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Abstract

Signal transducers and activators of transcription (STAT) 1 is critical for cellular responses

to type I interferons (IFN-Is), with the capacity to determine the outcome of viral infection.

We previously showed that while wildtype (WT) mice develop mild disease and survive

infection with lymphocytic choriomeningitis virus (LCMV), LCMV infection of STAT1-defi-

cient mice results in a lethal wasting disease that is dependent on IFN-I and CD4+ cells.

IFN-Is are considered to act as a bridge between innate and adaptive immunity. Here, we

determined the relative contribution of STAT1 on innate and adaptive immunity during

LCMV infection. We show that STAT1 deficiency results in a biphasic disease following

LCMV infection. The initial, innate immunity-driven phase of disease was characterized by

rapid weight loss, thrombocytopenia, systemic cytokine and chemokine responses and leu-

kocyte infiltration of infected organs. In the absence of an adaptive immune response, this

first phase of disease largely resolved resulting in survival of the infected host. However, in

the presence of adaptive immunity, the disease progressed into a second phase with contin-

ued cytokine and chemokine production, persistent leukocyte extravasation into infected tis-

sues and ultimately, host death. Overall, our findings demonstrate the key contribution of

STAT1 in modulating innate and adaptive immunity during type I interferon-mediated lethal

virus infection.

Author summary

The mammalian immune system is divided into innate and adaptive immunity. In

response to harmful agents, innate immunity acts first, followed by late-acting, specialized,

adaptive immunity. Type I interferons (IFN-Is) are important means of communication

between innate and adaptive immunity. IFN-Is mediate their effects via a number of sig-

naling molecules, principally including signal transducers and activators of transcription

1 (STAT1). The importance of STAT1 to the immune response is evident from our
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previous finding that mice deficient in STAT1 develop a lethal, host immunity-mediated

disease following infection with the otherwise harmless lymphocytic choriomeningitis

virus (LCMV). In the present study, we characterized the role of STAT1 in protecting

against harmful host immune responses against LCMV. We report that STAT1 plays a sig-

nificant role in lessening both the early, inflammatory responses of innate immunity and

the sustained, destructive actions of adaptive immunity. These findings exemplify the

extent of STAT1’s role as a key immune response modulating factor.

Introduction

Type I interferons (IFN-Is) are a large family of potent antiviral and immunomodulatory cyto-

kines that includes multiple IFN-α subtypes, IFN-β and other single gene products. IFN-Is

play crucial, antiviral and immunomodulatory roles, activating and regulating cells of both the

innate and adaptive immune compartments. For example, IFN-I signaling increases degranu-

lation of neutrophils [1] and mediates dendritic cell (DC) maturation and activation [2–4].

Furthermore, IFN-Is orchestrate CD4+ T cell activation and differentiation [5, 6]. They also

directly promote the clonal expansion, survival, production of IFN-γ and development of cyto-

toxic functions of anti-viral CD8+ T cells [7].

Signal transducers and activators of transcription 1 (STAT1) is a critical component of

IFN-I signaling [8, 9]. When IFN-Is bind to the IFN-α/β receptor 1 and 2 subunits, STAT1

and STAT2 are activated and subsequently form a trimolecular complex with interferon regu-

latory factor 9, termed interferon-stimulated gene factor 3 [10–12]. This complex regulates the

expression of several hundred interferon-regulated genes orchestrating the antiviral host

response.

Lymphocytic choriomeningitis virus (LCMV) is a prototypical mammarenavirus [13, 14].

LCMV infection of mice has been one of the most widely used model systems to study viral

pathogenesis and antiviral immune mechanisms [15, 16], owing in part to the non-cytopathic

nature of the virus [17]. Accordingly, following intraperitoneal (i.p.) infection, immunocompe-

tent mice develop mild or no signs of disease and between days 8–14 postinfection, IFN-I-

dependent CD8+ T cell expansion and activation mediates viral clearance [18–21]. By contrast,

similarly infected STAT1-deficient (STAT1 KO) mice develop a lethal, immunopathological

disease in an IFN-I-dependent, IFN-γ-independent manner [22, 23]. We previously found that

IFN-I signaling mediates early and pronounced decline in physical condition including rapid

weight loss of LCMV-infected STAT1 KO mice, suggesting a key role for the early, innate

immune response in contributing to the disease [22]. While antibody-mediated depletion of

CD8α+ cells extended the survival, it did not prevent the death of these mice, whereas antibody-

mediated depletion of CD4+ cells provided complete protection against lethality [23]. These

findings suggest that both innate and adaptive immunity contribute to the lethal disease in the

STAT1 KO mice. Here, we aimed to determine the contribution of STAT1 in regulating innate

versus adaptive immunity in this model of IFN-I-mediated, lethal antiviral response.

Results

The innate immune compartment mediates early and rapid weight loss

while adaptive immunity is required for lethality in LCMV-infected STAT1

KO mice

To study the role of adaptive immune cells in LCMV-induced lethal disease of STAT1-defi-

cient mice, we interbred recombination activation gene-1 knock-out (RAG1 KO) mice that
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lack mature T and B cells [24], with STAT1 KO mice to generate STAT1/RAG1 DKO mice.

Following i.p. inoculation with LCMV, wildtype (WT) and RAG1 KO mice showed little to no

signs of disease at any observation time postinfection (Fig 1A). By contrast, similarly infected

STAT1 KO and STAT1/RAG1 DKO mice had rapid weight loss accompanied by other signs

of disease such as hunched posture, reduced activity and ruffled fur from day 4 postinfection

(Fig 1B). STAT1 KO mice continued to lose weight and decline in condition and had to be

euthanized between days 7 and 8 postinfection in accordance with animal welfare require-

ments, having lost up to 20% of their initial body weight (Fig 1A and 1B). By contrast, similarly

infected STAT1/RAG1 DKO mice did not reach the critical weight loss limit or the clinical

score for humane endpoint, and from day 7 postinfection, gained weight, showed increased

activity and regained up to 95% of original body weight by day 35 postinfection (Fig 1A).

Although the control and eventual clearance of LCMV infection is crucially dependent on

CD8+ T cells in WT mice [20, 21], the role of adaptive immunity in the control of viral replica-

tion and spread in STAT1 KO mice is unknown and was investigated next (Fig 1C and 1D).

To assess virus load, we performed RNase Protection Assay (RPA) for LCMV-NP RNA, which

we had previously shown to correlate well with infectious virus load during acute infection

[23]. In agreement with our previous findings [22, 23], LCMV-NP RNA was undetectable in

all organs tested in infected WT mice. However, in RAG1 KO mice, while LCMV-NP RNA

was not detectable during early stages of infection (day 3 postinfection), it was present at low

levels in spleen and liver on day 7 postinfection and was detectable at high levels in all organs

at day 35 postinfection, confirming the need for T cells for virus elimination. By contrast,

LCMV-NP RNA was detectable in all organs of infected STAT1 KO and STAT1/RAG1 DKO

mice from day 3 postinfection (Fig 1C and 1D) and remained high in STAT1/RAG1 DKO

mice at day 35 postinfection. Taken together, these findings indicate that innate immunity

mediated the early and rapid weight loss, while adaptive immunity was necessary for lethality

in STAT1 KO mice following LCMV infection. Notably, RAG1 KO mice exhibited a remark-

able, STAT1-dependent capacity to control LCMV infection initially but this was ineffective as

infection progressed.

The combined actions of innate and adaptive immunity mediate systemic

neutrophilia, but innate immunity is responsible for thrombocytopenia in

LCMV-infected STAT1 KO mice

Arenavirus infection can cause severe hemorrhagic diseases in humans [25]. Similarly, in

mice, various models described systemic LCMV infection inducing thrombocytopenia and

vascular leakage leading to death [26–28]. To investigate whether hemorrhagic disease contrib-

utes to lethality in LCMV-infected STAT1 KO, we determined the quantitative changes in the

leukocyte subsets, platelets, red blood cells (RBCs), % hematocrit and hemoglobin level in the

peripheral blood of these mice (Fig 2). In mock-infected WT, STAT1 KO and STAT1/RAG1

DKO mice, no significant differences in the number of leukocytes and thrombocytes were

detected, apart from an absence of lymphocytes and lower RBCs, % hematocrit and hemoglo-

bin levels in the STAT1/RAG1 DKO mice (Fig 2A and 2H–2J). Following infection, WT mice

showed no significant increase in the number of leukocytes in peripheral blood (Fig 2A–2C).

By contrast, there was a significant increase of all leukocyte subsets, especially neutrophils, in

similarly infected STAT1 KO mice. STAT1/RAG1 DKO mice had a significant and progressive

increase in the number of neutrophils but not monocytes, eosinophils and basophils. Further,

neutrophil numbers were significantly higher in STAT1 KO mice when compared with

STAT1/RAG1 DKO mice on day 7 postinfection with LCMV (Fig 2C).
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Platelet numbers progressively decreased in WT mice following infection and by day 7

postinfection, were 75% of the original level (Fig 2D). In comparison, STAT1 KO and STAT1/

RAG1 DKO mice showed a significant decline in platelet numbers on day 5 and by day 7 post-

infection were less than 5% of the original level (Fig 2D). Blood smears showed no apparent

platelet clumping excluding the possibility of pronounced pseudo-thrombocytopenia (Fig 2E–

2G). There were no significant changes in RBC numbers, % hematocrit and hemoglobin level

in WT mice on day 7 postinfection (Fig 2H–2J). By contrast, there was a significant decrease

in these parameters in similarly infected STAT1 KO mice, although it did not exceed 15%.

Similar to WT mice, there were no significant changes in the number of RBCs, hematocrit and

hemoglobin level in STAT1/RAG1 DKO mice on day 7 postinfection (Fig 2H–2J). Taken

together, our findings indicated that the adaptive immune compartment was required for

excessive systemic neutrophilia in STAT1 KO mice following LCMV infection. Moreover, our

findings showed that innate immune cells mediated thrombocytopenia whereas adaptive

immune cells mediated mild anemia in infected STAT1 KO mice. Although previous reports

linked thrombocytopenia to hemorrhagic disease in systemic LCMV infection (e.g. [28]), we

only observed mild signs of anemia in these mice.

Adaptive immune cells amplify granulocyte-skewed leukocyte infiltration

in peripheral organs of LCMV-infected STAT1 KO mice

We previously showed that LCMV-infected STAT1 KO mice have extensive immunopathol-

ogy in peripheral organs, including a large number of infiltrating leukocytes and necrotic foci

[22, 23]. To determine the contribution of adaptive immune cells in this pathology, histological

examination was performed on the liver and lung of LCMV-infected WT, RAG1 KO, STAT1

KO and STAT1/RAG1 DKO mice (Fig 3). There were no observable differences in tissue mor-

phology in the organs of mock-infected mice independent of the genotype. Following LCMV

infection, little to no pathological changes were observed in the liver and lung of WT and

RAG1 KO mice (Fig 3A and 3B). Although the same was true for STAT1 KO and STAT1/

RAG1 DKO mice on day 3 postinfection, on day 7 postinfection, pronounced pathological

changes were observed in both liver and lung, including an increased number of infiltrating

leukocytes in these organs (Fig 3C, 3D, 3F and 3G). In particular, in the lungs of LCMV-

infected STAT1 KO and STAT1/RAG1 DKO mice, a thickening of the basement membrane of

bronchial epithelial cells was evident (Fig 3F and 3G). This was more severe in STAT1/RAG1

DKO mice when compared with STAT1 KO mice on day 7 postinfection (Fig 3F and 3G).

However, by day 35 postinfection, STAT1/RAG1 DKO mice had a resolution of these patho-

logical changes in both organs, showing no observable differences when compared with the

mock-infected mice (Fig 3E and 3H). Notably, no overt bleeding was observed in the organs of

Fig 1. RAG1-deficiency protects STAT1 KO mice from lethal LCMV infection but has little impact on the control of virus spread and

replication. WT (n = 21), STAT1 KO (n = 28), RAG1 KO (n = 22) and STAT1/RAG1 DKO (n = 21) mice were infected with 500 pfu of

LCMV-Arm i.p., as described in Materials and Methods. (A) Weight change, combined data from 4 independent experiments. (B) Survival

outcome, combined data from 4 independent experiments. For significance (Log-rank test): ����, P<0.0001 compared with WT mice. Data

are shown as means ± SEM. For significance (one-way ANOVA with Tukey post-test): �, P<0.05 for STAT1 KO mice compared with WT

mice; ^, P<0.05 for STAT1/RAG1 DKO mice compared with WT mice; #, P<0.05 for STAT1/RAG1 DKO mice compared with STAT1 KO

mice. RPA was performed on total RNA (20 μg) from spleen, liver, kidney and lung of mock- and LCMV-infected WT, STAT1 KO, RAG1

KO and STAT1/RAG1 DKO mice to determine the level of LCMV-NP RNA. Representative autoradiograph (n = 2–3 per time-point per

genotype) is shown (C) and values from densitometric analysis were normalized to the corresponding L32 loading control and the combined

results from two independent experiments (n = 4–6 per time-point per genotype) are expressed as the mean ± SEM (D). For significance

(one-way ANOVA with Tukey post-test): �, P<0.05 compared with mock-infected mice; ^, P<0.05 compared with WT mice at the respective

time-points; #, P<0.05 compared with STAT1 KO mice at the respective time-points; x, P<0.05 compared with RAG1 KO mice at the

respective time-points. Day 0 postinfection denotes the mock-infected mice.

https://doi.org/10.1371/journal.ppat.1008525.g001
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LCMV-infected STAT1 KO mice, contrary to the reports of hemorrhagic diseases in systemic

LCMV infection (e.g. [28]).

We next asked if there was a difference in the cellular composition of the infiltrates between

LCMV-infected STAT1 KO and STAT1/RAG DKO mice. To address this, we employed flow

cytometry to determine the number and nature of leukocyte subsets in the spleen and liver of

mock- and LCMV-infected mice on day 7 postinfection. Apart from the expected absence of T

and B cells in RAG1 KO and STAT1/RAG1 DKO mice and an increased number of plasmacy-

toid DCs (pDCs) in the liver of RAG1 KO mice, there was no significant difference in leuko-

cyte numbers or composition in spleen and liver of mock-infected mice from different

genotypes (Fig 4). Following LCMV infection, there was a significant increase of leukocytes in

the liver of WT mice and both in the spleen and liver of STAT1 KO and STAT1/RAG1 DKO

but not RAG1 KO mice (Fig 4A and 4B). Further, the number of infiltrating leukocytes in the

liver was significantly greater in infected STAT1 KO mice than in the other genotypes (Fig

4B).

When individual leukocyte subsets were quantified in the spleen, WT mice had a significant

increase of natural killer (NK) cells and B cells and RAG1 KO mice had a significant increase

of NK cells only following LCMV infection (Fig 4C). By contrast, infected STAT1 KO mice

showed a significant increase in CD4+ and CD8+ T cells, B cells, Ly6Chi and Ly6Clo monocytes,

eosinophils, mature and immature neutrophils, and immature granulocytes, and a significant

decrease of CD8α+ and CD11b+ DCs. STAT1/RAG1 DKO mice had a significant increase of

Ly6Chi and Ly6Clo monocytes, F4/80hi CD11blo macrophages, eosinophils, and mature and

immature neutrophils and a significant decrease of CD8α+ and CD11b+ DCs. Notably, the

numbers of Ly6Chi monocytes, F4/80hi CD11blo macrophages, eosinophils and mature neutro-

phils in STAT1/RAG1 DKO mice were significantly greater than in STAT1 KO mice following

infection.

In the liver following infection, NK cells, pDCs, CD8α+ DCs and CD8+ T cells were signifi-

cantly increased in WT mice and NK cells, as were CD8α+ DCs and F4/80hi CD11blo macro-

phages in RAG1 KO mice (Fig 4D). In infected STAT1 KO mice, there was a significant

increase of myeloid cells (monocytes, macrophages and granulocytes), while infected STAT1/

RAG1 DKO mice had a significant increase of CD11b+ DCs, Ly6Chi monocytes, Ly6Clo mono-

cytes, F4/80hi CD11blo macrophages, eosinophils and mature neutrophils (Fig 4D). There was

a significant decrease of pDCs in STAT1/RAG1 DKO mice following infection, the numbers

similar to that in infected STAT1 KO mice. Notably, while the numbers of CD11b+ DCs,

Ly6Chi and Ly6Clo monocytes, F4/80hi CD11blo macrophages and eosinophils were

Fig 2. Combined actions of innate and adaptive immunity mediate systemic neutrophilia and mild anemia, but

innate immunity mediates thrombocytopenia in LCMV-infected STAT1 KO mice. Number of lymphocytes (A), mixed

leukocytes (B), neutrophils (C) and platelets (D) in peripheral blood of mock- and LCMV-infected WT, STAT1 KO and

STAT1/RAG1 DKO mice, as determined by Sysmex XP-100 hematoanalyzer. The hematoanalyzer cannot distinguish

monocytes, eosinophils and basophils and displays the total number of the three cell types as ‘mixed leukocytes’. Day 0

postinfection denotes mock-infected group. Diff-Quik-stained blood smears of LCMV-infected (day 7 postinfection) WT

(E), STAT1 KO (F) and STAT1/RAG1 DKO (G) mice. Scale bar = 62.5 μm. Insets depict higher magnification of

circulating leukocytes (scale bar = 25 μm). Number of red blood cells (RBCs) (H), hematocrit (%) (I) and concentration of

hemoglobin (J) in peripheral blood of mock- and LCMV-infected (day 7 postinfection) WT, STAT1 KO and STAT1/

RAG1 DKO mice, as determined by Sysmex XP-100 hematoanalyzer. Line indicates mean. For significance (two-way

ANOVA with Tukey post-test): �, P<0.05 compared with mock-infected mice; ^, P<0.05 compared with WT mice at the

respective infection group; #, P<0.05 compared with STAT1 KO mice at the infection group. Sample size was as follows:

WT mice mock-infected (n = 9), WT mice day 3 postinfection (n = 6), WT mice day 5 postinfection (n = 6), WT mice day

7 postinfection (n = 14), STAT1 KO mice mock-infected (n = 10), STAT1 KO mice day 3 postinfection (n = 6), STAT1

KO mice day 5 postinfection (n = 6), STAT1 KO mice day 7 postinfection (n = 10), STAT1/RAG1 DKO mice mock-

infected (n = 16), STAT1/RAG1 DKO mice day 3 postinfection (n = 6), STAT1/RAG1 DKO mice day 5 postinfection

(n = 5) and STAT1/RAG1 DKO mice day 7 postinfection (n = 12).

https://doi.org/10.1371/journal.ppat.1008525.g002
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Fig 3. Innate immunity mediates gross tissue pathology in LCMV-infected STAT1 KO mice. Representative H&E images of liver (A, C-E) and lung (B,

F-H). Scale bar = 125 μm. Higher magnification of representative H&E images (C-H) of liver (C-E) and lung (F-H) of STAT1 KO mice on day 7 postinfection
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significantly greater in STAT1/RAG1 DKO mice when compared with STAT1 KO mice, the

numbers of mature and immature neutrophils and immature granulocytes were significantly

greater in STAT1 KO mice than in STAT1/RAG1 DKO mice following infection.

Taken together, these findings indicate that while innate immunity caused gross leukocyte

infiltration into the infected organs of LCMV-infected STAT1 KO mice, adaptive immunity

was responsible for the excessive number of infiltrating neutrophils, consistent with the hema-

tological findings.

RAG1-deficiency does not impair IFN-I production in LCMV-infected

STAT1 KO mice

It was reported previously that RAG1-deficient mice have impaired production of IFN-Is dur-

ing LCMV infection due to disrupted splenic architecture [29]. Indeed, there was a lack of

defined splenic architecture in both RAG1 KO and STAT1/RAG1 DKO mice (S2 Fig). Hence,

as IFN-I production and signaling is necessary for the development of the lethal disease in

LCMV-infected STAT1 KO mice [22], it remained possible that the survival of STAT1/RAG1

DKO mice following infection was due to impaired IFN-I production. To address this, we

determined the level of IFN-β mRNA in spleen and liver and systemic levels of IFN-α and -β
in LCMV-infected mice (Fig 5).

IFN-β mRNA was undetectable in the spleen and liver of all mock-infected mice, irrespec-

tive of genotype (Fig 5A). Following infection, IFN-β mRNA was transiently increased in the

spleen of WT, STAT1 KO and STAT1/RAG1 DKO mice on day 3 postinfection and was unde-

tectable at day 7 postinfection. Moreover, IFN-β mRNA in infected STAT1 KO mice was sig-

nificantly greater than that in WT mice but was 1.5-fold lower than that in STAT1/RAG1

DKO mice. In RAG1 KO mice, IFN-β mRNA was significantly increased on day 7 postinfec-

tion and was undetectable on day 35 postinfection. In the liver, IFN-β mRNA was low or unde-

tectable in LCMV-infected WT and RAG1 KO mice at any observation time postinfection. By

contrast, livers of infected STAT1 KO and STAT1/RAG1 DKO mice had significantly

increased IFN-β mRNA levels on day 3 postinfection, which then subsided on day 7 postinfec-

tion and in STAT1/RAG1 DKO mice even further on day 35 postinfection.

In the plasma, IFN-α and -β were low or undetectable in mock-infected mice, irrespective

of genotype (Fig 5B). Following infection, WT mice showed a small and transient increase of

IFN-α levels on days 2 and 3 postinfection, while IFN-β was not detected. In RAG1 KO mice,

neither IFN-α or IFN-β were detectable following infection any timepoint analyzed. By con-

trast, LCMV-infected STAT1 KO and STAT1/RAG1 DKO mice had a significant increase of

IFN-α and IFN-β on day 3 postinfection, which returned to the mock-infected level at day 7

postinfection. Interestingly, on day 3 postinfection IFN-β levels were significantly higher in

STAT1/RAG1 DKO mice than in STAT1 KO mice.

Taken together, these findings indicate that RAG1-deficiency in LCMV-infected STAT1

KO mice did not impair the local or systemic production of IFN-Is following LCMV infection.

Further, IFN-β production in LCMV-infected STAT1/RAG1 DKO mice was exaggerated

when compared with infected STAT1 KO mice, indicating that survival of the STAT1/RAG1

DKO mice was not due to impaired IFN-I production.

(C and F), STAT1/RAG1 DKO mice on day 7 postinfection (D and G) and STAT1/RAG1 DKO mice on day 35 postinfection (E and H). Scale bar = 25 μm.

Representative images from 3 independent experiments are shown. Arrows = infiltrating leukocytes. Arrowheads = thickened basement membrane. No images

were collected for LCMV-infected STAT1 KO mice on day 35 postinfection as none survived.

https://doi.org/10.1371/journal.ppat.1008525.g003
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Adaptive immune cells are required for the heightened systemic cytokine

and chemokine response in LCMV-infected STAT1 KO mice

A hallmark of the disease in LCMV-infected STAT1 KO mice are heightened systemic cyto-

kine and chemokine responses [23]. To delineate the roles of innate versus adaptive immune

cells in this response, we quantified eight cytokines and chemokines that we identified previ-

ously to be differentially regulated in LCMV-infected STAT1 KO mice [23] in the plasma of

mock- and LCMV-infected mice (Fig 6). Consistent with previous findings [22, 23], LCMV-

infected WT mice showed a significant increase of CCL2 on day 3 postinfection and IL-5 on

Fig 4. Granulocytes are the major group of leukocytes that infiltrate the peripheral tissues of LCMV-infected STAT1 KO mice in an adaptive-immunity-

dependent manner. Leukocytes were isolated from the spleen and liver of mock- and LCMV-infected (day 7 postinfection) WT, STAT1 KO, RAG1 KO and

STAT1/RAG1 DKO mice and flow cytometric analysis was performed, as described in Materials and Methods. Representative gating strategy is shown in S1 Fig.

Percentage and total number of leukocytes in (A) spleen and (B) liver. Number of specific leukocyte population in whole spleen (C) and whole liver (D). For

significance (two-way ANOVA with Tukey post-test): �, P<0.05 compared with uninfected mice; ^, P<0.05 compared with WT mice at the respective time points;

#, P<0.05 compared with STAT1 KO mice at the respective time points; x, P<0.05 compared with RAG1 KO mice at the respective time points. Representative data

of two independent experiments is shown (n = 3 for mock-infected and n = 5 for LCMV-infected per genotype).

https://doi.org/10.1371/journal.ppat.1008525.g004

Fig 5. RAG1 deficiency does not impair IFN-I production in LCMV-infected STAT1 KO mice. RPA was

performed on total RNA (30 μg) of spleen and liver of WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice

infected i.p. with LCMV, to determine the levels of IFN-β mRNA (n = 4–6 per time-point per genotype). Values from

densitometric analysis were normalized to the corresponding L32 loading control and the combined results from two

independent experiments were expressed as the mean ± SEM (A). IFN-α and -β ELISAs were performed on plasma of

WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice infected i.p. with LCMV (B). Combined data from two

independent experiments is shown (n = 4–8 per time-point per genotype). For significance (one-way ANOVA with

Tukey post-test): �, P<0.05 compared with uninfected mice; ^, P<0.05 compared with WT mice at the respective

time-points; #, P<0.05 compared with STAT1 KO mice at the respective time-points; x, P<0.05 compared with RAG1

KO mice at the respective time-points. Day 0 PI denotes mock-infected mice.

https://doi.org/10.1371/journal.ppat.1008525.g005
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day 7 postinfection, only, while TNF, IL-1β, IL-6, IFN-γ, CCL1 and CCL22 levels did not

change following infection (Fig 6). Similar to WT mice, LCMV-infected RAG1 KO mice

showed a significant increase of IL-5 on day 7 postinfection. None of the other cytokines or

chemokines changed at any day postinfection compared with mock-infected mice. By contrast,

in LCMV-infected STAT1 KO mice, IL-5, IL-6, IFN-γ and CCL2 were increased significantly

on day 3 postinfection and on day 7 postinfection, IL-5, IFN-γ and CCL2 remained elevated

(Fig 6). Additionally, there was a significant increase of CCL1 in these mice on day 7 postinfec-

tion. Although similarly infected STAT1/RAG1 DKO mice showed a significant increase of

IL-5, IL-6, IFN-γ and CCL2 on day 3 postinfection, with IL-5 being significantly greater

(~10-fold) when compared with STAT1 KO mice, all cytokines except for IL-5 declined to the

basal levels at day 7 postinfection. By day 35 postinfection, IL-5 had returned to the mock-

infected level in infected STAT1/RAG1 DKO mice as well.

In all, these findings showed that in the absence of adaptive immune cells, the heightened

systemic cytokine (IL-5, IL-6 and IFN-γ) and chemokine (CCL1 and CCL2) responses in

LCMV-infected STAT1/RAG1 DKO mice only occurred in the early stage of disease. This

demonstrates that adaptive immunity is essential for the prolonged inflammatory state in

these mice. These findings also indicate there is a non-T-cell source for the production of IL-5

and point to an inhibitory role of adaptive immune cells in the production of this cytokine in

the absence of STAT1 following LCMV infection.

Adaptive immune cells are required for the prolonged, local overexpression

of pro-inflammatory cytokine and chemokine genes in STAT1 KO mice

during LCMV infection

In the previous experiment, we found that adaptive immune cells are required for the pro-

longed, heightened, systemic cytokine and chemokine responses in STAT1 KO mice following

LCMV infection (Fig 6). To better understand the roles of innate versus adaptive immunity in

the regulation of pro-inflammatory cytokine gene expression in infected tissues, we deter-

mined the levels of TNF, IL-1β, IL-5, IL-6 and IFN-γ mRNAs in spleen and liver (Fig 7). The

TNF, IL-1β, IL-6 and IFN-γ mRNAs were low or undetectable in the spleen and liver of mock-

infected mice, with no differences in the levels of these mRNAs between the four genotypes of

mice.

In spleens from WT mice, there were no significant changes following LCMV infection in

any of the cytokine mRNAs studied. Similarly, in spleens from LCMV-infected RAG1 KO

mice, there were no significant changes for TNF, IL-1β and IL-6 mRNAs post infection. How-

ever, IFN-γ mRNA was significantly increased in these mice on day 7 postinfection, followed

by a decline to the mock-infected level at day 35 postinfection. By contrast, LCMV-infected

STAT1 KO and STAT1/RAG1 DKO mice had a significant increase of IL-1β, IL-6 and IFN-γ
mRNAs but not TNF mRNA on day 3 postinfection, followed by a decline to the mock-

infected levels at day 7 postinfection and the transcripts remained low on day 35 postinfection

in STAT1/RAG1 DKO mice.

In the liver, there was a significant increase of TNF mRNA in WT and RAG1 KO mice on

day 7 postinfection followed by a decline to the mock-infected level on day 35 postinfection in

WT mice while the transcript remained elevated in RAG1 KO mice. In STAT1 KO and

STAT1/RAG1 DKO mice, TNF mRNA was significantly increased above the mock-infected

level at day 3 postinfection, followed by a further increase in STAT1 KO mice on day 7 postin-

fection and progressive decline in STAT1/RAG1 DKO mice at days 7 and 35 postinfection. No

significant changes in IL-1β, IL-6 and IFN-γ mRNA levels were observed in the liver of WT

and RAG1 KO mice following LCMV infection. By contrast, there was a significant increase of
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Fig 6. Adaptive immune cells are responsible for the prolonged and exaggerated systemic cytokine and chemokine

production in the LCMV-infected STAT1 KO mice. Multiplex ELISA was performed on the plasma of LCMV-
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IL-1β mRNA in LCMV-infected STAT1 KO and STAT1/RAG1 DKO mice on day 3 postinfec-

tion and the transcript remained elevated at day 7 postinfection in STAT1 KO mice and at

days 7 and 35 postinfection in STAT1/RAG1 DKO mice. IL-6 and IFN-γ mRNAs were signifi-

cantly increased in LCMV-infected STAT1 KO and STAT1/RAG1 DKO mice on day 3 postin-

fection and while the transcripts remained elevated in STAT1 KO mice on day 7 postinfection

(in the case of IFN-γ mRNA, a further 4-fold increase), they declined to the mock-infected lev-

els in STAT1/RAG1 DKO mice at days 7 and 35 postinfection. IL-5 mRNA was undetectable

in the spleen and liver of all genotypes of mice at any observation time pre or postinfection

(Fig 7). Taken together, these results showed that the adaptive immune cells are required for

the overexpression of Il6 and Ifng genes in the liver of LCMV-infected STAT1 KO mice in the

late stage of disease.

We next determined the levels of XCL1, CCL2, CCL7, CXCL2 and CXCL10 mRNAs in the

spleen and liver of LCMV-infected WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice.

In the spleen and liver of mock-infected mice The XCL1, CCL2, CCL7, CXCL2 and CXCL10

mRNAs were low or undetectable, with no differences in the levels of these transcripts between

the different genotypes (Fig 8). Following infection, only XCL1 and CCL7 mRNAs were signif-

icantly increased in the spleen of WT mice on day 3 postinfection, which declined to the

mock-infected levels on day 7 postinfection and remained low at day 35 postinfection. In the

spleen of RAG1 KO mice on day 3 postinfection, XCL1 mRNA was significantly increased and

remained elevated at day 7 postinfection, followed by a decline to the mock-infected level on

day 35 postinfection. Both CCL2 and CCL7 mRNAs were also significantly elevated in these

mice on day 7 postinfection, followed by a decline to the mock-infected levels at day 35 postin-

fection. In STAT1 KO and STAT1/RAG1 DKO mice, XCL1, CCL2, CCL7, CXCL2 and

CXCL10 mRNAs were significantly increased on day 3 postinfection, to levels that were signif-

icantly greater than in WT mice, followed by a decline to the mock-infected levels at day 7

postinfection, which remained low at day 35 postinfection in STAT1/RAG1 DKO mice. The

maximal levels of CCL2 and CXCL2 mRNAs in STAT1/RAG1 DKO mice were significantly

higher than in STAT1 KO mice.

In the liver of WT mice, there was a significant increase of CCL7 mRNA on day 3 postinfec-

tion, which declined to the mock-infected level at days 7 and 35 postinfection. Although there

was a modest increase of XCL1, CCL2, CXCL2 and CXCL10 mRNAs in these mice following

infection, this was not statistically significant. There were no significant changes of these tran-

scripts in the liver of RAG1 KO mice at any time postinfection. By contrast, in STAT1 KO

mice, XCL1 and CXCL2 mRNAs were significantly increased only on day 7 postinfection,

while CCL2, CCL7 and CXCL10 mRNAs were significantly increased on day 3 postinfection,

followed by a decline to the mock-infected level by day 7 postinfection. Similar to STAT1 KO

mice, in STAT1/RAG1 DKO mice livers showed a significant increase of CCL2, CCL7 and

CXCL10 mRNAs on day 3 postinfection, which subsequently declined to the mock-infected

levels. However, unlike in STAT1 KO mice, livers of STAT1/RAG1 DKO mice showed a sig-

nificant increase of XCL1 and CXCL2 mRNA on day 3 postinfection, which declined but

remained elevated on day 7 postinfection. By day 35 postinfection, XCL1 mRNA remained

infected WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice to determine the systemic levels of 8 distinct

cytokines and chemokines and combined results from two independent experiments (n = 4–8 per time-point per

genotype) are shown as the mean ± SEM. For significance (one-way ANOVA with Tukey post-test): �, P<0.05

compared with mock-infected mice; ^, P<0.05 compared with WT mice at the respective time points; #, P<0.05

compared with STAT1 KO mice at the respective time points; x, P<0.05 compared with RAG1 KO mice at the

respective time points. No data was collected for LCMV-infected STAT1 KO mice on day 35 postinfection as none

survived.

https://doi.org/10.1371/journal.ppat.1008525.g006
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elevated while CXCL2 mRNA declined to the mock-infected level. On day 7 postinfection, the

levels of XCL1 and CXCL2 mRNAs in the livers of STAT1 KO mice were significantly higher

than in STAT1/RAG1 DKO mice.

Collectively, these findings indicated that adaptive immune cells were dispensable for the

overexpression of chemokine mRNAs (CCL2, CCL7, CXCL10) in the spleen and liver of

LCMV-infected STAT1 KO mice. While the expression of XCL1 and CXCL2 mRNAs was sig-

nificantly enhanced in the absence of adaptive immune cells in the liver of these mice on day 3

postinfection, on day 7 postinfection, adaptive immune cells were required for the heightened

expression of these transcripts and paralleled the degree of leukocyte extravasation in these

mice.

Discussion

Studies using mice deficient for STAT1 have illuminated the central role that STAT1 plays in

determining the outcome of viral infection. We have previously established that following

infection with LCMV, STAT1-deficient mice develop a lethal, immunopathological disease

[22, 23]. However, the relative contribution of the innate versus adaptive immune compart-

ments in this disease remained unclear. Hence, in the current study, we used a genetic model

of RAG1-deficiency, in which adaptive immune cells are non-functional [24]. Our findings

show that STAT1 has extensive involvement in both innate and adaptive immunity–lessening

both the early, inflammatory responses of innate immunity and the sustained, destructive

actions of adaptive immunity.

Our results demonstrate that LCMV infection causes a biphasic disease in STAT1 KO mice.

The first phase is characterized by exaggerated production of cytokines and chemokines,

including IFN-Is and is associated with thrombocytopenia and rapid weight loss. These

changes are non-lethal and independent of adaptive immunity since in the absence of T and B

cells, STAT1/RAG1 DKO mice survived LCMV infection. The initial phase is then followed by

a second phase, which is dependent on adaptive immunity and characterized by sustained

cytokine and chemokine production, systemic neutrophilia, continually excessive leukocyte

extravasation into peripheral organs, progressive weight loss and ultimately, death of these

mice.

Increased virus RNA levels in the absence of STAT1 but not RAG1 on day 3 postinfection

suggests that during the early stages of infection, IFN-Is rather than adaptive immune cells are

critical for inhibiting initial virus replication and spread. Accordingly, increased virus replica-

tion and spread is seen in the absence of the IFN-I receptor [19]. Of note and in contrast to a

previous report [29], RAG1-deficiency did not impair IFN-I responses or dynamics following

LCMV infection. A possible explanation for this dichotomy between our findings and those of

Louten et al. could be differences in the virus dose used, which was 40-fold lower in our study

[29]. Notably, we found that viral load was low or undetectable in RAG1 KO mice on days 3

and 7 postinfection, similar to the findings in LCMV-WE-infected RAG2 KO mice [30].

Fig 7. Adaptive immune cells are necessary for the prolonged and exaggerated expression of IL-6 and IFN-γ
mRNAs in infected organs of LCMV-infected STAT1 KO mice. RPA was performed on total RNA (20 μg) of spleen

(A and B) and liver (A and C) of WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice infected i.p. with LCMV,

to determine the levels of TNF, IL-1β, IL-6 and IFN-γ mRNA. Representative autoradiograph (n = 2–3 per time-point

per genotype) is shown (A) and values from densitometric analysis were normalized to the corresponding L32 loading

control and the combined results from two independent experiments (n = 4–6 per time-point per genotype) expressed

as the mean ± SEM (B and C). For significance (One-Way ANOVA with Tukey post-test): �, P<0.05 compared with

mock-infected mice; ^, P<0.05 compared with WT mice at the respective time-points; #, P<0.05 compared with

STAT1 KO mice at the respective time-points; x, P<0.05 compared with RAG1 KO mice at the respective time-points.

Day 0 PI denotes mock-infected control group.

https://doi.org/10.1371/journal.ppat.1008525.g007
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Müller et al. argued that because LCMV has early tropism for splenic marginal zone, disrupted

splenic microarchitecture in RAG2 KO mice results in lack of early proliferation of the virus

[30]. However, in our study, increased viral RNA levels in STAT1/RAG DKO mice compared

with the RAG1 KO mice in the early days of infection suggests that in RAG1 KO mice, there is

STAT1-dependent, likely IFN-I-dependent, robust, early restriction of viral replication. In

contrast to the early timepoints postinfection, during late stages of infection, LCMV RNA lev-

els were increased in the absence of RAG1, independent of STAT1. This is in line with similar

findings that had demonstrated a critical requirement of adaptive immune cells, especially

CD8+ T cells, to restrict and clear LCMV in WT mice [20, 21]. Interestingly, the degree of

LCMV replication and spread was similar in liver and kidney of STAT1/RAG DKO mice

when compared with STAT1 KO mice, suggesting that there is little contribution of adaptive

immune cells in restricting viral replication in STAT1-deficient mice. The IFN-Is directly pro-

mote the clonal expansion, survival, production of IFN-γ and development of cytotoxic func-

tions of CD8+ T cells [7]. During influenza virus infection, STAT1-deficient mice have

defective CD8+ T cell activation, expansion and survival [31]. Similarly, IFN-I responses are

required for accumulation and effector function of LCMV-specific CD8+ T cells [19].

Although not determined in our study, given the published evidence of a critical requirement

for IFN-I and STAT1 for functionality of CD8+ T cells, it is likely that LCMV-infected STAT1

KO mice have dysfunctional CD8+ T cells. However, our previous finding that depletion of

CD8+ cells does not rescue LCMV-infected STAT1 KO mice [23] argues against a critical role

for CD8+ T cells in the second phase of disease. Interestingly, lethal disease was also observed

in STAT1 KO mice infected with a low dose of the immunosuppressive strain, LCMV clone 13

(S3 Fig). In contrast to liver and kidney, there was significantly more LCMV-NP RNA in

STAT1/RAG1 DKO mice than in STAT1 KO mice in the spleen and lung. While this indicates

possible organ-specific, inhibitory actions of adaptive immune cells on viral replication and

spread in STAT1-deficient mice, it remains to be clarified.

Our findings confirmed previous reports of exaggerated production of IFN-Is in LCMV-

infected STAT1 KO mice compared with WT mice [22, 23]. Moreover, we had demonstrated

that IFN-I production and signaling is necessary for the lethal disease in LCMV-infected

STAT1 KO mice [22]. Our findings here, showed that LCMV-infected STAT1 KO and

STAT1/RAG1 DKO mice had similar systemic levels of IFN-α and -β and local tissue IFN-β
mRNA, suggesting that IFN-I production in LCMV-infected STAT1 KO mice is regulated

largely by innate immunity, while adaptive immunity is dispensable. In addition to increased

IFN-I levels, LCMV infection in the absence of STAT1 resulted in increased levels of pro-

inflammatory cytokines, including IL-6, IFN-γ and IL-5, which have previously been suggested

to contribute to death in LCMV-infected STAT1 KO mice [23]. In contrast to IFN-γ, which is

not required for the lethal disease in LCMV-infected STAT1 KO mice [23], it is conceivable

that IL-6 contributes to this disease. For example, in a systemic inflammatory model of sepsis,

IL-6 has been shown to be deleterious [32]. The high IL-5 levels seen in STAT1 KO and

STAT1/RAG DKO mice may contribute to early weight loss and more severe thickening of the

basement membrane of bronchial epithelial cells, which was exaggerated in STAT1/RAG1

Fig 8. Adaptive immune cells are required for the prolonged and exaggerated expression of XCL1 and CXCL2 mRNAs in LCMV-infected STAT1 KO

mice. RPA was performed on total RNA (20 μg) of spleen (A and B) and liver (A and C) of WT, STAT1 KO, RAG1 KO and STAT1/RAG1 DKO mice infected

i.p. with LCMV, to determine the levels of XCL1, CCL2, CCL7, CXCL2 and CXCL10 mRNA. Representative autoradiograph (n = 2–3 per time-point per

genotype) is shown (A) and values from densitometric analysis were normalized to the corresponding L32 loading control and the combined results from two

independent experiments (n = 4 per time-point per genotype) expressed as the mean ± SEM (B and C). For significance (One-Way ANOVA with Tukey post-

test): �, P<0.05 compared with mock-infected mice; ^, P<0.05 compared with WT mice at the respective time-points; #, P<0.05 compared with STAT1 KO

mice at the respective time-points; x, P<0.05 compared with RAG1 KO mice at the respective time-points. Day 0 PI denotes mock-infected control group.

https://doi.org/10.1371/journal.ppat.1008525.g008
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DKO mice compared with STAT1 KO mice following infection. Indeed, anti-IL5 antibody

treatment inhibits the induction of airway subepithelial fibrosis in a murine model of atopic

asthma, suggesting a pathogenic role for this cytokine in lung pathology [33]. However, it

seems unlikely that IL-5 has an instrumental role in the lethality of LCMV-infected STAT1

KO mice since STAT1/RAG1 DKO mice had greater IL-5 levels than STAT1 KO mice follow-

ing infection, suggesting that adaptive immune cells inhibit the production of IL-5. Notwith-

standing, the precise role of IL-5 in the pathological context of LCMV-infected STAT1 KO

mice needs to be clarified further in future studies.

Arenavirus infection can cause severe hemorrhagic diseases in humans [25]. Similarly, Mis-

umi and colleagues described a mouse model where infection with LCMV causes gross throm-

bocytopenia, vascular leakage and death in the B6/PL strain of mice [28]. Baccala and

colleagues made similar observations in LCMV-Cl13 infected New Zealand Black mice [27]

showing that hemorrhage required IFN-I signaling in nonhematopoietic cells. In our study,

we found that in the absence of STAT1, LCMV infection resulted in severe thrombocytopenia,

which was independent of adaptive immune cells. This is consistent with previous reports

showing that IFN-I can induce thrombocytopenia directly [34, 35]. However, unlike Misumi

et al. and Baccala et al. [27, 28], we did not find evidence of gross vascular leakage or severe

hemorrhaging in LCMV-infected STAT1 KO, evidenced by the lack of significant anemia and

overt bleeding. It remains to be clarified if these differences are due to the virus strain used–

Misumi et al. and Baccala et al. used high dose infection with the immunosuppressive strain

LCMV clone 13 –or if STAT1-dependent IFN-I signaling is required for extensive vascular dis-

ruption to occur.

The greater systemic neutrophilia and neutrophil migration into the liver of LCMV-

infected STAT1 KO mice when compared with STAT1/RAG1 DKO mice was consistent with

the observed differences in the levels of neutrophil chemoattractants CXCL2, CCL1 and

CCL2. Although these findings showed a correlation between the degree of neutrophilia and

severity of disease in these mice, we could not clearly delineate the potential pathological roles

of neutrophils in this model. Our attempts to ablate neutrophils using anti-Ly6G or anti-Gr-1

antibody injection, commonly used approaches, had limited success (S4 Fig). Yet, it is note-

worthy that 20% reduction in neutrophils in infected STAT1 KO mice had no effect on body

weight and survival (S4 Fig), arguing against neutrophils being the primary mediators of

lethality. Instead, in our model, neutrophils may be indicators of the severity of disease, as in

several cases of systemic inflammation (reviewed in [36]).

In the absence of STAT1, LCMV infection results in a distinctive, biphasic disease. The first

innate immunity-driven phase of disease is characterized by rapid weight loss, thrombocytope-

nia, systemic cytokine and chemokine responses and leukocyte infiltration of various tissues.

The second adaptive immunity-driven phase of disease shows continued cytokine and chemo-

kine production, persistent leukocyte extravasation into infected tissues and leads, ultimately,

death of the host. However, when the adaptive immune response is absent, the first phase of

disease largely resolves resulting in survival of the infected host. Taken together, these findings

demonstrate extensive involvement of STAT1 in both innate and adaptive immunity.

Materials and methods

Mice

STAT1 KO mice [37] were originally provided by Dr. Joan Durbin and a breeding colony

maintained at the University of Sydney. RAG1 KO mice [24] were obtained from Animal

Resources Centre (ARC; Canning Vale, Australia). STAT1/RAG1 DKO mice were produced

by interbreeding, and the genotype verified by PCR analysis of tail DNA and by flow
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cytometric analysis of tail vein blood, by confirming the lack of CD4+ and CD8+ T cells. All

mice used were on the C57BL/6 background and were housed in specific pathogen-free condi-

tions in the animal facility of the University of Sydney.

Ethics statement

Ethics approval for all animal experiments was obtained from the animal ethics committee of

The University of Sydney (AEC 1056/16). All animal experiments were performed in compli-

ance with the NSW Animal Research Act and its associated regulations and the 2004 NHMRC

‘Australian code of practice for the care and use of animals for scientific purposes’. Euthanasia

of mice was performed by CO2 or isoflurane inhalation followed by decapitation.

LCMV infection

All mice were 8–16 weeks old at the time of infection and were age- and sex-matched in all

experiments. The LCMV Armstrong 53b stock was obtained originally from a triple plaque-

purified clone that was subsequently passaged twice in BHK cells [38]. For virus inoculation,

mice were given i.p. injection of 500 PFU LCMV-ARM 53b in 200 μl of phosphate buffered

saline (PBS) plus 2.5% fetal bovine serum (FBS). Mock-infected mice received the same vol-

ume of PBS plus 2.5% FBS without the virus.

RNase Protection Assay (RPA)

Total RNA was prepared from snap frozen tissue using TRI Reagent (Sigma-Aldrich, Castle

Hill, Australia) according to the manufacturer’s instructions. RPA was performed using spe-

cific riboprobes as described previously [39–41]. The bands were densitometrically quantified

using ImageJ software [42]. The intensity of each target RNA band was normalized to that of

the loading control, L32 [43].

Hematology

Mice were deeply anaesthetized by halothane inhalation and euthanized by exsanguination via

cardiac puncture. A one-tenth volume of 0.5 M EDTA was added to collected blood to prevent

coagulation and blood smears were prepared. Routine Diff-Quik stain of blood smears were

performed at the Histopathology Core Facility (Department of Pathology, the University of

Sydney). Stained smears were examined under a DM4000B microscope (Leica, Wetzlar, Ger-

many). Bright field images were acquired using a SPOT Flex 15.2 64 Mp Shifting Pixel camera,

and SPOT Advanced 4.5 software (Diagnostic Instruments). To determine hematological

parameters, blood was analyzed using an XP-100 hematology analyzer (Sysmex, Kobe, Japan).

Histology

Once removed, organs were placed immediately in PBS-buffered 4% paraformaldehyde (PFA,

pH 7.4; Sigma-Aldrich) for 24h at 4˚C and were subsequently embedded in paraffin. Histologi-

cal analysis was performed on 5–8 μm thick sections of paraffin-embedded tissue. Routine his-

tology (hematoxylin and eosin (H&E)) of tissue sections was performed at the Histopathology

Core Facility (Department of Pathology, University of Sydney). Stained sections were exam-

ined under a DM4000B bright field microscope (Leica, Wetzlar, Germany). Bright field images

were acquired using a SPOT Flex 15.2 64 Mp Shifting Pixel camera, and SPOT Advanced 4.5

software (Diagnostic Instruments).
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Leukocyte isolation from spleen and liver

On day 7 postinfection, mice were deeply anaesthetized by halothane inhalation and eutha-

nized by exsanguination via cardiac puncture and the mice were perfused with sterile PBS.

The spleens were homogenized and passed through a 70 μm cell strainer. After washing the

strainer with PBS, cells were centrifuged at 460 x g for 10 minutes at 4˚C and washed in fluo-

rescence-activated cell sorting (FACS) buffer (5% FBS, 5 mM EDTA, PBS (pH 7.4)). Livers

were chopped with razor blades and incubated with 20 ml per whole liver in digestion buffer

(100 U/ml Collagenase type IV and 10 U/ml DNase I type IV in Dulbecco’s modified Eagle’s

medium) at 37˚C for 1 h with gentle agitation every 15 minutes. Tissue fragments were dis-

persed and passed through a 70 μm cell strainer. After washing the strainer with FACS buffer,

cells were centrifuged at 460 x g for 15 minutes at 4˚C. The cells were then suspended in 30%

Percoll (GE Healthcare, Castle Hill, NSW, Australia) and layered over 80% Percoll. Samples

were centrifuged at 1,830 x g for 25 minutes with no brake at room temperature, and cells at

the interface were collected and washed in FACS buffer.

Flow cytometry

Single-cell-suspensions of splenocytes and liver leukocytes were stained for cell surface mark-

ers using specific fluorophore-conjugated antibodies optimized for flow cytometry. Reagents

and antibodies used in this study were LIVE/DEAD Fixable Blue Dead Cell Stain (Thermo-

Fisher), CD11b-BUV395 (Clone: M1/70; BD Biosciences), Siglec-F-BUV615 (Clone: E50-

2440; BD Biosciences), NK1.1-BUV661 (Clone: PK136; BD Biosciences), B220-BUV737

(Clone: RA3-6B2; BD Biosciences), CD8α-BUV805 (Clone: 53–6.7; BD Biosciences), MHCII

(I-A/I-E)-BV510 (Clone: M5/114.15.2; BioLegend), CD4-BV570 (Clone: RM4-5; BioLegend),

SCA-1-BV711 (Clone: D7; BioLegend), CD11c-BV785 (Clone: N418; BioLegend), Ly6C-FITC

(Clone: HK1.4; BioLegend), Siglec-H-PerCP/Cy5.5 (Clone: 551; BioLegend), F4/80-PE (Clone:

BM8; BioLegend), CD3ε-PE/Cy5 (Clone: 145-2C11; ThermoFisher), CD80-PE/Cy7 (Clone:

16-10A1; BioLegend), CD115-AF594 (Clone: AFS98; BioLegend), CCR2-APC (Clone: 475301;

R&D Systems), CD45-AF700 (Clone: 30-F11; BioLegend), CD48-APC/Cy7 (Clone: HM48-1;

BioLegend), Ly6G-Biotin (Clone: 1A8; BioLegend; with secondary antibody streptavidin-

DyLight 800; ThermoFisher). Stained and fixed (4% PFA; 10 min in the dark) cells were ana-

lyzed with a Becton Dickson custom 10-laser ‘LSR-II’ flow cytometer and FlowJo software

(v.10.4.1).

Cytokine and chemokine quantification

Enzyme-linked immunosorbent assay (ELISA) kits (InvivoGen) were used to measure IFN-α
and IFN-β in the plasma following the manufacturer’s instructions. The plates were scanned

with FLUOstar Omega microplate reader. Limits of detection: IFN-α, 7.8–500 pg/ml and IFN-

β, 15.6–1000 pg/ml. A Q-plex array (Quansys Biosciences) was used to determine cytokine

and chemokine levels in plasma. The plate was scanned with Odyssey Infrared Imaging System

(LI-COR Biosciences) and analyzed with Q-View (Quansys Biosciences). Limits of detection:

TNF, 4.12–3000 pg/ml; IL-1β, 19.2–14000 pg/ml; IL-5, 6.86–5000 pg/ml; IL-6, 6.86–5000 pg/

ml; IFN-γ, 10.97–8000 pg/ml; CCL1, 5.6–4000 pg/ml; CCL2, 4.12–3000 pg/ml; CCL22, 5.6–

4000 pg/ml.

Statistical analysis

For the survival curve, statistical significance was calculated using Log-rank; Mantel-Cox test.

P-value of less than 0.05 was considered significant. Statistical significance was calculated
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using two-way ANOVA (when there were equal number of timepoints postinfection per geno-

type) or one-way ANOVA (when there were disproportionate number of timepoints postin-

fection per genotype) of group data with Tukey’s post-test when assessing the differences in

the levels of RNA and proteins and cell numbers between different genotypes of mice at differ-

ent time postinfection. All statistical analyses were performed in Prism 7 software (GraphPad).

Supporting information

S1 Fig. Representative gating strategy for flow cytometric analysis of leukocytes from

mock-infected WT spleen is shown. P1: CD8+ T cells, P2: CD4+ T cells, P3: B cells, P4: plas-

macytoid dendritic cells (pDCs), P5: natural killer (NK) cells, P6: eosinophils, P7: Ly6Gint neu-

trophils, P8: Ly6Ghi neutrophils, P9: CD8α+ dendritic cells (DCs), P10: CD11b+ DCs, P11: F4/

80hi CD11blo macrophages, P12: immature granulocytes, P13: Ly6Chi monocytes, P14: Ly6Clo

monocytes.

(TIF)

S2 Fig. RAG1-deficiency causes disruption of splenic architecture independent of infection

with LCMV. Representative H&E images of spleen. Scale bar = 250 μm. Representative images

from 3 independent experiments are shown. No images were collected for LCMV-infected

STAT1 KO mice on day 35 postinfection as none survived.

(TIF)

S3 Fig. LCMV-Cl13-infected STAT1 KO mice succumb to lethal wasting disease. WT

(n = 6) and STAT1 KO mice (n = 6) were infected with 1000 pfu of LCMV-Cl13 i.p. as

described in Materials and Methods. (A) Weight changes postinfection. (B) Survival outcome.

For significance (one-way ANOVA with Tukey post-test): �, P<0.05 for STAT1 KO mice com-

pared with WT mice.

(TIF)

S4 Fig. Anti-mouse Ly6G or Gr-1 antibody-mediated reduction of neutrophils does not

rescue LCMV-infected STAT1 KO mice from lethal wasting disease. LCMV-infected

STAT1 KO mice were injected with PBS (n = 8) or Ly6G antibody (500 μg) (n = 6) on one day

prior to infection and days 2 and 5 postinfection. (A) Weight changes post-infection. Black

arrow–antibody injection; Red arrow–virus inoculation (B) Percentage of neutrophils

(SSC-Ahi CD11bhi Ly6G+) in peripheral blood on day 7 postinfection, as determined by flow

cytometric analysis. LCMV-infected STAT1 KO mice were injected with PBS (n = 5) or Gr-1

antibody (250 μg) (n = 6) on one day prior to infection and days 1, 3, 5 and 6 postinfection.

(C) Weight changes post-infection. Black arrow: antibody injection; Red arrow: virus inocula-

tion (D) Percentage of neutrophils in peripheral blood on day 7 postinfection, as determined

by Sysmex XP-100. Bar and error bars represent mean ± SEM. For significance (Mann-Whit-

ney U test): �, P<0.05 compared with PBS-injected mice.

(TIF)
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