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    Introduction 
 Mitochondria perform a multitude of cellular activities that are 

essential for a cell ’ s life and death. There is evidence that mito-

chondrial morphology and distribution depend on interactions 

with the cytoskeleton, although the molecular mechanisms in-

volved are hardly understood ( Toivola et al., 2005 ;  Anesti and 

Scorrano, 2006 ). A connection of mitochondria with intermedi-

ate fi laments (IFs) was suggested some 25 years ago ( Toh et al., 

1980 ), and several IF proteins have been associated with mito-

chondrial functions since then. Mutations in the neurofi lament 

protein NF-L gene have been shown to affect mitochondrial dis-

tribution ( Perez-Olle et al., 2005 ), and an aberrant mitochondrial 

distribution in keratinocytes was observed in some patients with 

epidermolysis bullosa simplex caused by mutations in keratins 5 

and 14 genes ( Uttam et al., 1996 ). Furthermore, the ablation of 

desmin in the mouse results in characteristic alterations in distri-

bution, number, morphology, and respiratory activity of mito-

chondria (for review see  Capetanaki et al., 2007 ). The question 

of whether the interaction between IFs and mitochondria occurs 

directly or is mediated by linker proteins remains to be solved. 

 The highly versatile IF-based cytolinker protein plectin 

( Wiche, 1998 ) would be an interesting candidate for mediating 

the interactions between IFs and mitochondria. The versatility of 

plectin is largely caused by complex splicing events in the 

N-terminal region of its gene that give rise to 11 alternatively spliced 

isoforms containing different fi rst exons (1 – 1j;  Elliott et al., 1997 ; 

 Fuchs et al., 1999 ). The expression patterns of these isoforms are 

cell type – dependent, and some of the expressed variants have 

been shown to differ in their subcellular localization ( Rezniczek 

et al., 2003 ). By forced expression in fi broblasts, isoform plectin 1b 

(P1b) was found to be specifi cally targeted to mitochondria 

( Rezniczek et al., 2003 ). Here, we analyzed the mode of P1b –

 mitochondrion interaction and show that this interaction affects 

the shape and network formation of mitochondria. 

 Results and discussion 
 Mitochondrion-associated P1b is an 
outer membrane – anchored protein facing 
the cytosol 
 First, we analyzed the mode of P1b interaction with mitochondria 

and the topology of its molecular subdomains. After subcellular 

fractionation of mouse fi broblasts, the distribution of P1b was found 

to be very similar to that of genuine mitochondrial proteins but dif-

ferent from other plectin isoforms (Fig. S1, A and B, available 
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accessible to proteinase K but become degraded after membrane 

permeabilization with detergent. We observed that P1b – 8 EGFP 

was degraded by this proteinase, as monitored using P1b-specifi c 

antibodies ( Fig. 1 C ). When anti-GFP antibodies were used, 

a 27-kD fragment was detected, which corresponds to protease-

resistant GFP ( Cubitt et al., 1995 ). These results suggested that 

P1b was inserted into the outer mitochondrial membrane via its 

N-terminal portion containing the isoform-specifi c 1b sequence, 

whereas the bulk of the protein was exposed to the cytosol. 

 The isoform 1b-specifi c sequence serves as 
signal-anchor domain 
 To investigate whether the exon 1b – specifi c sequence was suffi -

cient for mitochondrial targeting, corresponding cDNA ex-

pression constructs with N- or C-terminal EGFP tags (EGFP-E1b 

and E1b-EGFP) were transfected into fi broblasts. As shown in 

 Fig. 2 A , the staining pattern of E1b-EGFP clearly coincided with 

that of MitoTracker, whereas EGFP-E1b was evenly distrib-

uted throughout the cytoplasm without showing mitochondrial 

accumulation. Deletion mutagenesis ( Fig. 2 B ) revealed that the 

at http://www.jcb.org/cgi/content/full/jcb.200710151/DC1). 

To determine the submitochondrial localization of P1b, we gener-

ated a stable cell line expressing a truncated version of P1b 

(encoded by exons 1b – 8 and carrying a C-terminal EGFP tag; 

P1b – 8 EGFP) in an otherwise plectin null (P0) background. 

Cells expressing a similar fusion protein of plectin isoform 1 

(P1 – 8 EGFP) or EGFP alone were generated as controls. The dis-

tribution of P1b – 8 EGFP in these cells was indistinguishable 

from that of mitochondria ( Fig. 1 A ). Upon subcellular fraction-

ation, P1b – 8 EGFP was found in the mitochondrial pellet, in 

contrast to P1 – 8 EGFP, which remained in the cytosolic fraction 

( Fig. 1 B ). To distinguish nonspecifi c association from mito-

chondrial membrane insertion, isolated mitochondria were sub-

jected to alkaline extraction ( Ryan et al., 2001 ), whereupon 

peripheral proteins such as cytochrome  c  (cyt  c ) become solu-

ble, whereas integral membrane proteins (porin) prove to be ex-

traction resistant. Because P1b – 8 EGFP, in contrast to EGFP, 

remained insoluble, it could be classifi ed as a mitochondrial 

membrane protein ( Fig. 1 B ). Proteins residing entirely inside 

of mitochondria such as ATP synthase (ATPS) and cyt  c  are not 

 Figure 1.    Submitochondrial localization of P1b.  (A) 
Colocalization of P1b – 8 EGFP with mitochondria in 
stably transfected P0 fi broblasts visualized using anti-
GFP antibodies and MitoTracker. Bar, 20  μ m. (B) Cell 
lysates and cytosolic and mitochondrial fractions were 
obtained from fi broblasts stably expressing P1b – 8 EGFP, 
P1 – 8 EGFP, or EGFP. Mitochondria were extracted with 
sodium carbonate, and insoluble pellet (Na 2 CO 3 -P) and 
soluble supernatant (Na 2 CO 3 -S) fractions were subjected 
to immunoblotting. White lines indicate that intervening 
lanes have been spliced out. (C) Mitochondria were left 
untreated or lysed with Triton X-100 before the addition of 
indicated amounts of proteinase K.   
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localize with mitochondria and to accumulate in discrete regions 

of vimentin (vim)-positive fi laments ( Fig. 3 A,  a – e). In cells with 

high level expression of P1b, a collapse of mitochondrial as well 

as of vim networks was observed ( Fig. 3 A, f – j ). Forced expression 

of P1, an isoform not associating with mitochondria, led to a col-

lapse of IFs but not of mitochondria, which supports the notion 

that the latter phenotype was isoform 1b – specifi c ( Fig. 3 B ). 

 To confi rm that the linkage of IFs to mitochondria was 

mediated by plectin, immortalized P0 fi broblasts ( Osmanagic-

Myers and Wiche, 2004 ) and their wild-type (wt) counterparts 

were subjected to subcellular fractionation ( Fig. 3 C ). Compara-

ble amounts of ATPS, actin, and vim were detected in the lysates 

from both cell types. Actin, a cytoskeleton marker protein, was 

also detected in the cytosolic fraction without showing differ-

ences. In contrast, a  > 20-fold increase in soluble vim was ob-

served in the cytosolic fraction of P0 compared with wt fi broblasts 

( Fig. 3 D ). Even more importantly, the amount of vim found in 

mitochondrial extracts from P0 cells was signifi cantly reduced to 

nearly 40% of wt levels ( Fig. 3 E ). Although these results clearly 

indicated a role of plectin in linking cytoskeletal networks to 

mitochondria, they fell short of enabling a distinction between 

effects of general plectin defi ciency and specifi c loss of P1b. 

 Generation of P1b-defi cient mice 
enables isoform-specifi c assessment of 
mitochondrion – IF linkage 
 To prove that the interaction of mitochondria with IF networks 

was P1b-specifi c, we generated a mouse line that selectively lacks 

isoform-specifi c (exon 1b – encoded) sequence of P1b was in-

deed suffi cient for mitochondrial targeting, as long as it was lo-

cated at the N terminus of the protein. 

 One class of mitochondrial outer membrane proteins, re-

ferred to as signal-anchored proteins ( Shore et al., 1995 ), is tar-

geted and anchored to the organelle by a single transmembrane 

domain (residing in the N-terminal regions of the proteins) and its 

fl anking sequences. Although such proteins do not share any se-

quence similarity in their signal-anchor domain ( Rapaport, 2003 ), 

a moderate transmembrane domain hydrophobicity and a net posi-

tive charge at the C-terminal fl anking region of the membrane-

spanning segment were found to be crucial ( Waizenegger et al., 

2003 ). Based on the membrane protein topology prediction 

method TMHMM ( Krogh et al., 2001 ), P1b ’ s transmembrane 

domain spans from aa 5 to 27 ( Fig. 2 C ). The mean hydropathic-

ity of this transmembrane domain, calculated according to the 

scale of Kyte and Doolittle (ExPASy, ProtParam tool; http://ca

.expasy.org/tools/protparam.html), was 1.491, which corresponds 

to moderate hydrophobicity. Furthermore, the net charge of the 

C-terminal fl anking region of this transmembrane domain is 

positive, making the isoform-specifi c sequence of P1b fi t per-

fectly to this model. 

 P1b links IFs to mitochondria 
 To assess whether mitochondria-anchored P1b serves as a dock-

ing site for IFs, primary fi broblasts were transiently transfected 

with EGFP-tagged full-length P1b and analyzed using immuno-

fl uorescence microscopy. EGFP-tagged P1b was found to co-

 Figure 2.    The amino acid sequence encoded by plectin exon 1b 
serves as a mitochondrion-targeting signal.  (A) Fibroblasts ex-
pressing the exon 1b – specifi c sequence, C- or N-terminally fused 
to EGFP (E1b-EGFP and EGFP-E1b, respectively), were visualized 
using MitoTracker and anti-GFP antibodies. Bar, 20  μ m. (B) Sche-
matic representation of plectin fragments tested and their mito-
chondrial targeting potential. Plectin ’ s domain structure is shown 
on top, and actin- (ABD) and IF-binding (IF-BD) domains, the rod 
domain (ROD), and C-terminal plectin repeat domains 1 – 6 (black 
circles) are indicated. (C) Amino acid sequence (residues 1 to 38) 
encoded by exon 1b. Positively charged residues are depicted in 
bold letters and negatively charged residues in gray; the trans-
membrane domain is shaded gray.   
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isoform 1b but expresses all others (Fig. S2, A – D, available at 

http://www.jcb.org/cgi/content/full/jcb.200710151/DC1). P1b-

defi cient (P1b  � / �  ) mice were viable and fertile, and revealed 

no obvious phenotype when compared with their wt littermates 

(not depicted; for phenotypic analyses of P1b  � / �   fi broblasts, 

 Figure 3.    Association of P1b with vim IFs.  (A) Fibroblasts expressing P1b EGFP were immunolabeled using antibodies to vim (a and f), GFP (b and g), 
and cyt  c  (c and h). Note the P1b colocalization with both mitochondria and IF networks in defi ned regions (e). In cells expressing high levels of the 
fusion protein (f – j), a collapse of mitochondrial as well as IF networks was observed. Boxed areas in panels d and i are shown enlarged in panels e 
and j, respectively. Bars: (a – d and f – i) 20  μ m; (e and j) 5  μ m. (B) Cells expressing P1 instead of P1b. Bar, 20  μ m. (C) Immortalized wt and P0 fi broblasts 
were fractionated, and equal amounts of total lysates and cytosolic and mitochondrial fractions were analyzed. (D and E) Signal intensities of protein 
bands in C were densiometrically measured and normalized to the signals of actin (D) or ATPS (E). Values (mean  ±  SEM) represent protein levels of cyto-
solic (D) and mitochondrial fractions (E). (F) Fibroblasts derived from wt and P1b  � / �   mice were subjected to subcellular fractionation and analyzed by 
immunoblotting. White lines indicate that intervening lanes have been spliced out. (G) Statistical analyses of data shown in F (mean  ±  SEM). **, P  <  0.01; 
***, P  <  0.001.   

see Fig. S2, E – H). When fi broblasts isolated from these mutant 

mice were subjected to subcellular fractionation ( Fig. 3 F ), 

ATPS, actin, and vim were maintained in cell lysates at levels 

that were comparable to those of wt cells, which is reminis-

cent of the situation of P0 fi broblasts ( Fig. 3 C ). Contrary to 
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this reduction. To our knowledge, P1b is the fi rst protein 

shown to act as a direct linker between IFs and the mito-

chondrial network. 

 P1b defi ciency leads to elongation 
of mitochondria 
 Interactions between IFs and mitochondria have been sug-

gested to contribute to organelle morphology and cytoplasmic 

P0 fi broblasts, the cytosolic fractions of P1b  � / �   cells contained 

no soluble vim. In the mitochondrial fraction of P1b  � / �   cells, 

the amount of vim was found decreased to 66% of the corre-

sponding wt level ( Fig. 3 G ), validating that the interaction of 

mitochondria with the IF network was mediated by P1b. As the 

reduction was more prominent in P0 compared with P1b  � / �   

mitochondrial fractions (39 vs. 66%), the additional lack of 

isoforms other than P1b in P0 cells apparently contributed to 

 Figure 4.    Morphology of mitochondria in wt, P1b  � / �  , and P0 fi broblasts.  (A) Mitochondria of wt (a and d), P1b  � / �   (b and e), and P0 fi broblasts (c and f) 
were visualized using antibodies to cyt  c . Morphologies were classifi ed as fragmented, tubular, or intermediate, as exemplifi ed in panels d, e, and f, 
which represent magnifi cations of the boxed areas shown in a, b, and c, respectively. Bars: (a – c) 20  μ m; (d – f) 5  μ m. (B) Morphologies of wt ( n  = 239), 
P1b  � / �   ( n  = 226), and P0 ( n  = 204) mitochondria (mean  ±  SEM). *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. (C) Statistical evaluation of mitochondrial 
morphologies in primary myoblasts derived from wt ( n  = 238 cells) and P1b  � / �   ( n  = 253 cells) mice. Values represent mean  ±  SEM. (D) P1b  � / �   fi broblasts 
expressing P1b EGFP were immunolabeled using anti – cyt  c  and anti-GFP antibodies. Magnifi cations of boxed areas in panel c are shown in panels d and e. 
Note the reversion of the mitochondrial phenotype characteristic of P1b  � / �   cells in the transfected cell (e) but not in the adjacent untransfected cell (d). Bars: 
(a – c) 20  μ m; (d and e) 10  μ m. (E and F) Rescue effi ciencies (mean  ±  SEM) determined by analyzing P1b  � / �   (E) or P0 cells (F) expressing P1b ( n  = 165 
and  n  = 109, respectively) or P1 ( n  = 69 and  n  = 82, respectively).   
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 Figure 5.    Analysis of mitochondrial parameters in P1b-defi cient cells.  (A) FACS measurements of mitochondrial membrane potentials in wt, P1b  � / �  , and 
P0 cells exposed to MitoTracker. (B) Mitochondrial mass monitored using the fl uorescent dye NAO. (C) Analysis of apoptotic predisposition of wt, P1b  � / �  , 
and P0 cells (only wt cells are shown). After incubation with 1  μ M staurosporine (STS) for 6 h, nuclei were analyzed by confocal microscopy using Hoechst 
dye. Bar, 20  μ m. (D) Statistical analyses of apoptotic cells containing condensed or fragmented DNA. (E) Statistical analyses of mitochondrial motility. 
Values represent mean  ±  SEM. (F) Analyses of mitochondrial movement according to the covered distance (classifi ed as movement over distances of 1 – 5, 
5 – 10, and  > 10  μ m). (G) ROIs (white circles) were activated in fi broblasts expressing mito-PAGFP with 405-nm light followed by time-lapse confocal 
microscopy. To highlight the fl uorescence decrease, images are depicted as false-colored projections. Bar, 20  μ m. (H) Changes in fl uorescence intensity in 
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nonactivated (black) and activated (red) ROIs. (I) Evaluation of mitochondrial fl uorescence decrease over time. Values represent mean  ±  SEM.  n  = 50 (wt), 
47 (P1b  � / �  ), and 53 (P0) ROIs analyzed. (J) Cells expressing P1b EGFP were immunolabeled using antibodies to Drp-1 (a) and GFP (b). Mitochondrial 
fi ssion sites were characterized by Drp-1 staining (arrowheads) as depicted in panels d, e, and f, which represent magnifi cations of the boxed areas shown 
in a, b, and c, respectively. Bars: (a – c) 20  μ m; (d – f) 5  μ m.   

 

distribution ( Anesti and Scorrano, 2006 ). Thus, we monitored 

the shape of mitochondria in P1b  � / �  , P0, and wt fi broblasts us-

ing cyt  c –  specifi c immunostaining. As exemplifi ed in  Fig. 4 A , 

mitochondrial networks were classifi ed as fragmented, inter-

mediate, or tubular (for detailed classifi cation criteria, see Ma-

terials and methods). Interestingly, although in wt fi broblasts, 

63, 30, and only 7% of the mitochondria exhibited intermediate, 

fragmented, and tubular morphology, respectively, in P1b  � / �   

fi broblasts, the fragmented type was reduced to 9% and the tu-

bular type increased to 37% ( Fig. 4 B ). Thus, in P1b  � / �   cells, 

there was a dramatic shift from the small and fragmented mito-

chondrial network type to the elongated type. In P0 fi broblasts, 

we found very similar alterations in mitochondrial morphol-

ogy, with 13 and 36% of cells exhibiting fragmented and tubular 

mitochondrial networks, respectively ( Fig. 4 B ). This sug-

gested that the observed alterations in mitochondrial morphol-

ogy were entirely due to the lack of P1b, with no other isoform 

of plectin being involved. A similar phenotype was revealed in 

primary P1b  � / �   myoblasts ( Fig. 4 C ). 

 Next, we assessed the potential of full-length P1b to revert 

the mitochondrial phenotype of P1b  � / �   fi broblasts ( Fig. 4 D ). 

In parallel, we performed similar experiments with the alternative 

isoform P1, which in fi broblasts is expressed at 2 ×  higher levels 

than P1b ( Abrahamsberg et al., 2005 ). Quantitative analyses re-

vealed that 32% of transfected cells harbored fragmented mito-

chondria, whereas only 11% contained mitochondria of tubular 

morphology ( Fig. 4 E ). As the corresponding values measured 

in wt cells were 30 and 7%, respectively ( Fig. 4 B ), this analysis 

clearly showed that P1b expressed by force led to a reversion of 

the mitochondrial phenotype characteristic of P1b  � / �   fi broblasts. 

For P1, hardly any rescue potential was observed ( Fig. 4 E ). 

When, in a similar experiment, full-length P1b was introduced 

in P0 fi broblasts, the rescue potential of P1b on a P0 background 

was practically undiminished compared with the P1b  � / �   back-

ground ( Fig. 4 F ). 

 P1b, a mitochondrial platform for 
signaling complexes? 
 It was conceivable that mitochondria become anchored to IFs 

via P1b primarily in those subcellular regions where they are 

needed most for metabolic or homeostatic reasons. To investi-

gate P1b-dependent mitochondrial parameters, the membrane 

potential and mass of mitochondria in P1b  � / �  , wt, and P0 pri-

mary fi broblasts were comparatively assessed using MitoTracker 

and 10- n -nonyl-acridine orange (NAO) staining, respectively. 

No signifi cant differences between the cell types were revealed, 

however ( Fig. 5, A and B ). The same was true when the apopto-

tic predisposition of cells were analyzed after incubation with 

staurosporine ( Fig. 5, C and D ). 

 Potentially, increased mitochondrial motility could indi-

rectly lead to an increase in mitochondrial length. However, when 

wt, P1b  � / �  , and P0 fi broblasts were transfected with cDNA en-

coding an ATPS subunit 9 presequence fused to EGFP (mito-

GFP) and the velocities of mitochondrial movement were 

analyzed by time-lapse video microscopy, no signifi cant differ-

ences were found, except for a trend toward a higher velocity in 

P0 cells ( Fig. 5, E and F ). The velocity increase of P0 compared 

with P1b  � / �   mitochondria was probably caused by abnormalities 

of IF network cytoarchitecture typical for P0 but not P1b  � / �   cells 

( Osmanagic-Myers et al., 2006 ; unpublished data). Nevertheless, 

these differences in cytoarchitecture are unlikely to contribute to 

the observed mitochondrial phenotype, as P1b  � / �   and P0 cells 

displayed similar mitochondrial morphology ( Fig. 4 B ). 

 To assess whether changes in mitochondrial fusion rates 

were a cause for differences in mitochondrial length, wt, P1b  � / �  , 

and P0 fi broblasts were transfected with a mitochondrial ma-

trix – targeted photoactivatable GFP (mito-PAGFP;  Karbowski 

et al., 2004 ). Selected regions of interest (ROIs) were acti-

vated using a short laser beam, and redistribution of the photo-

activated protein out of the activated ROIs was monitored 

( Fig. 5 G ). When changes of fl uorescence intensities within 

activated and nonactivated ROIs were measured over a time 

period of 60 min, P1b  � / �   and P0 fi broblasts showed unaltered 

mitochondrial fusion dynamics compared with wt cells ( Fig. 5, 

H and I ). Furthermore, when fi broblasts expressing GFP-tagged 

full-length P1b were immunolabeled using antibodies to the 

mitochondrial fi ssion site marker Drp-1, P1b showed partial 

colocalization with Drp-1-marked sites but did not appear to 

accumulate there ( Fig. 5 J ). 

 Increasing evidence indicates that plectin serves the cell 

not merely as a structural element but also as a scaffolding plat-

form of proteins involved in signaling. Among others, plectin was 

shown to bind and sequester the receptor for activated C kinase 1 

(RACK1) to the cytoskeleton, thereby infl uencing PKC sig-

naling pathways ( Osmanagic-Myers and Wiche, 2004 ). Given 

that the various plectin isoforms are targeted to different cellu-

lar locations, it is quite conceivable that P1b, as a mitochondrial 

outer membrane protein, could act as a scaffolding platform for 

signaling molecules proximal to mitochondria. To test this hypoth-

esis, we prepared cellular subfractions from P1b  � / �   and wt 

fi broblasts that had been exposed (or not) to the PKC activator 

PMA. A quantitative analysis of autophosphorylated (activated) 

PKC (pan), PKC � / � II, and PKC � , as well as of RACK1 and 

AMP-activated protein kinase (AMPK)  � 1/2, levels in total ly-

sate fractions revealed no differences between the two cell types 

(Fig. S3, A and B, available at http://www.jcb.org/cgi/content/

full/jcb.200710151/DC1). Interestingly, however, in the mito-

chondrial fraction from PMA-treated P1b  � / �   cells, activated 

PKC �  was decreased to nearly 70% of wt levels (Fig. S3, C and D), 

whereas all other proteins tested remained unaffected. Thus, 

P1b seemed to be at least partially involved in recruiting acti-

vated PKC �  to mitochondria. 
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 Immunofl uorescence and time-lapse video microscopy 
 Cells were fi xed with 4% PFA, permeabilized with 0.1% Triton X-100, and 
immunostained using antibodies to GFP (Invitrogen), cyt  c , Drp-1 (both from BD 
Biosciences), and vim (P. Traub) in combination with donkey anti – rabbit IgG 
Alexa Fluor 488 (Invitrogen), donkey anti – mouse IgG Rhodamine red, donkey 
anti – mouse IgG Cy5, and donkey anti – goat IgG Texas red (all from Jackson 
ImmunoResearch Laboratories). Microscopy was performed at room tempera-
ture using a confocal microscope (LSM 510; Carl Zeiss, Inc.) equipped with a 
Plan-Apochromat 63 ×  1.4 NA objective lens (Carl Zeiss Inc.). Images were re-
corded using the LSM510 module and the LSM software (Carl Zeiss Inc.) and 
processed using the Photoshop 7.0 (Adobe) software package. 

 Mitochondrial morphologies were classifi ed as fragmented (individ-
ual round- or rod-shaped organelles,  > 80% displaying an axial length of 
 < 5  μ m), intermediate (majority  � 5  μ m), or tubular (often interconnected in 
branched networks,  > 80% displaying a length of  > 5  μ m). Because of their 
smaller size, myoblast mitochondria were classifi ed as fragmented (round, 
 < 2  μ m) or elongated (tubular,  > 2  μ m). 

 Cells expressing mito-PAGFP (from R.J. Youle, National Institute of 
Neurological Disorders and Stroke, National Institutes of Health, Bethesda, 
MD) were kept in a closed POCmini cultivation system (Carl Zeiss, Inc.). 
Photoactivation of mito-PAGFP was performed as described previously 
( Karbowski et al., 2004 ), using a confocal microscope (LSM Live DuoScan) 
and a Plan-Apochromat 63 ×  1.4 NA objective lens (Carl Zeiss, Inc.). 

 Fibroblasts were transfected with cDNA encoding ATPS subunit 9 pre-
sequence (provided by N. Pfanner, Institute of Biochemistry and Molecular 
Biology, University of Freiburg, Freiburg, Germany) fused to EGFP (mito-
GFP), and live-cell imaging was performed using an inverted microscope 
(Axiovert S100TV; Carl Zeiss, Inc.) as described previously ( Osmanagic-
Myers et al., 2006 ). Frames were collected with a Plan-Apochromat 100 ×  1.4 
NA objective lens (Carl Zeiss, Inc.) and individual mitochondria were tracked 
using Metamorph 6.3 software (MDS Analytical Technologies). 

 Flow cytometry 
 Cells were resuspended in medium containing 1  μ M NAO or 0.1  μ M Mito-
Tracker red CMXRos, incubated for 15 min at 37 ° C in the dark, and ana-
lyzed using a cytometer (LSR1; BD Biosciences). 

 Online supplemental material 
 Fig. S1 shows the subcellular localization of isoform 1b. Fig. S2 depicts 
the targeted disruption of P1b for generating knockout mice, Southern blot 
analysis, and PCR to identify mutant ES cell clones and mouse lines, as well 
as an RNase protection assay and the analyses of adhesion, migration, and 
proliferation properties of P1b  � / �   fi broblasts. Details about the generation 
of P1b  � / �   mice are provided in the legend. Fig. S3 presents a subcellular 
fractionation after PMA treatment. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200710151/DC1. 
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with the phenotypic analysis of primary fi broblasts derived from 

these animals, we were able to establish a direct link between P1b 

expression and mitochondrial shape. Mitochondrial morphology 

might be regulated by anchoring mitochondrial membranes or 
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 Materials and methods 
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