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Abstract
Resting state fMRI (R-fMRI) is a powerful in-vivo tool for examining the functional architecture of the human brain. Recent
studies have demonstrated the ability to characterize transitions between functionally distinct cortical areas through the
mapping of gradients in intrinsic functional connectivity (iFC) profiles. To date, this novel approach has primarily been
applied to iFC profiles averaged across groups of individuals, or in one case, a single individual scanned multiple times.
Here, we used a publically available R-fMRI dataset, in which 30 healthy participants were scanned 10 times (10 min per
session), to investigate differences in full-brain transition profiles (i.e., gradient maps, edge maps) across individuals, and
their reliability. 10-min R-fMRI scans were sufficient to achieve high accuracies in efforts to “fingerprint” individuals based
upon full-brain transition profiles. Regarding test–retest reliability, the image-wise intraclass correlation coefficient (ICC)
was moderate, and vertex-level ICC varied depending on region; larger durations of data yielded higher reliability scores
universally. Initial application of gradient-based methodologies to a recently published dataset obtained from twins
suggested inter-individual variation in areal profiles might have genetic and familial origins. Overall, these results illustrate
the utility of gradient-based iFC approaches for studying inter-individual variation in brain function.
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Introduction
The delineation of functional brain units, commonly referred to
as cortical areas (Van Essen and Glasser 2014), is a fundamental
challenge in neuroscience. Central to such efforts, is the deter-
mination of areas of transition from one cortical area to the
next. Pioneering efforts have used a combination of histo-
logical, cytoarchitectural, and myeloarchitectural examinations

(Brodmann 1909; Vogt and Vogt 1919; Felleman and Van Essen
1991; Zilles and Amunts 2010), along with lesion studies, to dif-
ferentiate neighboring cortical territories with respect to their
architectonic, connectivity, functional and topographic proper-
ties (Felleman and Van Essen 1991; Cohen et al. 2008).
Converging evidence supports the notion that boundaries
between areas are generally sharp rather than gradual (Kaas
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1987; Amunts and Zilles 2012). A well-defined example is the
primary visual area (V1), which is clearly different and sharply
separated in cell bodies from the second visual cortex (V2)
(Sincich and Horton 2005; Buckner and Yeo 2014). Given that
these measurements are mainly based on non-human pri-
mates, postmortem examinations, or invasive recording experi-
ments, the development of methods capable of mapping
cortical areas in vivo remains an active area of research.

Cohen et al. (2008) demonstrated the ability to map transi-
tions between nearby cortical areas through the detection of
spatial variation (i.e., gradients) in intrinsic functional connect-
ivity (iFC) profiles estimated from resting-state fMRI (R-fMRI). A
number of successful applications have since emerged. At the
local level, studies have delineated transition zones between
cortical areas within key regions of interest (e.g., cingulate cor-
tex, left lateral parietal cortex, and inferior frontal cortex)
(Cohen et al. 2008; Nelson et al. 2010; Hirose et al., 2012, 2013).
At the whole brain level, Wig et al. (2014) demonstrated the
feasibility of delineating the broader range of boundaries
between cortical areas in a single analysis based upon their
gradient properties. Overall, these various studies have consist-
ently recapitulated fine-grained cortical boundaries (e.g.
between V1 and V2) previously established using histological
and cytoarchitectural methodologies (Buckner and Yeo 2014).
Additionally, recent studies demonstrated group-level transi-
tion-zone patterns to be highly reproducible across independ-
ent samples and studies (Gordon et al. 2014; Wig et al. 2014),
thereby increasing enthusiasm towards the approach.

However, with few exceptions (e.g., Cohen et al. 2008; Wig
et al. 2013; Laumann et al. 2015), studies focusing on detecting
transition zones and cortical area boundaries have primarily
relied on data averaged across dozens of individuals, or pooled
individual-level maps to achieve more robust findings (e.g., Yeo
et al. 2011; Kelly et al. 2012; Wig et al. 2014). Although effective
in reducing noise, this is problematic, as a growing literature
has suggested the presence of meaningful inter-individual vari-
ation in iFC patterns (Mueller et al. 2013), which appears to be
stable over time and can be related to differences in behavior
(e.g., Finn et al. 2015). Individual differences in areal organiza-
tion are thought to be particularly prominent in higher-order
association areas – a finding that is consistent with models sug-
gesting the evolutionary value of cortical expansion (Mueller
et al. 2013). Previous studies have suggested the potential
importance of inter-individual variation in the transition zones
or boundaries between cortical areas detected using iFC, by
relating it to differences in task-evoked activation (Mennes
et al. 2010) as well as variation in behaviorally quantifiable
traits, such as social reciprocity and personality (Di Martino
et al. 2009; Adelstein et al. 2011).

Recent work has underscored the feasibility of using iFC-
based approaches to capture areal topographies at the individ-
ual level. First, Gordon et al. (2015) characterized the areal topo-
logical features at the individual-level, demonstrating that the
areal sizes and the position of transition zones varied across
individuals. Second, Laumann et al. (2015) mapped functional
areal boundaries throughout the brain in a single human sub-
ject using a highly sampled dataset (>900min). The individual-
level architecture was broadly reflective of the universal archi-
tecture revealed in group-level analyses (Biswal et al. 2010; Wig
et al. 2014), though with distinct variations that were fine-
grained. Importantly, the areal organization was highly repeat-
able with subsets of data in this rich single subject dataset, sug-
gesting that the generation of such highly sampled datasets is
not a prerequisite for appreciating inter-individual variation.

Here, we provide a multifaceted evaluation of test–retest
reliability for transition-zones properties revealed by iFC-based
mapping approaches (i.e., the gradients measured, and the
boundaries drawn between functional areas delineated using
them). To accomplish this, we estimated functional gradients
and boundaries (i.e., edge maps) for each of 300 publicly avail-
able R-fMRI datasets (duration = 10min; standard EPI sequence;
TR = 2000ms), which were obtained from 30 participants who
were scanned 10 times within one month. First we examined
the “fingerprinting” potential of transition profiles (i.e., the abil-
ity to distinguish individuals from one another based upon their
transition profiles). This was accomplished by testing whether
the spatial correlation between any two sessions from the same
individual was consistently greater than that observed between
participants. Second, evaluated test–retest reliability for indices
of areal organization at the full-brain and vertex levels, using
image intraclass correlation coefficient (I2C2) and intraclass cor-
relation coefficient (ICC) respectively. For each of these perspec-
tives, we repeated our analyses using 10-, 20-, 30-, 40- and
50min to establish data needs to achieve moderate to high test–
retest reliability. To ensure the generalizability of our findings,
we replicate our analyses in the publicly available eNKI-TRT
dataset, which made use of a multiband R-fMRI sequence
(TR = 645ms, duration = 10min). To provide a demonstration of
the potential biological determinants of inter-individual vari-
ation in R-fMRI derived indices of areal organization, we demon-
strated potential familial or genetic associations using a recently
published R-fMRI dataset (Yang et al. 2016; Sinclair et al. 2015;
TR = 2100ms, duration = 5min) obtained from 136 pairs of twins.

Of note, while initial work has based the determination of
gradients and boundaries based upon a summary index for iFC,
a multitude of alternative indices could be used. As such, add-
itional analyses in the present work explore the similarities
and distinctions among findings obtained using alternative iFC
indices for the definition of gradients. Finally, we validated that
the transitions and boundaries are not derived by the under-
lying structural architecture by comparing the results from real
data to those from random data.

Methods
Data Acquisition

Primary analyses in the present study were carried out using
the Hangzhou Normal University (HNU) test–retest dataset
made publicly available via the Consortium for Reliability and
Reproducibility (CoRR: http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/data_citation.html) (Zuo et al. 2014). The dataset
consists of 300 R-fMRI scans, collected from 30 healthy partici-
pants (15 males, age = 24 ± 2.41 years) who were each scanned
every three days for a month (10 sessions per individual) (Chen
et al. 2015). Data were acquired at the Center for Cognition and
Brain Disorders at Hangzhou Normal University using a GE
MR750 3 Tesla scanner (GE Medical Systems, Waukesha, WI).
Each 10-min R-fMRI scan was acquired using a T2*-weighted
echo-planar imaging sequence optimized for blood oxygenation
level dependent (BOLD) contrast (EPI, TR = 2000ms, TE = 30ms,
flip angle = 90°, acquisition matrix = 64 × 64, field of
view = 220 × 220mm2, in-plane resolution = 3.4mm × 3.4mm,
43 axial 3.4-mm thick slices). A high-resolution structural
image was also acquired at each scanning session using a T1-
weighted fast spoiled gradient echo sequence (FSPGR,
TE = 3.1ms, TR = 8.1ms, TI = 450ms, flip angle = 8°, field of
view = 220 × 220mm, resolution = 1mm × 1mm × 1mm, 176
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sagittal slices). Foam padding was used to minimize head
motion. Participants were instructed to relax during the scan,
remain still with eyes open, fixate on a “+” symbol, stay awake
and not think about anything in particular. After the scans, all
participants were interviewed to confirm that none of them
had fallen asleep. Data were acquired with informed consent
and in accordance with ethical committee review.

Two additional collections were included for secondary ana-
lyses. First, the Enhanced NKI-Rockland Sample test–retest data-
set (eNKI-TRT), which is also available via CoRR (Zuo et al. 2014).
Second, a recently published twin dataset obtained as part of
the Queensland Twin Imaging (QTIM) study (de Zubicaray et al.
2008). The data acquisition and image preprocessing have been
described in previous studies (Nooner et al. 2012; Zuo et al. 2013;
Yang et al. 2016) and thus are only briefly outlined here.

The eNKI-TRT sample consists of data obtained from 22 par-
ticipants (16 males, age = 33 ± 12.24 years) who were each
scanned twice (1 week apart) at the Nathan S. Kline Institute
for Psychiatric Research (Nooner et al. 2012). Each session
includes a 10-min R-fMRI scan (multiband EPI, TE = 30ms,
TR = 645ms, flip angle = 65°, acquisition matrix = 112 × 112,
in-plane resolution = 3mm × 3mm, 64 axial 3-mm thick inter-
leaved slices, number of measurements = 404, multiband
factor = 4) and a structural MRI (MPRAGE, TE = 2.52ms,
TR = 1900ms, TI = 900ms, flip angle = 9°, resolution = 1mm ×
1mm × 1mm). Data acquisition was performed on a Siemens
3 T scanner with a 32-channel head coil located at NKI.

The QTIM study consists of data obtained from 200 twin
pairs, including 86 monozygotic (MZ) and 114 dizygotic (DZ)
twin pairs using a 4 T Bruker Medspec scanner (Bruker
Medical). For each participant, the data consisted of 150
volumes of T2*-weighted BOLD contrast (EPI, TR = 2100ms,
TE = 30ms, flip angle = 90, acquisition matrix = 64 × 64, field of
view = 230mm, 36 axial 3.6-mm thick slices). High-resolution
T1-weighted images were also acquired (MPRAGE, TE = 3.83ms,
TR = 2500ms, TI = 1500ms, flip angle = 15°, slice thickness = 0.9
mm, acquisition matrix = 256 × 256 × 256).

Image Preprocessing

All data were processed using the Connectome Computation
System (CCS) (https://github.com/zuoxinian/CCS), which pro-
vides a platform for multimodal image analysis by combining
components of AFNI (Cox 1996), FSL (Smith et al. 2004;
Jenkinson et al. 2012), FreeSurfer (Dale et al. 1999; Fischl et al.
1999a), and SPM (http://www.fil.ion.ucl.ac.uk/spm). The CCS
includes various implementations of quality control, surface-
based R-fMRI measures, reliability and reproducibility assess-
ments (Xu et al. 2015). Below summarize the structural and
functional steps of the analyses employed.

Structural MRI preprocessing included spatial noise removal
by a non-local mean filtering operation (Xing et al. 2011; Zuo
and Xing 2011), followed by brain extraction, tissue segmenta-
tion, and surface reconstruction, as implemented in the stand-
ard recon-all processing pipeline in FreeSurfer 5.1 (http://
freesurfer.net/fswiki). Tissue segmentation resulted in gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
masks for each hemisphere. For each participant, triangular
meshes representing white matter and pial surfaces were
reconstructed by tessellating the GM-WM and GM-CSF inter-
faces, and averaging the surfaces (white matter, pial) to create
a middle cortical surface (Dale et al. 1999; Fischl et al. 1999a).
The resulting surface in native space was then inflated into a
sphere for alignment to the fsaverage template by shape-based

spherical registration (Fischl et al. 1999b). Following calculation
of the transform for registration to the fsaverage, which has
164 000 vertices, we then down-sampled the surface to a
representation with 10 242 vertices (fsaverage5) to ensure com-
putational feasibility of the functional analyses to be performed
in the present work. Quality control was carried out using a ser-
ies of screenshots generated by CCS to facilitate visual inspec-
tion of the outputs from essential processing procedures. In
particular, for the preprocessing of a given structural MR image
to be considered valid, the outputs of the following steps had to
pass inspection: brain extraction, tissue segmentation, surface
reconstruction, co-registration and normalization.

Functional preprocessing included: discarding the first five
volumes of the R-fMRI time series and storing all images as
double precision floating point numbers (to reduce variability
of outcomes across operating systems, see Glatard et al. 2015),
detecting and compressing temporal spikes (AFNI 3dDespike),
slice timing correction (this was not performed for multiband
images), motion correction (3DVolReg), and 4D intensity nor-
malization to 10 000. Nuisance variable regression (Fox et al.
2005; Lund et al. 2006) was performed to remove the mean time
series for individual-specific WM and CSF masks (derived from
the FreeSurfer segmentation), as well as 24 motion parameters
(Friston et al. 1996; Yan et al. 2013); linear and quadratic trends
were also removed from the data. The time series residuals
were band-passed filtered (0.01–0.1 Hz) to restrict the signals to
those frequencies previously implicated in resting state func-
tional connectivity (Biswal et al. 1995; Cordes et al. 2001).
Functional images were co-registered to the native high-
resolution anatomical images using 6-parameter boundary-
based registration (BBR) in FreeSurfer (Greve and Fischl 2009).

Quality Control Procedure

Following functional preprocessing, the frame-wise displace-
ment (FD) and mean FD were calculated to quantify the head
micromovements (Power et al. 2012, 2014; Patriat et al. 2013).
Any scans with mean FD greater than 0.2mm were excluded
from our analysis. For the test–retest HNU dataset employed in
our primary analyses, mean-FD was less than 0.2mm for all
300 scans (mean = 0.057, SD = 0.019). In addition, the percent-
age of excessive motion frames (FD > 0.2mm) for each of the
scans was found to be less than 1%.

For the eNKI-TRT, 20 participants (age = 33.40 [SD = 12.58],
14 male) passed our criteria (mean FD < 0.2mm) and were
included in the current studies (mean = 0.107, SD = 0.036). For
the QTIM twin dataset, 379 of 400 participants passed the head
motion criterion (mean FD < 0.2mm). Given that previous stud-
ies have raised concerns about the potential contributions from
gender difference in brain structure (e.g. cortical area, thick-
ness, gyrification, etc.) and head motion (Schmitt et al. 2007;
Chen et al. 2013; McKay et al. 2014; Docherty et al. 2015) to find-
ings in twin studies, Yang et al. (2016) included only same sex
adult twin pairs in which both twins exhibited low motion
(mean FD < 0.2mm). We used the same criteria and resulting
participant list in the present work. This resulted in inclusion
of 272 participants (age = 22.12 [SD = 2.35], 68 male), consisting
of 78 MZ twin pairs and 58 DZ twin pairs in our analysis. These
criteria controlled the potential heritability of the head motion
and spatial information; no significant differences between MZ
and DZ pairs were found in the mean FD (p = 0.52); only a non-
significant trend was noted between MZ and DZ pairs with
respect to the level of spatial correlation for anatomical images
in MNI space (p = 0.08).
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Computation of iFC Metrics on Native Surface

There are several advantages for analyzing fMRI data on the
surface rather than in volume space. A cortical sheet provides a
more accurate representation of the morphology and topology
of brain structure (Dale et al. 1999). It provides a more accurate
registration between individual data and the template surface
(Van Essen 2004; Ghosh et al. 2010; Klein et al. 2010; Yeo et al.
2010). Also, it enables the visualization of spatial relationships
between brain regions in terms of their geodesic distances
along the cortical surface, which is more neurobiologically
meaningful than 3D Euclidean distance in volume space. In
light of these putative benefits, all functional indices in the pre-
sent study were calculated on the surface. First, the volumetric
fMRI data were aligned to anatomical space using the BBR
transformation matrix and then projected to their correspond-
ing native middle cortical surface (about 160 k vertices for each
hemisphere). To make the resolution comparable between the
volumetric and surface data, a coarser fsaverage5 template sur-
face was used (the average triangle edge length between adja-
cent vertices of fsaverage5 is about 3.5mm) for computing
functional metrics. The transformation calculated during
spherical registration was applied to the fsaverage5 template to
convert it into a standard mesh of the native surface, for which
each node has a direct correspondence with a node on the
fsaverage5 surface (Van Essen et al. 2012b). The standard mesh
was calculated by interpolating the native surface to a trans-
formed version of the fsaverage5 template in native space.

Consistent with previous studies of connectivity gradients, iFC
similarity was measured by the spatial similarity between whole
brain functional connectivity maps calculated from a seed vertex
and those calculated from every other voxel‘s time courses (Cohen
et al. 2008; Wig et al. 2011, 2014). Specifically, for each individual,
the time course for each vertex was extracted and used to calcu-
late a whole brain functional connectivity profile that consists of
20 484 vertices (10 242 for each hemisphere) of cerebral graymatter
and 9413 voxels in subcortical regions and the cerebellum. The dis-
tributions of the resulting correlation values were standardized to
the normal distribution using Fisher‘s r-to-z transform. For each
hemisphere, an iFC similarity map was measured for each vertex
by calculating the spatial correlation between the vertex‘s iFC pro-
file and the iFC profile of every other vertex – resulting in a 10 242
vertices × 10 242 vertices symmetric matrix. Each column (or row)
of this matrix represents the vectorized iFC similarity map for
each surface vertex. These 10k iFC similarity maps were then
smoothed along the native surface with a Gaussian Kernel
(FWHM = 8mm, about twice that of the surface resolution
[~3.5mm], see Supplementary Figure S1–2 to address the smooth-
ness effect). The gradient (i.e., the first spatial derivative) of each
smoothed iFC similarity map was computed on the native middle
surface tomeasure transitions in iFC profile across vertices, result-
ing in 10k gradient maps for each hemisphere. The details of the
gradient computation are described in the next section.

Beyond iFC similarity, we adopted three additional func-
tional indices that capture local-, global- and network-scale
aspects of intrinsic brain function, respectively, and can each
be used to generate gradient maps (independent of iFC similar-
ity). Two-dimensional Regional Homogeneity (2dReHo) was
employed as a local-level measure of iFC that characterizes the
temporal synchronization of the BOLD signal at each vertex
across the cortical mantle (Zang et al. 2004; Zuo et al. 2013;
Jiang et al. 2014; Jiang and Zuo 2015). For each vertex, ReHo was
defined by the Kendall‘s coefficient of concordance of the time
series within the given vertex and its one-step neighboring

vertices. The preprocessed R-fMRI data for ReHo calculation
was not spatially filtered, but temporally band-pass filtered to
avoid artificial increases of ReHo intensity (Zuo et al. 2013).

The network-scale measurement of iFC was captured using a
dual regression (DR) procedure to map 10 intrinsic connectivity
networks previously defined from a meta-analysis of activations
from the BrainAtlas database (Smith et al. 2009). These networks
includes Medial Visual network (DR-MedVis), Occipital Visual
network (DR-OccVis), Lateral Visual network (DR-LatVis), Default
Mode network (DR-DMN), Cerebellar network (DR-Cerebellar),
Sensorimotor network (DR-SenMot), Auditory network (DR-
Audi), Executive Control network (DR-Control), Left
Frontoparietal network (DR-FrontL), and Right Frontoparietal
network (DR-FrontR). The spatial network maps were conducted
in the first regression on normalized R-fMRI data in MNI152
space to generate the characteristic time series of 10 networks
for each individual. The resultant characteristic time series were
further entered into the second regression to yield the spatial
map of 10 networks on cortical surface in individual level.

At the full-brain scale, Degree centrality (DC) and
Eigenvector centrality (EC) were employed to capture features
of iFC as a whole (i.e., full-brain connectivity patterns)
(Bullmore and Sporns 2009; Rubinov and Sporns 2010; Zuo et al.
2012). Specifically, a pair-wise iFC matrix was calculated for all
possible pairings of vertices on the cortical surface using
Pearson‘s correlation. We then thresholded and binarized the
full brain iFC matrix at p(r)< 0.001.

Transition Zones, Boundaries and Parcellation

Gradients were calculated on the convoluted (i.e., not flattened)
standardized native surface mesh, followed by an edge detection
procedure that sharpened the gradients to identify putative
boundaries. The initial framework for gradient mapping follows
the Canny edge detection procedure (Canny 1986) and involves
three steps: (1) each vertex‘s iFC connectivity profile is smoothed
with a 2D Gaussian filter to reduce noise, (2) a gradient map is
calculated for each vertex‘s smoothed profile to identify regions
of rapidly changing IFC profiles, and (3) performing edge detec-
tion by finding local maxima in the gradient maps. Cohen et al.
(2008) first applied Canny edge detection to iFC similarity profiles
calculated from data projected onto flattened surfaces.
Flattening the cortical surface requires it to be cut in five places;
findings associated with edges near these cuts are prone to arti-
fact and are thus difficult to interpret. To avoid this issue, Wig
et al. (2013, 2014) extended the method to un-flattened surfaces
by performing all three steps (smoothing, gradient computation,
edge detection) on the middle cortical surface (mid-way between
white matter and pial surfaces). The major challenge of this
approach is that the gradient calculation must account for the
curvature of the cortical surface. This was handled by calculating
the gradient of each vertex on a plane perpendicular to the sur-
face normal vector extending from that vertex (Caret 5.65 “met-
ric-gradient” function http://brainvis.wustl.edu/wiki/index.php/
Caret:About). The gradient is calculated by solving a linear model
relating the geodesic distances between the vertex and its near-
est neighbors to differences in their image intensity. The magni-
tude of the resulting gradient is the change of image intensity
per unit distance. Here, the intensity image is a functional fea-
ture of the cortical surface described in the above section, includ-
ing iFC similarity, ReHo, DC, EC and DR-Networks. The gradients
were calculated for each of these functional indices to detect
abrupt changes at the local, global, and network scales.
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Finally, the parcels and corresponding edges were identified
from the resulting gradient maps using a “watershed by flood-
ing” algorithm (Gordon et al. 2014). This algorithm identifies the
local minima on a gradient map as starter seeds for parcel cre-
ation, and then gradually grows the seeds outward until they
meet another parcel. The barriers built in this procedure for sep-
arating parcels are identified as edges. With the exception of iFC
similarity, an individual-specific binary edge map was generated
for each gradient map (ReHo, DC, EC, and DR-networks).

For the iFC similarity map, a more complex set of procedures
is carried out, generating an edge density map for each individ-
ual, rather than a simple binary edge map. Specifically, for each
vertex, a gradient map was calculated, as well as a correspond-
ing edge map using the watershed algorithm – resulting in 10k
gradient/edge maps for each hemisphere. For each individual,
the 10k gradient/edge maps were then averaged to generate a
final gradient map and an edge density map. While an edge
density map can be more preferable depending on the specific
application, it is also possible to generate a binary map by apply-
ing the same watershed algorithm to the edge density map.

To make the resultant maps from ReHo, DC, EC and DR-
networks more comparable to those iFC similarity, we created
edge density maps for these R-fMRI measures by bootstrapping.
Specifically, we generated alternative observations of the data
using circular block bootstrap to ensure the temporal dependen-
cies of R-fMRI data (Bellec et al. 2006, 2010). The procedure conca-
tenated temporal blocks of original data (block length = the square
root of the number of total time points) to form a time series with
same temporal points as the original. Each temporal block was
randomly extracted from the original time series with replace-
ment.We utilized 100 bootstraps to yield 100 edgemaps. The final
edge densitymaps were calculated by averaging 100 bootstrapped
binary edgemaps for ReHo, DC, EC and DR-networks.

For each of the R-fMRI measures (iFC similiarity, ReHo, DC,
EC, DR-networks), the resulting discrete parcels were assigned
to large-scale system networks driven using group-averaged
parcellation generated by Gordon et al. (2015). The assignment
procedures are described in the next section.

Network Systems Assignment

Recent studies have demonstrated that the network structures
of parcellation in individuals were similar to the group averaged
system (Gordon et al. 2015; Laumann et al. 2015). To character-
ize large-scale systems for each edge map generated in the pre-
sent work, we assigned system identity to parcels created in the
above procedure using the previously established network defi-
nitions from Gordon et al. (2014). The matching procedure was
modified based on Gordon et al. (2015). Specifically, we first
detected the vertex with local minimal edge density for each
discrete parcels. Then we averaged that time series with the
time series of its one-step neighbors within that parcel. The
averaged time series was considered as a representative time
series of the chosen parcel, and correlated against all other time
series across the cortical surface to obtain a connectivity map.
After that, we thresholded and binarized the connectivity map
at the top 5% of connectivity strengths. This resulted in a binar-
ized map of regions with high connectivity to that local minimal
vertex. Then we measured the overlap of this binarized map to
the 12 network maps from Gordon, the best match network
with highest Dice similarity was assigned to that vertex and its
representative parcels. Consistent with prior work, the neigh-
boring parcels with the same network identifier were merged
together to create a “network-patch”.

Estimating Intra-, Inter-Individual Variability and Intra-
Class Correlation

Intra- and inter-individual variability were simultaneously esti-
mated using separate Linear Mixed Effects Models (LMEs) for
gradient and edge density maps. The gradient or edge density
for a given vertex v can be denoted as ( )Y vij , where i indicates
the participant and j represents the measurement (for i= 1, 2,…,
30 and j= 1, 2).

μ γ

ϵ

( ) = ( ) + ( ) + + + +

+ + ( ) + ( ) ( )

Y v v v mY meanFD mcBBR age

gender Jacobian v v 1.1

ij i ij ij ij i

i i ij

00 0

In this model, μ ( )v00 is a constant term that represents the
intercept or fixed effect of the group average in gradient/edges
at vertex v, while γ ( )vi0 is the random effect term for ith partici-
pant at vertex v. Due to the potential influence of various con-
founding factors to our final estimation, we included several
covariates in this mixed model at both the session and individ-
ual level. At the session level j, the model included three cov-
ariates: the mean frame-wise displacement (meanFDij) of head
motion, minimum cost of BBR (mcBBRij), and the global mean of
gradients/edges across the whole brain within group mask
(mYij) for each participant i. At the individual level, agei, genderi
and Jacobian determinant of the spherical transformation
( ( )Jacobian vi at vertex v) were included for each participant i as
well. The model estimations were implemented using the lme
function from the nlme R package (http://cran.r-project.org/
web/packages/nlme). The variance estimation σγ

2 of the random
effect term γi0(v) is the inter-individual variance across all the
participants, while the variance σϵ

2 of the residual ϵij is the
intra-individual variance for a single participant across all the
sessions. Meanwhile, the intra-class correlation (ICC) was cal-
culated by dividing inter-individual variance to the sum of
inter- and intra-individual variance.

Surface Geometry Constraints Testing

To determine whether transition zones and detected boundar-
ies could have arisen from the surface geometry, we replicated
the boundary mapping analyses using surrogate data.
Specifically, for each participant, we replaced the preprocessed
R-fMRI data with temporal Gaussian random data (mean = 0,
standard deviation = 1, the same number of time points as the
original data) in native functional volume space. The surrogate
data were then projected onto the participant‘s native middle
surface, registered and down resampled to “fsaverage5” version
of native surface using the same co-registration and spherical
registration transformation calculated during processing of the
real data. The functional measures (iFC similarity) were com-
puted, followed by gradient computation and edge detection
using the same procedure and registration transformations
used for the real data. The gradient and boundaries maps from
this surrogate data were compared with the results from real
data to investigate whether surface geometry and registration
errors would contribute to the functional areal organization
detected.

Results
Boundary Map Characteristics

For each of the 300 scans (30 participants, 10 sessions each)
from the HNU data collection, a gradient map and a corre-
sponding edge map were generated. This was accomplished
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using the gradient-based boundary mapping approach and iFC
similarity measure specified by Wig et al. (2014), though at the
individual level. Specifically, for each individual, the maps
generated were averages of those calculated for each of the
20k vertices (10k per hemisphere). Prior to examining differ-
ences among participant-specific maps, individual level maps
were averaged to generate a group-level gradient map that
was strikingly similar to those previously published by Wig
et al. (2014) and Gordon et al. (2014) (Fig. 1A). To measure the
similarity of our group map versus previous work, we calcu-
lated the percentile of the group-level gradient scores for the
vertices that were identified as brain systems boundaries in
Gordon et al. (2014). The median percentile of gradient within
Gordon’s system boundaries was 70.62%. The group-level edge
density map was also similar to those previously published,
though somewhat less comparable (the median percentile of
edge density was 63.79% within Gordon’s boundaries); this
was largely due to the fact that we calculated the edge maps
on individual participants prior to averaging, as opposed to
group-average maps (e.g., Gordon et al. calculated an edge
map for each vertex using the group-level gradient map, and
then averaged across edge maps). The latter approach
averages out the contributions of individual variation in the
gradients prior to the generation of the edge maps (see

supplementary materials Figure S3 for a direct comparison of
the two approaches from prior methodological testing by our
group using the QTIM dataset).

High Reproducibility of Individual Areal Boundaries
(Fingerprinting)

For both gradient maps and edge maps, we next investigated
the similarity of the maps generated across individuals and
time (i.e., scan sessions). In order to accomplish this, we calcu-
lated the spatial correlation between the 300 gradient maps
generated (30 participants * 10 sessions), as well as between
the 300 edge maps. Figure 1B demonstrates the spatial correl-
ation matrix obtained for gradients (upper panel) and edge
maps (lower panel). Regardless of participant, the correlations
between different scan sessions (gradient: mean r = 0.609
(SD = 0.110); edge: mean r = 0.450 (SD = 0.093)) are notably
greater than those between participants (gradient: mean
r = 0.318 (SD = 0.078); edge: mean r = 0.123 (SD = 0.037)). To
facilitate appreciation of this point, the correlation matrix is
ordered by participant (i.e., first 10 rows belong to participant
1, second 10 rows belong to participant two, and so on). As can
be seen in Figure 1C, the distribution of between-individual
correlation scores for gradient maps overlap minimally with

Figure 1. Individual areal organization is unique to each individual and highly repeatable across scan sessions. (A) Group-level gradient and edge density maps for

iFC similarity. The individual maps were calculated on the standardized “fsaverage5” version of native surface for each individual, then averaged and visualized here

on the “fsaverage5” template surface. (B) Between-scan spatial correlation matrices for the gradient (top) and edge density (bottom) maps derived from the 300 data-

sets (30 participants * 10 sessions); the rows/columns of the matrix are ordered by participant (i.e., first ten rows are sessions 1–10 for participant one, second ten

rows are sessions 1–10 for participant two and so on; total number of participants = 30). (C) Distribution of between-scan spatial correlations (from B). Black dots are

the within-individual (i.e., same participant, different sessions) correlations for gradient (top) and edge density maps (down), while the gray dots are between-

individual correlations (i.e., different participants, same session, or different participants, different sessions).
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that for within-individual; the correct identification rate (cal-
culated as the percent of within-individual correlations
exceeding between-individual correlations) was 90.44% (1221
in total 1350 within-individual correlations of 300 scans
exceeded any between-individual correlations); For edge
maps, fewer overlaps were present for within- and between-
individual correlations, resulting in a 99.26% correct identifica-
tion rate. These findings suggest that the full-brain areal
transition characteristics indexed by gradient and edge mea-
sures are unique to each individual, and repeatable across
scan sessions.

Figure 2 depicts data from multiple 10-min sessions for
three representative participants to provide illustrative exam-
ples of distinct patterns associated with each participant, as
well as their repeatability. The distribution of within- and
between- individual spatial correlations for each individual was
plotted in Figure S4. We further examined whether the within-
individual spatial correlations were related to age, gender, head
motion or the functional-to-structural co-registration. We did
not find any significant relationships between the mean or
standard deviation of within-individual correlations and the
factors listed above.

We replicated the general pattern of findings in another
independent R-fMRI dataset (eNKI-TRT data collection: 20 parti-
cipants * 2 sessions, multiband EPI sequence TR = 645ms).

Specifically, we again observed substantially higher within-
individual correlations (gradient: mean r = 0.56 (SD = 0.159);
edge: mean r = 0.364 (SD = 0.095)) than between-individual cor-
relations (gradient: mean r = 0.219 (SD = 0.129); edge: r = 0.075
(SD = 0.032)).

High Reproducibility of Individual Networks

Using Dice Similarity, we assessed the within- and between-
individual reproducibility of the patches associated with each
of the 12 networks defined by Gordon et al. (2014). Five of the 12
networks (visual, auditory, dorsal sensorimotor, ventral sen-
sorimotor, default) exhibited relatively high reproducibility
across both sessions and individuals (i.e., average pairwise Dice
Similarity > 0.5) (see Fig. 3) – suggesting a relatively conserved
architecture for these networks.

Of note, for 11 of the 12 networks, within-individual similar-
ity was found to be greater than between-individual similarity
(Fig. 3) – suggesting that despite similarities, consistent inter-
individual differences exist. The salience network was the not-
able exception. This network could not be successfully
assigned, largely due to the small size of the patches compris-
ing the salience network and their spatial variation in
individuals.

Figure 2. Examples of gradient and edge density of iFC similarity in 3 individual participants. Left three columns are gradients from three sessions and right two col-

umns are gradients from two 50-min subsets. To facilitate comparison, for each participant we mark off (using colored boxes) an example of a feature that differs

across participants and is relatively consistent within individual.
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Individual Areal Boundaries Have Familial and Genetic
Associations

To demonstrate the feasibility of relating measures of similar-
ity for areal organizations to known sources of inter-individual
or phenotypic or biological variation, we made use of the
R-fMRI dataset (Yang et al. 2016) generated as part of QTIM (de
Zubicaray et al. 2008). Specifically, we examined whether inter-
individual differences in full-brain areal measures (gradient
maps, edge maps) could be related to familial (i.e., sibling vs.
non-sibling pair) or genetic (monozygotic twins vs. dizygotic
twins) relationships. To accomplish this, for every pairing of
individuals in the sample, we calculated the spatial correlation
between the iFC similarity-based gradients maps, as well as for
the edge maps. Our a priori predictions were that gradient/edge
maps would be more similar among siblings than non-siblings,

and more similar among monozygotic twin pairs than dizygotic
twin pairs. As expected, the correlation between siblings was
significantly higher than non-siblings (gradient: p< 10–23; edge
map: p< 10–50) (see Fig. 4). The correlation between MZ pairs
was significantly higher than DZ pairs for edge maps (p = 0.002),
and marginally significant for gradient maps (p = 0.075).

Given that a trend was found between MZ and DZ pairs with
respect to the level of spatial similarity for anatomical images
(p = 0.08), we further tested whether the observed heritable
functional transitional profiles could have been confounded by
structural information. However, we did not find any significant
correlations between similarity of structure and gradient/edges
in twin pairs (all p> 0.3). The significance comparisons between
MZ and DZ pairs showed almost identical p-values after being
controlled for structural similarity (gradient: p = 0.072, edge:
p = 0.002).

Figure 3. The reproducibility of system-matched patches across 10 sessions and 30 participants. The color-coded bars indicate Dice similarity of system patches

(mean and standard deviation) for within and between individual at each system network.

Figure 4. Spatial correlations of gradients and edge density in iFC similarity between MZ, DZ, and unrelated pairs. Blue lines are the mean correlation across MZ pairs

for gradient (A) and edge density (B) maps. Red lines are the mean correlation across DZ pairs for gradient (A) and edge density (B). Green lines are the mean correl-

ation across all unrelated pairs of QTIM dataset for gradient (A) and edge density (B).
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Data Requirements for Mapping Inter-Individual
Differences in Areal Organization

Recent work has emphasized the value of using longer data
acquisitions (or combinations of shorter ones) to increase the
stability of estimates of functional connectivity. In particular,
using a correlation matrix based on 380min of data from a sin-
gle participant as a reference, Laumann et al. (2015) found that
the consistency of parcel-based full-brain correlation matrix
estimates (with respect to the reference) increased substan-
tially until 27min of data were included; at this point, gains
were notably more modest, with estimates nearing an asymp-
tote at 90min. In the present work, we attempted to further
inform this issue by examining the stability of gradient and
edge maps, as data is added in 10-min increments. More specif-
ically, first, for each participant, we randomly selected 5 of the
10 sessions and used their data to derive reference gradient
and edge maps. Then, for each participant, we randomly
selected samples of 10, 20, 30, and 40min of data from the
remaining five 10-min sessions, for spatial correlation of the
resultant gradient/edge maps with the same participant‘s
50-min reference maps.

Regardless of whether 10, 20, 30, 40 or 50min of data were
used, the resultant gradient or edge map for an individual con-
sistently showed a higher spatial correlation with the reference
map calculated for the same participant, than with the refer-
ence map for any other participant. In other words, for all parti-
cipants, one could readily distinguish whether the map derived

was properly matched with that from the same participant as
opposed to different participants. The distribution of the spatial
correlations to the reference gradient or edge map is demon-
strated in Figure 5.

It is important to note that the consistency of findings
obtained across the various quantities of data should not be
taken to infer that there were no differences. Consistent with
predictions based upon prior work, across participants, each
10-min increment in data produced an incremental increase
in the mean correlation with the reference images – for both
gradient and edge maps (Fig. 5A). Focusing first on gradient
maps, we found that the average within-participant correl-
ation between the map generated from a single scan session
(10min, 295 time points) and an individual‘s reference image
was r = 0.70 (SD = 0.08); this progressively increased to a high
of r = 0.86 (SD = 0.05) when data from five sessions (50min,
1475 time points) was used (Fig. 5B, upper). Statistical testing
found that the observed increase was significant for each
10-min increment (p < 0.001), except for the 20- to 30-min
increment (p = 0.108). For edge density, we found that the
average within-participant correlation between the map gen-
erated from a single scan session and an individuals’ refer-
ence image was r = 0.44 (SD = 0.06); this progressively
increased to a high of r = 0.68 (SD = 0.07) with 50min (1475
time points) (Fig. 5B, lower). Statistical testing found that
increases in correlation for each 10-min increment were sig-
nificant (all p < 0.001).

Figure 5. The stability of individual gradient and edge maps as a function of the amount of data used for gradient estimation. (A) Each dotted-line represents a differ-

ent participant; the spatial correlation between maps generated from each incremental amount of data (10, 20, 30, 40 and 50min) and those from the remaining

50min session data (reference) are depicted (top: gradient; bottom: edge density). Red dots are the mean correlation across participants at each data subsets (B) The

distribution of within-individual correlations (black dots) and between-individual correlations (gray dots) at selected data subsets to the 50-min references for each

individuals.
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To gain greater insights into the influence of scan time in
terms of test–retest reliability, we calculated the ICC of gradient
and edge density maps for each of the scan durations of
10min, 20min, 30min, 40min and 50min. This was accom-
plished by randomly selecting 1, 2, 3, 4, or 5 10-min sessions of
the 10 available sessions for each participant (i.e., 10, 20, 30, 40
or 50min of data, respectively). As shown in Figure 6, as a
measure of functional local transition, the gradient of iFC simi-
larity achieved good test–retest reliability (ICC > 0.5 for over
50% vertices across cortex) with a scan duration of 20min,
which is consistent with prior work (Laumann et al. 2015). A
relationship was observed between gradient strength and ICC
across vertices (see Supplementary Figure S5).

To provide a single measure of reliability, we complemen-
ted the spatial correlation-based measures of repeatability
with image intra-class correlation coefficient (I2C2) (Shou
et al. 2013). The I2C2 was increased with scan time for gradi-
ent (10min: 0.42, 20-min: 0.54, 30-min: 0.61, 40-min: 0.67, 50-
min: 0.73) and edge density (10min: 0.35, 20-min: 0.48, 30-min:
0.55, 40-min: 0.61, 50-min: 0.65). In addition, we replicated the
I2C2 findings in eNKI test–retest dataset (multiband EPI
sequence TR = 645ms, 10min, 895 time points). The I2C2 was
nearly identical to that observed for the 10-min HNU dataset
(0.49 for gradient and 0.34 for edge density). However, the dis-
tributions of vertex-wise ICC values for gradient and edge
maps derived from the eNKI-TRT were superior to those
observed for the 10-min HNU scans (gradient maps: mean ICC
[eNKI-TRT] = 0.40 [SD = 0.22], mean ICC [HNU] = 0.37
[SD = 0.18]; edge density: mean ICC [eNKI-TRT] = 0.30
[SD = 0.21], mean ICC [HNU] = 0.32 [SD = 0.18]); see
supplementary Figure S6.

Within- and Between-Individual Variability

It is generally accepted that anatomical components of higher
order association areas tend to have greater anatomical vari-
ability among individuals than those comprising lower-order
sensory and motor areas (Mueller et al. 2013). To gain similar
insights into potential regional variation in areal organization,
we examined the within- and between-participant variation
separately. Figure 7A and B depicts the percentage of the total
variability that is the intra- vs. inter-individual variability (after
accounting for that attributable to nuisance signals) for each,
gradient maps and edge maps. Intra-individual variability
indexes the temporal stability of transition scores within par-
ticipant while inter-individual variability indexes the stability
of transition scores across the participants. Both intra- and
inter-individual variability demonstrated a non-uniform distri-
bution across brain regions. For both gradients and edges,
between-individual differences were largest in high-order asso-
ciation cortex including the lateral prefrontal lobe, lateral par-
ietal lobe, and around the border of the PCC-precuneus default
mode networks, while lower in sensory-motor cortices and
medial occipital visual cortices. Within-individual variability
depicted the complementary pattern from inter-individual vari-
ance, with the maximal variation of gradient and edges being
noted within sensory-motor and visual regions. Regions within
the default-mode network demonstrated a moderate level of
within-individual variability.

To provide a network-level perspective of intra-individual
variations in gradient and edge densities we made use of the
confidence maps for the 7 networks in Yeo et al. (2011) (note: we
used the Yeo et al. (2011) network definitions rather than those

Figure 6. The influences of scan time on test–retest reliability of gradient and edge density of iFC similarity. The reliability of gradient and edge density were esti-

mated as intra-class correlation maps for each of the scan durations of 10min, 20min, 30min, 40min and 50min (top panel). To access the influences of scan dura-

tions on the ICC distribution, the histograms of ICC scores are plotted for each scan of the durations in the bottom.
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of Smith et al. (2009) networks due to: (a) the lack of confidence
maps, and (b) overlaps that occur among the network maps
when transformed into surface space). Specifically, the standard
deviations were averaged at network borders (defined as confi-
dence < 0.3 along the network borders) and within network
region (defined as confidence >=0.3 within each network).
Without exceptions, the between-individual differences contrib-
uted more than 60% of the variance in transitions at the border
region of 7 networks (Fig. 7C). For the within network regions,
the between-individual differences still accounted for more
variance than within-individual differences, however, the soma-
tomotor and visual networks exhibited increases of within-
individual variation to 45% and 46%, respectively (Fig. 7C). This
suggested the spatial iFC profile in the somatomotor and visual
networks were more state dependent than the other networks.
This finding is consistent with those of Mennes et al. (2010),
Craddock et al. (2013), and Laumann et al. (2015).

Transition Pattern Based on Local-, Global, and
Network-Scale iFC

Previous studies using stimulus-based functional neuroimaging
methods have suggested that areal discrimination maps could
vary depending on the specific property or properties used in
their definition, e.g. angular and eccentricity representation
maps for distinct areas of early visual cortex (Wandell and
Winawer 2011; Buckner and Yeo 2014). Here, we examined
whether transition patterns are dependent upon the specific
intrinsic brain measure used for their definition. Specifically, we
repeated our analyses focused on the definition of gradient and
edge maps using commonly examined measures in the litera-
ture (i.e., ReHo, DC, EC, and DR-Networks). We then measured

the convergence of transition patterns for both gradients and
edge density from iFC similarity, ReHo, DC, EC and DR-
Networks. Figure 8 demonstrates the average pair-wise correla-
tions of gradient between all functional metrics. Among all the
metrics, the centrality maps (DC and EC) showed the most
remarkably similar transition scores (r = 0.94, SD = 0.03). Edge
density of iFC similarity exhibited low correlation with ReHo
(mean r = 0.11, SD = 0.08) but had notable correlations with DC
(mean r = 0.30, SD = 0.19), EC (mean r = 0.45, SD = 0.18), DR-
MedVis (mean r = 0.26, SD = 0.15), DR-OccVis (mean r = 0.25,
SD = 0.13), DR-LatVis (mean r = 0.43, SD = 0.14), DR-DMN (mean
r = 0.60, SD = 0.11), DR-Cerebral (mean r = 0.32, SD = 0.13), DR-
SenMot (mean r = 0.64, SD = 0.10), DR-Auditory (r = 0.61,
SD = 0.12), DR-Control (r = 0.47, SD = 0.12), Dr-FrontL (r = 0.49,
SD = 0.08), and DR-FrontR (mean r = 0.51, SD = 0.10). These find-
ings are more reflective of global- and network-level iFC charac-
teristics, than local features (Fig. 8). The Kendall Coefficient of
edge density for all the functional indices was 0.29, SD = 0.05.
Similar finding were observed for edge density (Figure S7).

Within- Versus Between-individual Variance of
Transition Pattern based on Local-, Global, and
Network-Scale iFC

Reminiscent of the finding for iFC similarity above, for all the
functional metrics, gradient (and edge) maps calculated from dif-
ferent sessions in the same individual exhibited a consistently
higher amount of spatial correlation with one another than those
from differing individuals (Figure S8). However, with the excep-
tions of ReHo, DR-DMN, and DR-FrontL, the spatial correlation of
gradient and edge maps generated in different sessions for an

Figure 7. Within- and between-individual variability for gradient and edge density maps based on iFC similarity. (A) The percentage of within individual variation

(relative to total variation) in gradients (top) and edge density (down) scores (based on IFC similarity) across sessions. (B) The percentage of between individual vari-

ation in gradient (top) and edge density (down) scores (based on iFC similarity). (C) Within- and between- individual variation (standard deviation) at network borders

(defined as confidence <0.3 along the network borders) and within network region (defined as confidence > = 0.3 within each network). The limbic network was not

included here due to the substantial signal loss in temporal areas.
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individual were generally lower than iFC similarity. Those mea-
sures characterized by a higher between-participant correlation
in gradient or edge maps, typically exhibited a higher within-
individual correlation (i.e., repeatability) over time. Given that the
gradient of iFC similarity was averaged from 20k gradient maps
across vertices, this may in part reflect the cleaning of data
within an individual by averaging.

Reliability of Transition Properties based on Local-,
Global, and Network-Scale iFC

While our analyses primarily focused on full-brain transition
patterns, we did take the opportunity to provide insights into
the test–retest reliability of vertex-based gradient and edge
map scores. Specifically, we calculated vertex-wise intra-class
correlation coefficients for each, gradients and edges, using
the two 50-min subsets. Gradients in iFC similarity showed
considerably high reliability across cortex, especially in PCC-
DMN, LP-DMN, and frontoparietal association cortex (Fig. 9).
The pattern was more apparent in reliability of edge maps
(Figure S9). Intriguingly, highly reliable edges were found
around the borders of the PCC-DMN, LP-DMN, and the

frontoparietal regions, which were observed as a common
transition zones in variant iFC metrics. Among different func-
tional indices, ReHo exhibited the highest ICC in transition
scores. The intra- and inter-individual variation analysis con-
firmed that high ICC of ReHo was due to the considerably
small amount of intra-individual variation. For DR networks,
the ICC of gradient and edge scores showed non-uniform spa-
tial distribution in different networks. The vertex-wise ICC of
gradient/edges scores obtained for a given DR network tended
exceptionally high when looking at vertices that were part of
the network (Fig. 9). Similarly, in contrast to iFC similarity,
vertex-wise ICC was strongly related to gradient strength for
the nearly all of the DR networks (the DR Cerebellar network is
an exception) (see Supplementary Figure S10).

Parcel Homogeneity based on Local-, Global, and
Network-Scale iFC

In evaluating and comparing the optimality of parcellation
strategies, unit homogeneity is commonly viewed as a desir-
able property. As such, we opted to calculate the homogeneity
of full-brain iFC patterns among voxels within a given parcel

Figure 8. Group-level gradient maps for each functional indices from two 50-min subsets. For each participant, we calculated the spatial correlation matrix of the gra-

dient maps for various functional indices, and then averaged across individuals to provide the spatial correlation matrix (bottom left corner). The group-level edge

density maps were demonstrated in Supplementary material in Figure S7.
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as a means of comparing the parcellations produced using
the differing R-fMRI measures. More specifically, we first com-
puted the gray matter (cortical and subcortical) connectivity
map at each vertex using the reference 50-min data. Then for
each parcel within a given brain parcellation from the other
50-min data, the Kendall‘s coefficient of concordance was cal-
culated from the functional pattern of all vertices within a
parcel. We then averaged the KCC-homogeneity scores for
each approach at the individual-level and test which
approach performed most accurate parcellation. Figure 10
demonstrates the KCC-homogeneity scores across all the par-
ticipants. Locally Weighted Scatter-plot Smoother (LOWSS)
was applied to demonstrate the average KCC-homogeneity
for each of the functional indices. Parcellations generated
using the iFC similarity methodology achieved the highest
within-unit homogeneity, followed by the DR-network.
Parcellations generated using ReHo and DC exhibited the low-
est homogeneity. This suggested that local- and network-
scale measures might not be well suited at generating homo-
genous parcels for depicting the complexity of cortical areal
organization as a whole system.

Effect of Surface Geometry and Surface Registration

A potential concern regarding the methodologies presented is
that the underlying surface geometry may influence the pres-
ence and locations of estimated gradients and edges. To test
for this, we repeated our gradient-based analyses using surro-
gate fMRI data that consisted exclusively of white Gaussian
noise. Figure 11A and B summarizes the spatial correlation of
iFC similarity and its gradient between real and random data
(ordered by participants and scan sessions, real to random). For
the surrogate data, within-participant spatial correlations were
again higher than between participant spatial correlations.
However, spatial correlations of gradients between maps
derived from real and surrogate R-fMRI showed a relatively low
degree of correlation – even for the same participant (gradient:
mean r = 0.03, SD = 0.06). These findings suggest that the sur-
face geometry explained only less than 1% of variance in the
gradient of iFC similarity.

Thus, while inter-individual variations in the surface geom-
etry in and of themselves can produce repeatable gradients,
they are unrelated to findings observed with functional data.

Figure 9. The intra-class correlation maps for the gradient of 14 functional indices are depicted here (ICC was calculated between two 50-min subsets of data gener-

ated through random selection [without replacement]). The distribution of ICC for edge density maps for each functional metric is shown in the bottom-left corner.

The ICC maps for edge density maps were demonstrated in Supplementary material in Figure S9.
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Although beyond the scope of the present work, preliminary
analyses suggest that the strength of the findings obtained for
surrogate data is largely attributable to inter-individual varia-
tions in the distance between adjacent neighbors, which
impacts gradient computation (Fig. 11C). However, it is worth
noting that the gradient values from noise were generally
minute; for nearly all vertices, the real gradient score exceeded
the 90th percentile of scores generated from noise. In those
cases where this was not the case, the failure to exceed the
90th percentile was due to the presence of a relatively low gra-
dient score in the real data (thus failing to rise above the noise)
(see the supplementary Figure S11).

To address any concerns about the possible effects of noise
with regard to comparison of within- and between-individual
variance, we repeated our analyses focused on establishing the

similarity of gradient maps across subjects and sessions;
though this time, we regressed out noise-based gradient maps
for each before testing the differences of within- versus
between-individual variance. The correct identification rate
was almost the same as 90.44% for real data and 90.96% after
regressed out the noise-based gradient. In sum, the whole tran-
sition patterns were predominantly driven brain function,
rather than structure.

As a final sanity check, we repeated our edge detection ana-
lyses using the similarity of iFC maps rather than gradient
maps. Spatial correlations between sessions (for the same par-
ticipant) were quite low – again, reinforcing the validity of the
findings obtained in our primary analyses.

Discussion
Using publically available datasets, the present work assessed
the ability of gradient-based iFC boundary mapping
approaches (Cohen et al. 2008; Wig et al. 2013, 2014; Gordon
et al. 2014, 2015; Laumann et al. 2015) to reliably characterize
inter-individual variation in the transitional properties of cor-
tical areas throughout the brain. First, from the perspective of
“finger-printing”, across the 10 scan sessions, we were able to
demonstrate the ability to accurately identify R-fMRI data
obtained from a given individual based upon the similarity of
full brain gradient and full-brain edge maps derived from each
of the scan sessions. Supplementary analyses demonstrated
that these abilities were not driven by structural contribu-
tions. Second, using image intraclass correlation coefficient
(I2C2), we were able to demonstrate moderate full-brain test–
retest reliability for a 10-min scan; I2C2 progressively
increased with the amount of data available, reaching rela-
tively high levels when 50min of data were used. Third, using
vertex-wise intraclass correlation coefficient, we demon-
strated low to high test–retest reliability depending on region;
again, as the amount of data included was increased, ICC
values approached impressively high levels. Of note, within-
participant variation in transition zone properties appeared to
be greater in lower order networks than higher order, while
between-individual variation was greater in higher order

Figure 10. Homogeneity of individual parcels by parcel size based on 14 iFC

indices. Red dots are homogeneity scores for each parcel driven from iFC simi-

larity across individuals. Dark blue dots are homogeneity scores for each parcel

based on ReHo across individuals. Each line is the LOWESS fit represents the

effect of parcel size on homogeneity across individuals.

Figure 11. Effect of surface geometry and surface registration. (A) The spatial correlations matrix of mean iFC similarity from real and random data. (B) The spatial

correlations matrix of mean gradient in iFC similarity from real and random data. The correlation matrixes are ordered by participant: top left sub-matrix is from real

data (first ten rows for ten sessions of participant 1, second ten rows for ten sessions of participant 2, and so on) and bottom right sub-matrix is from random data in

the same order. (C) The 2D histogram depicting the relationship between cortical area and mean gradients of iFC similarity computed from random data.
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networks; these findings are consistent with those of prior
efforts examining iFC profiles. Intriguingly, using a previously
published twin dataset, the present work was able to push
this finding one step further, showing associations between
the similarity of edge maps and each, familial relations (i.e.,
sibling vs. non-sibling) and genetic (i.e., monozygotic vs.
dizygotic twin pairs). Finally, the present work extended prior
work by employing alternative iFC measures to define gradi-
ents, revealing similar but distinct gradient profiles for each of
the iFC features – all of which exhibited impressive repeatabil-
ity and reliability over time if sufficient data is used.
Importantly, the various findings obtained in the present work
did not appear to be related to potential sources of artifactual
variation, such as head-motion or surface registration. As
such, our findings increase confidence in the potential for gra-
dient measures to be used as a novel feature upon which
inter-individual differences in brain function can be mapped
and eventually related to phenotypic variation.

Individual Areal Organizations are Unique

Long focused on the comparison of groupings of individuals
that differ on one or more features (e.g., diagnostic status), the
delineation of inter-individual variation has emerged as a cen-
tral focus in emerging neuroscientific and clinical agendas (e.g.,
biomarker identification). Several studies have emphasized the
potential utility of taking variations in cortical area transition
zone properties into account when attempting to catalog
phenotypic variation (e.g., Di Martino et al. 2009; Adelstein
et al. 2011). Our analyses revealed full-brain transition patterns
on an individual basis, which distinguished participants from
one another across scan sessions. Findings that the topological
architecture differs between participants are consistent with
recent work highlighting inter-individual variation in key fea-
tures of the topological architecture (e.g. area size and shape)
(Gordon et al. 2015). Perhaps more interesting, were findings
that full-brain gradient and edge maps can distinguish nearly
all individuals using only 10min of data (Fig. 1C). This finding
echoes recent studies, which suggested the potential for full-
brain characterizations of the intrinsic brain to “fingerprint”
individuals (Poldrack et al. 2013; Miranda-Dominguez et al.
2014; Finn et al. 2015) – a capability that is encouraging for
efforts towards biomarker discovery. Although not a focus of
the present work, confirmatory analyses replacing actual func-
tional data with random noise were able to demonstrate the
fingerprinting abilities of structural brain properties embedded
in the cortical surface as well. Importantly, these structural fin-
gerprints were largely unrelated to the various indices derived
from true functional data. Taken together with prior work, it
appears that future work may find potential value in the devel-
opment of fingerprinting profiles.

Individual Functional Areal Organizations Are Reliable
With Sufficient Scan Time

As suggested by prior work, more is generally better when dis-
cussing the test–retest reliability for R-fMRI findings. While fin-
gerprinting could be performed with relatively high accuracy
using only 10min of data, the bar for drawing reliable func-
tional boundaries appears to be higher. Recent work using a
highly sampled individual dataset found that the reproducibil-
ity of the connectivity matrix improved steeply as the amount
of data available increased from 9 to 27min, beyond which
more modest increases were observed (Laumann et al. 2015).

Consistent with this report, we found that 20min or more of
data were required for gradient and edge density scores to
achieve moderate to high test–retest reliabilities at the majority
of vertices.

A key caution is that while studies attempting to determine
the minimum sufficient data required to optimize an analysis
commonly report their findings in terms of time, most do not
allow this construct to be disentangled from the number of
time points included. In our findings, although the number of
time points for eNKI-TRT dataset (TR = 645ms, 10min, multi-
band sequence) was about three times that of the HNU dataset
(TR = 2000ms, 10min, standard sequence), only the vertex-
wise reliabilities showed an advantage over the 10-min HNU
dataset, and they were inferior to those obtained with 20min of
HNU data. This may suggest the amount of time sampled could
be more important than the number of time points. However, it
is important to note that the eNKI-TRT dataset used an early
version of the CMRR multiband sequence, rather than standard
EPI as in the HNU dataset. Future work will be required to dis-
ambiguate the various factors further. It is also possible that
continued refinement of preprocessing strategies may help to
further decrease data needs for such analyses. Nonetheless, we
emphasize that at the present time, it appears prudent to
obtain more data rather than less if the goal of a study is to reli-
ably characterize fine-grained functional boundaries.

Functional Boundaries Have Familial and Genetic
Associations

Recent work has begun to explore genetic and environmental
influences on inter-individual variation in indices of intrinsic
brain function (Glahn et al. 2010; Schutte et al. 2013; Fu et al.
2015; Yang et al. 2016). Already, connectivity within a number of
functional networks has been shown to have moderate to high
heritability (e.g. default, frontoparietal, somatosensory, visual,
and attention networks). Complementing these findings are
those of studies suggesting the heritability of some portions of
between-network functional connectivity (e.g., Yang et al. 2016),
as well as larger global network architecture properties (e.g.
modularity, clustering coefficient, global efficiency) (van den
Heuvel et al. 2013; Sinclair et al. 2015). The present work helps
to build upon this growing body of literature by suggesting pos-
sible familial (sibling vs. non-sibling) and genetic (monozygotic
vs. dizygotic) associations for measures of areal brain organiza-
tion. Importantly, these associations did not appear to be driven
by the underlying neuroanatomy. Consistent with previous
studies suggesting that different genetic mechanisms are
responsible for the structure and function of brain areal organ-
ization (e.g., Glahn et al. 2010). Of note, familial effects (sibling
vs. non-sibling) were found to be relatively robust, possibly sug-
gesting environmental contributions in addition to genetic
effects, though more specific constraints would need to be built
into the design to optimally establish them –e.g. monozygotic
twins raised apart vs. monozygotic twins raised together, or
non-sibling raised together vs. non-siblings raised apart.

In light of the relatively limited amount of R-fMRI data avail-
able per participant in the QTIM dataset (scan duration = 5min),
the results obtained were taken to be particularly encouraging.
We considered pursuing quantification of heritability for the indi-
ces of areal organization examined in the present work, but we
decided against it as: (1) comprehensive exploration of the topic
was beyond the scope of the present work, and (2) the limited
data available for each participant is still likely to compromise
the quality of gradients and edge maps obtained, thereby leading
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to an underestimation. Future work with larger datasets focused
on the collection of large amounts of R-fMRI data from each par-
ticipant (e.g., the Human Connectome Project, Van Essen et al.
2013) would be more appropriate for such determinations.

Sources of Within- and Between-individual Variability
in Areal Organization

A growing number of studies are appreciating regional and
network-level differences in the stability of connectivity pat-
terns across individuals and time, which can be informative to
our understanding of brain development and function. Intra-
individual variability characterizes the temporal stability of
transitional zone properties for cortical areas (i.e., low variation
infers high stability), while inter-individual variability captures
the conservation of these zones from one person to the next
(i.e., low variation infers conservation). Intra- and inter-
individual variability of transitions in iFC features were not uni-
formly distributed across the cortex in the present work.
Specifically, multimodal association networks (e.g., default,
dorsal attention, and executive control) exhibited greater vari-
ability between individuals than within; in contrast, unimodal
networks (e.g., visual, sensorimotor) were found to have lower
inter-individual variability whilst high intra-individual variabil-
ity. These results echoed previous findings highlighting greater
intra-individual variation in lower-order networks (e.g. Mennes
et al. 2010; Craddock et al. 2013), whose functional interactions
are more heavily influenced by current task demands (Mennes
et al. 2010). Similarly, they echo the findings of studies suggest-
ing greater inter-individual variation in higher order networks
(Mueller et al. 2013; Wang and Liu 2014; Langs et al. 2015;
Laumann et al. 2015), which appear to be more affected by gen-
etic and environmental factors (Anderson and Finlay 2014; Gao
et al. 2014). The greater susceptibility of higher order multi-
modal association networks to environmental influences is not
surprising given their more protracted developmental period
relative to unimodal (Mueller et al. 2013; Zilles and Amunts
2013). Additionally, the later evolutionary development and
enlargement of association cortices supporting higher-order
network function may contribute in part to our findings of
increased variation (i.e., decreased conservation) across indivi-
duals (Van Essen and Dierker 2007; Brun et al. 2009; Van Essen
et al. 2012a; Chan et al. 2014).

Potential confounds that can arise in consideration of inter-
individual variation in functional transition zones come from
differences in cortical folding patterns (Hill et al. 2010). For
example, sulcal depth can exhibit patterns of inter-individual
variation that are similar to those observed in iFC (Mueller
et al. 2013). Additionally, given that current surface-registration
algorithms are based on the anatomical curvature, the cross-
individual registration could lead to non-uniform misalignment
across cortex, thereby contributing to individual variability into
functional transitions (Robinson et al. 2014). In the present
study, we explored these potential confounds through the
replacement of functional MRI data with random noise. The
underlying anatomical architecture had only a slight relation-
ship on functional transition profile of iFC features (Fig. 8B),
reaffirming confidence that our findings are driven by iFC.

Different Functional Features Shows Similar but
Distinct Areal Transition Profiles

Recent years have witnessed the emergence of a growing num-
ber of R-fMRI measures, each capturing a unique aspect of the

intrinsic functional architecture. The distinctions among some
indices can be readily delineated based upon differences in
their definitions (e.g., centrality measures) or the networks
being examined (e.g., dual regression of network components);
while for others, the exact positioning of one measure relative
to another can be more challenging (e.g., amplitude of low fre-
quency fluctuation [ALFF], voxel-mirrored homotopic connect-
ivity [VMHC], ReHo). While the iFC similarity measure
employed for initial gradient-based mapping efforts has several
desirable features (e.g., ability to overcome noise through aver-
aging across vertices, utility for full-brain parcellation, most
homogeneous parcels), it is only one aspect of the intrinsic
brain. It can be argued that studies may benefit from selection
of their measures based upon the specific question or purpose
at hand. For example, if the question is specifically about the
transitions of frontoparietal network, then dual-regression may
be preferable. As might be expected, for DR-networks, the ICC
of a given voxel showed profound dependencies on network
membership and gradient strength; such properties should be
considered in their application. Alternatively, more exploratory
approaches may derive benefit from the calculation of multiple
features for each cortical area simultaneously (e.g., fALFF,
ReHo, VMHC, DC), providing gradient profiles which can be
employed for analyses.

Among the functional indices examined in the present
work, the gradients derived from ReHo (an index of local syn-
chrony) were the most reliable, followed by similarity of iFC.
Relative to other measures, these two measures are unique in
that they involve averaged values, which will provide some
degree of noise reduction. While the number of values being
averaged into the ReHo score for a given vertex are dramatic-
ally fewer than those that go into the same vertex‘s similarity
of iFC, the values being averaged are inherently more similar to
one another. Additionally, it is worth noting that ReHo is con-
sistently noted to engender a high degree of reliability as a
measure, which may in turn lend to its more reliable gradients
(Jiang and Zuo 2015; Chen et al. 2015). It may be worth noting
that ReHo relies on the non-parametric Kendall‘s Concordance
Coefficient rather than Pearson‘s Correlation, which may also
be a contributing factor (Zuo et al. 2013). Regarding similarity of
iFC, two observations are worth noting. First, that the most
closely related function indices were the dual regression com-
ponents for the default and sensorimotor networks, which are
most similar to the task-negative and task-positive networks
defined by Fox et al. (2005). Second, those gradients found to be
highly reliable for similarity of iFC, tended to have reliability
across the other R-fMRI indices as well. These findings suggest
summary measures (e.g., similarity of iFC) have clear strengths,
though may have limitations with respect to their reliability to
findings outside the cardinal large-scale networks (e.g., task-
positive, task-negative).

Limitations and Future Directions

Although promising, there are several limitations to the find-
ings of the present work beyond those already discussed, which
merit consideration. First, R-fMRI scans did not cover the whole
brain for all the participants, particularly in the inferior tem-
poral and orbital frontal cortex; as such, our ability to map tran-
sition profiles for these areas was limited. This reduced
coverage could have impacted our findings (e.g., DR-auditory
network), though we do not believe to a high degree. Second,
while several studies have demonstrated that the areal transi-
tion profile based on R-fMRI correspond to the tasks activation

Assessing Variations in Areal Organization for the Intrinsic Brain Xu et al. | 4207



(Wig et al. 2013; Laumann et al. 2015), the present work is lim-
ited in its ability to make generalizations regarding transition
zone repeatability beyond R-fMRI; future serial scanning efforts
would benefit from the inclusion of task fMRI as well. If the
areal transition profile from task and rest are reliable, it may
facilitate alignment across participants by offering spatial func-
tional variability information to registration progress (Robinson
et al. 2014). Finally, the current findings of reliable transition
profile are based on datasets sampling a one-month period;
future work may investigate the dynamic changes of areal
organization across more extended periods of time, as well as
address questions regarding potential age-related differences
across the lifespan.

Conclusions
In sum, the present work demonstrates the ability to map
repeatable, individual-specific areal transition profiles for an
array of iFC features, confirming their potential for fingerprint-
ing and biomarker discovery. Data needs for achieving moder-
ate to high test–retest reliability appeared to be greater than
those for fingerprinting, though achievable. Points of conver-
gence were noted in the cortical area transition zones defined
using differing iFC indices. However, the distinctiveness of the
full-brain transition zones profiles obtained using differing iFC
indices suggests the merits of considering multiple indices to
provide a more comprehensive characterization of cortical area
transition zone properties.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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