, EMA record-
ing is feasible and well-supported. For example, in their survey on sleep self-
management apps [2], Choi et al. list the recording of user-entered data as an
important functionality, and stress that all investigated apps do support this
functionality. However, next to the technical modalities, EMA relies also on self-
discipline and adherence.

As Mohr et al. stress in [6], “although a number of small studies have demon-
strated the technical feasibility of sensing mood, these findings do not appear to
generalize”. In the meanwhile, there are large studies involving EMA recordings
of more participants for longer time periods. However, the emphasis seems still
to be on users who interact intensively with the mobile health application. In
their insightful comparison of the results of EMA recordings with the TrackY-
ourTinnitus mHealth app versus retrospective ratings of the users, only users
with at least 10 days of interaction were considered [11]. For findings with the
TrackYourStress platform that records EMA geolocation, only users with at least
10 recordings per day were considered [10].

This provokes the question of whether users with few recordings belong to the
same population as users with many recordings. In [8], Probst et al. considered
both users with few days of recordings and users with many days of recordings for
their Multi-Level Analysis (median number of days: 11, with range from 1 to 415
days), but demanded at least 3 EMA per day, each of them containing answers
for the three EMA items under study [8]. In this work, we do not attempt to win
insights that pertain to a specific group of users, but rather to assess whether
the EMA of users with few recordings can be predicted by models learned on
users with many recordings.

The EMA of mobile health app users constitute multivariate time series. The
challenge posed by short time series is discussed by Palivonaite and Ragulskis in
their work on short-term forecasting [7], where they associate the length of the
time series to the reliability of longer-term forecasts.

Dynamic Time Warping (DTW) or one of its numerous enhancements can
be used to compare time series of different lengths and exploit their similarity
for learning. DTW is a very old method, cf. [16], for an early citation to DTW
by authors Yfantis and Elison who proposed a faster alternative. Such methods
can be used to enhance algorithms like [1,15], which do predictions by building
a model for each time series, but can also exploit information from similar time
series. Despite this potential, the amount of data per user in some mHealth
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applications is very small, so that we opt for similarity-based methods that
capitalize more on the similarity of values than on the ordering of the values –
albeit both are taken into account.

3 EMA with the TrackYourDiabetes Mobile Health App

As part of two pilot studies on empowerment of diabetes patients, a mobile
crowdsensing framework was adjusted to implement the TrackYourDiabetes
mHealth platform [4,9]. Figure 1 summarizes the entire procedure of the app
from the patient’s point of view. The pilot studies were conducted in regions
of Spain and Bulgaria, and involved patient recruitment and exposition to two
variants of the app, while under remote supervision by a practitioner.

TrackYourDiabetes Crowdsensing Data Collec�on Procedure
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Fig. 1. Mobile crowdsensing collection procedure of TrackYourDiabetes

The platform comprises two mobile applications (i.e., native Android and
iOS apps), a relational database, a RESTful API [12], and a web application.
The mobile applications are only used by the patients, while the web application
was used by the patients as well as their related healthcare professionals. The
latter were enabled by the web application to monitor the data of the patients
as well as to provide individual feedback if wanted or required.

Before starting interaction with the app, study participants registered with
the platform by using the mobile apps or a web application 1©. After that,
they have to fill out three registration questionnaires once 2©: one registration
questionnaire collects demographic data, one collects information on the self-
management of the patients with his/her diabetes, and one captures the extend
to which diabetes causes distress to the patient.

There were EMA recordings more than once a day, concerning physical activ-
ity and food intake, and EMA recordings at the end of each day, using the End-
of-Day questionnaire items depicted in Table 1. Furthermore, individualised mes-
sages based on given answers of daily assessments were provided with the goal
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Table 1. Variables in the dataset: questions in the end-of-day questionnaire

# Question Set of answers/Data type

01 How often do you have measured your sugar
level today?

Numeric

02 For how many minutes have you performed
physical activity or sports today?

Numeric

03 How many bread units have you eaten
today?

Numeric

04 Did you have signs of hyper- or
hypoglycemia today?

“Don’t know”, “No”, “Both”,
“Hypoglycemia”, or “Hyperglycemia”

05 Did you feel to be in control of your diabetes
today?

Numeric, [0–100]

to better motivate the patients in using the platform. The healthcare profes-
sional(s) responsible for the participants could also provide individualised feed-
back. Finally, a chatbot was integrated, which could be used by the patients to
discuss questions on their diabetes. For the analysis of the proposed approach,
we concentrated on the Bulgarian pilot study and investigated solely the user
inputs to the End-of-Day questionnaire; no further features were considered.

4 Our Method

We investigate a prediction problem on timestamped data, transferring a predic-
tor learned on the data of one set of users, Ulong, to another set of users Ushort.
In all cases, our goal is to predict many observations of a user, not just the next
one, as is typical in many time series prediction problems.

4.1 Core Concepts and Core Elements

This section offers a brief overview of the terms used in this work and their
exact definitions, which is followed by a broader description of our workflow in
Sect. 4.2.

User Sequences: Each user p who uses the mHealth app generates a time-ordered
sequence of observations xp,t, where p is the user, and t denotes time.

We distinguish between users with short sequences of observations, consti-
tuting a set Ushort, and users with long sequences of observations, constituting
a set Ulong. For the partitioning of users into these two strata, we consider a
threshold τlength.

In our experiments, we set τlength on the basis of the user-observations distri-
bution, which has shown a gap. In distributions that follow a power law, τlength
serves to separate between the short head and the long tail. More generally, we
may decide to place into Ushort those users who have very recently started their
interaction with the app and thus have contributed only few initial observations.
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Observations: An observation is a multi-dimensional vector of values from a fea-
ture space F . In our application scenario, an observation is an EMA recording
comprised of answers to questions from a questionnaire. Accordingly, an obser-
vation is a mix of numerical and categorical variables.

Handling Categorical Data: A term Frequency-Inverse Document Frequency
(TF-IDF) Inspired Approach: Before training the models, it is important to
consider the exact way in which categorical attributes in the input data are
used. Of the various questions in the questionnaire answered by the users, the
questions that generate categorical data (chosen from a drop-down list) need to
be treated to accommodate for the fact that not all answers are equally likely.
Compared to simply using a standard method like one-hot encoding, this step
brings the answer closer to the user’s history, for e.g., by more accurately cap-
turing the information that a user who commonly answers a question with “no”
has said “yes”, even if “yes” frequently appears in the dataset.

We treat the answers to this categorical data as ‘words’, and each session
where the questionnaire is answered as a ‘document’. During preprocessing, given
the exact answer chosen by a user during a particular day, we replace the binary
flag marking the presence of that word with a new value that is adjusted to
reflect the amount of “surprise” in seeing that data point given the user through
the use of the TF-IDF (see [13]) inspired formula: preprocessed value = fterm ·
−log nterm

N , where fterm can only be binary, since the categorical answer only
picks one term from a list of several. The inverse document frequency component
measures how often the term has appeared in the user history.

Core Learning Method: Given data Pp for all users p ∈ Ulong for time points
1 . . . t, we have Pp = {xp,1 . . . xp,t}. Using this data, we create a linear regression
model that for each possible i ∈ 1 . . . t − 1, learns to predict the target vari-
able for time point i + 1. Naturally, since there is no known label for the last
time point t, each user p with a sequence length of t only provides t − 1 time
points of training data. This model is only used for predicting the labels for the
observations {xp,1 . . . xp,t−1} for all users p ∈ Ushort.

Augmented Method: We augment the above method by creating predictions spe-
cific to the users Ushort: In addition to the above model which only learns on the
users of Ulong, we add an additional K-NN Regression model that is trained only
on the user’s own history of observations. This means that given an observation
xp,t, we can generate predictions for xp,t+1 from two models, the model trained
on all users in Ulong, and additionally the K-NN Regression model that has only
been trained on the observations of the user p seen so far, i.e. x1 . . . xt−2 (Note:
The training data for p ∈ Ushort ends at t − 2, because xt−1 is used as the label
for the training point xt−2, and the true label for xt−1 has not been observed
yet).



Transfer Learning from Long- to Short- Sequence Users in mHealth 665

4.2 Prediction Workflows

Proof-of-Concept Step: The basic workflow we propose has a preliminary
step and two components. The preliminary step is designed to check that the
task is indeed learnable, and success at this stage can ensure that the further
steps in the workflow are applicable. For this, instead of training a model on
only data from users in Ulong, a model is trained on 75% of all data, and the
performance is analysed to confirm that the model can learn given the data. By
framing the problem as a regressor and not as a time series forecast, we avoid
the problem of having insufficient data to train a time series forecasting model.
This model can unfortunately not be used as a baseline to compare against since
it does not learn on the same amount of data as the model learning only on
Ulong, and also because the number of data points available for testing over
users in Ushort is very small (often only a couple of observations). However, the
performance of this model can still be considered a benchmark for the upper
limit of performance for the transfer learning model.

Basic Workflow: In this workflow, we find a subset of the dataset D comprising
of only the data xp,t, where p ∈ Ulong. This creates a model trained only on the
data from users with long sequences, the performance of which is tested on users
of Ushort. It is important to remember that the model has the challenging task
of making predictions for users that have never been seen by the system, and
predictions for them are made based only on what has been learned over the
user. This is arguably more challenging than predicting unseen observations for
users who have already contributed observations to the training set. Additionally,
since these users have not adhered to instructions of the physician to use the
application for the prescribed period of 2 months, it is possible that these users
differ somehow in the expression or the perception of the disease in some way.
However, it is still possible that a model learned on those data points from long
users bring a modest predictability to the disease development of users in Ushort.
Similarly to the model introduced above, we learn to predict the numeric value
of the target variable for the next observation given the questionnaire answers
of the current observation (including the current value of the target variable). A
graphical overview of the workflow is shown under ‘Basic Workflow’ of Fig. 2.

K-Nearest Neighbour (K-NN) Augmented Workflow: If the users in
Ushort are indeed different from the users in Ulong, then using a model that
transfers the parameters learned on Ulong is not expected to bring reliable pre-
dictions to the users in Ushort. However, since the users in Ushort do not bring
enough data to train complex models, only simple techniques can be used to try
and incrementally improve predictive performance over users in Ushort by cap-
turing the idiosyncratic patterns in the user’s disease development/answering
style. This design aims to balance the tradeoff between keeping as much data
as we can use to learn about how the disease develops, while also staying close
to the idiosyncratic ways in which the user may answer questions. In this work,
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Fig. 2. Prediction workflows

we propose the use of a K-Nearest Neighbours regressor trained over the user’s
own history, the predictions of which are used to augment the predictions from
the Ulong model weighted on their past errors (similarly to [1]). Restricting the
K-NN regressor to the user’s own sequence also has the unintended consequence
of out-of-the-box support for data-privacy, something that is especially relevant
in the medical domain.

During use, the K-NN regressor is incrementally trained on the user sequence
as more of it becomes available, and the errors are recorded for comparison to the
standard Ulong model. Figure 2 shows an overview of the model training process
with the K-NN augmentation component.

5 Results

We describe the dataset of our evaluation in Subsect. 5.1, and then explain
in Subsect. 5.2 how the number of users with short and long sequences affect
the prediction tasks and the settings of K-NN in the augmented workflow. We
evaluate using Mean Absolute Error (MAE). The results of the proof-of-concept
experiment are in Subsect. 5.3, while the results for the basic workflow and the
KNN-augmented workflows are in Subsect. 5.4.

5.1 The Dataset

For our evaluation, we used the dataset of the Bulgarian pilot study. This dataset
contains observations from 11 study participants. While the inclusion of the users
from the pilot study in Spain is desirable, a model that learns on the combined
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data of the two pilots is not done for two reasons: (a) The two countries are dif-
ferent in the dominant diabetes type that the users have, and (b) Many users in
the Spain pilot use continuous blood sugar measuring devices, strongly influenc-
ing the accuracy of the “self-assessed” blood sugar estimations, and therefore,
the “feeling in control”. We set τlength = 30 days, whereupon 6 of the users
belong to Ulong (30+ days) and 5 users are in Ushort (8–13 days) after eliminat-
ing users with 5 users with less than 3 days of data. We denote this dataset as
L6+S5 dataset hereafter, to stress the number of users per length-stratum.

Figure 3 depicts the number of days of interaction for all users. It can be
observed that there is a clear separation between users in Ulong compared to the
rest of the users.

Fig. 3. Number of days with EOD observations per user; user #1 is the user with the
largest number of EOD observations, user #11 has the smallest number

Of the 5 variables of the EOD questionnaire filled by the pilot study partic-
ipants (cf. Sect. 3), the target variable is the 5th one on Table 1, i.e. each user’s
self-reported ‘feeling in control’, on a scale of 0 to 100. We denote this variable
as ‘EOD feel’ hereafter.

5.2 Prediction Tasks and Imposed Restrictions on Training

For the proof-of-concept step in Subsect. 4.2, we train a predictor on the first
75% of the observations of the users in U long of L6+S5 dataset and predict
the subsequent 25% observations. As can be seen on Fig. 3, the 6 users in Ulong

contribute unequally to learning: user #1 contributes more than 60 (out of ca.
85) observations to the training dataset, while user #6 contributes less than
30 (ie half as many). Similarly, we predict the EOD feel value of more than 20
observations of user #1 and ca. 10 of user #6.

For the basic workflow of Subsect. 4.2, the prediction task is to predict all
observations of the 5 users in Ushort of the L6+S5 dataset, without having seen
any observations on them during training. This amounts to 47 predictions.
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For the K-NN augmented workflow, some observations of each user in Ushort

of the L6+S5 dataset are disclosed and used for augmentation of the model
learned on all of the Ulong observations in the L6+S5 dataset. User #7 has less
than 15 observations, user #11 has 8 (cf. Fig. 3). This imposes an upper limit
to K: if we set K = 8, we cannot do any predictions on user #11. On the other
hand, K-NN based regression needs at least 2 observations per user to learn.

Larger values of K allow for a more robust regression model and make the
prediction task easier, since less EOD feel values are predicted. To investigate
whether the very few first observations on a user can inform a model learned on
Ulong, we have set K = 2. This amounts to 37 predictions.

5.3 Learning a Predictor on Ulong : Proof-of-Concept Experiment

Fig. 4. MAE in Ulong ∪ Ushort

(All), in Ulong (S) and in Ushort (S)

The Goal of this experiment is to check
whether the prediction problem is indeed
learnable, in the sense that we can derive a
useful prediction model. Figure 4 shows the
performance of the proof-of-concept regres-
sion model for the first prediction task of Sub-
sect. 5.2 on L6+S5 dataset, learning on the
first 75% of all user observations (All), and
accordingly on the first 75% of the observa-
tions in Ulong (L), resp. Ushort (S).

For “All” (leftmost part), MAE remains
around 17%, decreasing slightly within “L”
(Ulong) and increasing slightly within Ushort.
However, MAE within “S” ( Ushort) is rather

unreliable, since there are less than two observations per user in the testset (more
precisely: 1.4). Hence, these MAE values serve only as lower limit for the errors
of the transferred models.

5.4 Learning on Users in Ulong to Make Predictions for Users in
Ushort : Transfer Learning Experiments

Since we have a baseline (albeit weak, since errors for Ushort are not reliable) for
the performance of a model on the data from all users, we can now investigate the
transfer learning case where the model is only learned on the users of Ulong. As
already described above, there are two workflows that use such a model, a more
basic workflow that uses a model learned over Ulong only, and another model
that augments the basic workflow with a user-specific K-Nearest observations
regressor. The models are all evaluated against the absolute errors they make
in their predictions. The ‘mean’ in the Mean Absolute Error may either be
computed over all predictions that a model has made, or may be restricted to
the predictions for particular users. Given the rather short sequence lengths of
the users in Ushort, it is necessary to not rely on point-estimates like means, but
consider the ‘spread’ in the errors as well. We therefore present box plots over all
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the prediction errors for the basic and K-NN Augmented workflow. The entire
test set contains 47 observations for which predictions are required.

Basic Workflow. In this workflow, instead of learning a model over data from
all users, as described in Sect. 5.3, we will learn a model only on those users who
have contributed more than 30 days of data, the necessary criterion for their
addition to the set Ulong. Figure 5 shows a box plot of the absolute prediction
errors for the transferred model. Compared to the basic model in Sect. 4.2, the
MAE over all predictions for all users has increased from 17.5 to 24.76 (indicated
by the green triangle). However, since not all users in Ushort have the same
sequence lengths, the MAE is biased towards the users with longer sequences.
The blue dots inside the box plot shows the MAE for each user separately, and
we can see that the users who are best predicted have errors as low as 21, with
the worst-predicted users showing MAE in excess of 35. The mean being closer
to 21 indicates that the well-predicted users are indeed the ones with longer
sequences. This indicates that they are more similar to the users in Ulong than
other shorter members of Ushort.

Fig. 5. Basic workflow: box plot of errors for predicted next-observation EOD feel,
along with mean (Green Triangle), median (Yellow Line), and user-level MAEs (blue
dots) for all users in Ushort. (Color figure online)

K-NN Augmented Workflow: This section discusses the results for the more
advanced “K-NN Augmented Workflow” detailed in Sect. 4, where a user-level
model learned on data from Ushort augments the predictions of the model dis-
cussed above. Figure 6 shows a box plot of the absolute prediction errors for the
K-NN Regressor, along with comparisons against the Ulong model’s errors. The
box plot on the far right shows the errors in the case where the predictions of
each method are combined as a weighted average on their cumulative errors for
the user to form a final prediction. Since the users in Ushort can have as few as
8 observations, our choice of K is quite strongly limited to very low numbers, as
the K-NN Regressor cannot create predictions until it sees at least K observa-
tions. In these cases, the K-NN is assumed to make the same prediction as the
Linear Regression model over Ulong, since it is necessary to compare the errors
of the two models for the same number of predictions.
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Fig. 6. K-NN Augmented workflow: bloxplots of absolute errors for KNN model, basic
workflow, and the combined workflow. Means are denoted by the green triangle and
medians by the yellow horizontal line (Color figure online)

It can be seen in Fig. 6, the K-NN model does indeed show lower mean
and median errors, indicated by the green triangle and the line in the box plot.
However, it can also be seen that the worst-case performance of the K-NN model
is worse than that of the Linear Regression model. The roughly similarly sized
gaps between the mean and the median errors in the K-NN and the Linear
Regression models indicate that both models sometimes make large errors, albeit
in different directions. Combining the predictions from both models does seem to
mitigate these worst-case errors, since the mean and the median absolute errors
are observed to be very close, at around 20.

In addition to the boxplots of the error itself, Fig. 7 shows how the error
develops over time for users in Ushort as they stay longer in the system. The X-
Axis shows the observation number, with the MAE on the Y-axis. The MAE at
each time point is averaged over the individual prediction errors over all users at
that time point. Until the Kth observation, the K-NN predictor does not gener-
ate predictions, but we have used the linear regression model prediction errors in
order to not unfairly favour any algorithm. From the 3rd observation, however,
we see that the user-level K-NN predictor almost always outperforms the linear
regression model (and therefore the weighted average model). It is also notewor-
thy that until the 7th time point, the error-weighted combination of both models
is very close to the K-NN model. This shows that augmenting the predictions
of the basic workflow with the K-NN regressor does improve performance. The
results beyond the 8th observation get progressively less reliable since all users
in Ulong have at least 8 observations, but the number of users contributing to
the averages after time point 8 get unreliable, though it is possible that users in
Ushort are more and more predictable given the history of their own observations
with time.
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Fig. 7. K-NN augmented workflow: development in error with time

6 Conclusions and Closing Remarks

In this work, we studied if the data from users of a diabetes self-management
app with more than 30 days of data (Ulong) can be used to infer something
about the future of less intensive users with less data. Since neither the number
of patients (N = 11) nor the number of observations for the longest-sequence
user (87) is very long, we investigate simpler models like linear regression. The
model is trained to predict the next observation for user-reported “feeling in
control”, the last question of the End Of Day questionnaire, given the answers
to all questions of End Of Day questionnaire for the current observation. The
categorical information in the dataset is handled using a method inspired by
TF-IDF to capture the ‘surprise element’ in an answer given a user. i.e., when a
user answers a question like (s)he usually does, that answer gets a smaller weight
than if the answer is unexpected.

Further, we investigate whether transfer learning can be used to learn a model
on the users of Ulong in order to make predictions for the observations of users
in Ushort. We saw that the transferred model predictably shows a higher error,
which can be mitigated by combining the predictions of the Ulong model with
a K-Nearest Neighbours Regressor over the patient’s own past data. The short
sequences necessitate that the K is limited to quite low values, but the predictor
that combines the predictions of both models does eliminate some extreme errors,
bringing the mean and the median errors closer.

The primary threat to validity of this work is the size of the dataset from
which the conclusions have been drawn. The large disparity between the lengths
in Ulong and Ushort make further analysis of the K-NN Augmented predictor
less reliable, making the findings more qualitative than quantitative. Although
two pilots exist from which data can be analysed, this study focused the inves-
tigation only on data from Bulgaria because the users for the two studies are
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drawn from different populations (the proportion of Type 2 diabetics is very
different, and the Spanish pilot users had continuous glucose monitoring devices
implanted). Additionally, the mHealth application collects more data from the
users, of which the EOD questionnaire is only one. A system with either more
users or longer observation sequences may enable the study of how other dimen-
sions not measured by the EOD questionnaire may affect the subjective “Feeling
in control”, or allow for the use of more sophisticated models than simple linear
regression. It is also highly likely that xt might not be best predicted by the
value of xt−1, but rather by some larger or even user-dependent lag, depending
on external factors like weekends, or user-specific factors like exercise routine.
The testing of this parameter is challenging at the moment because it further
decreases the amount of data available for testing the predictions over users in
Ushort, or adds more features and complexity in the context of already scarce
data. If such a large disparity did not exist between the lengths of users in Ulong

and Ushort, it would also be possible to investigate the aspects that characterise
users who transition from Ushort to Ulong.

Acknowledgements. This work was funded by the the CHRODIS PLUS Joint
Action, which has received funding from the European Union, in the framework of
the Health Programme (2014–2020).

References

1. Beyer, C., Unnikrishnan, V., Niemann, U., Matuszyk, P., Ntoutsi, E., Spiliopoulou,
M.: Exploiting entity information for stream classification over a stream of reviews.
In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp.
564–573 (2019)

2. Choi, Y.K., et al.: Smartphone applications to support sleep self-management:
review and evaluation. J. Clin. Sleep Med. 14(10), 1783–1790 (2018)

3. Csikszentmihalyi, M., Larson, R.: Validity and reliability of the experience-
sampling method. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of
Positive Psychology, pp. 35–54. Springer, Dordrecht (2014). https://doi.org/10.
1007/978-94-017-9088-8 3

4. Kraft, R., et al.: Combining mobile crowdsensing and ecological momentary assess-
ments in the healthcare domain. Front. Neurosci. 14, 164 (2020)

5. Madan, A., Cebrian, M., Lazer, D., Pentland, A.: Social sensing for epidemiological
behavior change. In: Proceedings of the 12th ACM international conference on
Ubiquitous computing, pp. 291–300 (2010)

6. Mohr, D.C., Zhang, M., Schueller, S.M.: Personal sensing: understanding mental
health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol.
13, 23–47 (2017)

7. Palivonaite, R., Ragulskis, M.: Short-term time series algebraic forecasting with
internal smoothing. Neurocomputing 127, 161–171 (2014)

8. Probst, T., et al.: Does tinnitus depend on time-of-day? An ecological momentary
assessment study with the “trackyourtinnitus” application. Front. Aging Neurosci.
9, 253 (2017)

https://doi.org/10.1007/978-94-017-9088-8_3
https://doi.org/10.1007/978-94-017-9088-8_3


Transfer Learning from Long- to Short- Sequence Users in mHealth 673

9. Pryss, R.: Mobile crowdsensing in healthcare scenarios: taxonomy, conceptual pil-
lars, smart mobile crowdsensing services. In: Baumeister, H., Montag, C. (eds.)
Digital Phenotyping and Mobile Sensing. SNPBE, pp. 221–234. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31620-4 14

10. Pryss, R., et al.: Machine learning findings on geospatial data of users from the
trackyourstress mhealth crowdsensing platform. In: 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI), pp. 350–
355. IEEE (2019)

11. Pryss, R., et al.: Prospective crowdsensing versus retrospective ratings of tinnitus
variability and tinnitus-stress associations based on the TrackYourTinnitus mobile
platform. Int. J. Data Sci. Anal. 8(4), 327–338 (2019)

12. Pryss, R., Schobel, J., Reichert, M.: Requirements for a flexible and generic
API enabling mobile crowdsensing mhealth applications. In: 2018 4th Interna-
tional Workshop on Requirements Engineering for Self-Adaptive, Collaborative,
and Cyber Physical Systems (RESACS), pp. 24–31. IEEE (2018)

13. Rajaraman, A., Ullman, J.D.: Data Mining, pp. 1–17. Cambridge University Press
(2011). https://doi.org/10.1017/CBO9781139058452.002

14. Stone, A.A., Shiffman, S.: Ecological momentary assessment (EMA) in behavorial
medicine. Ann. Behav. Med. 16, 199–202 (1994)

15. Unnikrishnan, V., et al.: Entity-level stream classification: exploiting entity simi-
larity to label the future observations referring to an entity. Int. J. Data Sci. Anal.
9(1), 1–15 (2019). https://doi.org/10.1007/s41060-019-00177-1

16. Yfantis, E., Elison, J.: Vector interpolation for time alignment in speech recog-
nition. WIT Trans. Modell. Simul. 23, 6 p. (1970). https://doi.org/10.2495/
BT990391

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-31620-4_14
https://doi.org/10.1017/CBO9781139058452.002
https://doi.org/10.1007/s41060-019-00177-1
https://doi.org/10.2495/BT990391
https://doi.org/10.2495/BT990391
http://creativecommons.org/licenses/by/4.0/

	Predicting the Health Condition of mHealth App Users with Large Differences in the Number of Recorded Observations - Where to Learn from?
	1 Introduction
	2 Related Work
	3 EMA with the TrackYourDiabetes Mobile Health App
	4 Our Method
	4.1 Core Concepts and Core Elements
	4.2 Prediction Workflows

	5 Results
	5.1 The Dataset
	5.2 Prediction Tasks and Imposed Restrictions on Training
	5.3 Learning a Predictor on Ulong: Proof-of-Concept Experiment
	5.4 Learning on Users in Ulong to Make Predictions for Users in Ushort: Transfer Learning Experiments

	6 Conclusions and Closing Remarks
	References




