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Abstract

As the spread of COVID19 in the US continues to grow, local and state officials face difficult

decisions about when and how to transition to a “new normal.” The goal of this study is to

project the number of COVID19 infections and resulting severe outcomes, and the need for

hospital capacity under social distancing, particularly, shelter-in-place and voluntary quaran-

tine for the State of Georgia. We developed an agent-based simulation model to project the

infection spread. The model utilizes COVID19-specific parameters and data from Georgia

on population interactions and demographics. The simulation study covered a seven and a

half-month period, testing different social distancing scenarios, including baselines (no-

intervention or school closure only) and combinations of shelter-in-place and voluntary quar-

antine with different timelines and compliance levels. The following outcomes are compared

at the state and community levels: the number and percentage of cumulative and daily new

symptomatic and asymptomatic infections, hospitalizations, and deaths; COVID19-related

demand for hospital beds, ICU beds, and ventilators. The results suggest that shelter-in-

place followed by voluntary quarantine reduced peak infections from approximately 180K

under no intervention and 113K under school closure, respectively, to below 53K, and

delayed the peak from April to July or later. Increasing shelter-in-place duration from four to

five weeks yielded 2–9% and 3–11% decrease in cumulative infection and deaths, respec-

tively. Regardless of the shelter-in-place duration, increasing voluntary quarantine compli-

ance decreased daily new infections from almost 53K to 25K, and decreased cumulative

infections by about 50%. The cumulative number of deaths ranged from 6,660 to 19,430

under different scenarios. Peak infection date varied across scenarios and counties; on

average, increasing shelter-in-place duration delayed the peak day by 6 days. Overall, shel-

ter-in-place followed by voluntary quarantine substantially reduced COVID19 infections,

healthcare resource needs, and severe outcomes.
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Introduction

The novel coronavirus SARS-CoV-2 causes a rapidly spreading respiratory illness, Coronavi-

rus Disease 2019 (COVID19), which has become a pandemic [1]. During the early stages of a

pandemic, medical interventions, such as vaccines or antiviral treatments, are either non-exis-

tent or extremely limited [2]. Hence, local, national, and global governments and public offi-

cials wrestle with the difficult decisions of how, when, and where to implement non-medical

interventions [3]. The decision-makers also need to understand how the type and duration of

interventions, as well as the public’s compliance levels, impact their effectiveness [4].

In this study, we developed an agent-based simulation model to predict the spread of

COVID19 geographically and over time. The model captures both the natural history of the

disease and interactions in households, workplaces, schools, and communities [5–9]. The

model was populated with COVID19 parameters from the literature and population-related

data from the State of Georgia, including demographic information, household sizes, and

travel patterns, and validated using data regarding COVID19 confirmed infections and deaths

in Georgia. The model’s outputs include new daily infections (symptomatic and asymptomatic

by age group), hospitalizations, and deaths at the census tract level.

We utilized the model to evaluate the effectiveness and impact of non-medical social-dis-

tancing interventions, including school closure, shelter-in-place (SIP), and voluntary quaran-

tine (VQ) [6, 10–16]. We tested various scenarios with different durations and time-varying

compliance levels for interventions to inform decision-makers about potential social distanc-

ing recommendations to be shared with the public. We also developed a hospital resource esti-

mation decision-support tool, which takes as input the model’s daily COVID19-related

hospitalization estimates, and predicts the number of hospital beds, ICU beds, and ventilators

needed geographically (at the county level) and over time. We then aggregated these estimates

across the fourteen coordinating hospital regions in Georgia, to provide insights about poten-

tial capacity shortages in the healthcare system [17].

Methods

Study population

Population in Georgia stratified by age groups 0–4, 5–9, 10–19, 20–64, 65+. In Georgia there

are 1,336,490, 1,418,910, 6,685,870, and 1,356,730 people in age groups 0–9, 10–19, 20–64, and

65 or over, respectively, with a total population of approximately 10,519,000 [18, 19].

Infection projection model

We adapted an agent-based simulation model with heterogeneous population mixing to pre-

dict the spread of the disease geographically during the study period of February 18, 2020 to

September 30, 2020 [5–8]. The model captures the natural history of the disease at the individ-

ual level, by age group, as well as the infection spread via a contact network consisting of inter-

actions in households, peer groups (workplaces, schools), and communities, with different

rates of transmission [13, 20–25].

The model was populated with COVID19-specific parameters [20–22, 26–40] and data

from Georgia, including household type [18], household size [18], children status [18, 41],

workflow [42], and population demographics [18] at the census tract level. To seed the model,

we utilized the confirmed infection data for Georgia, at the county level [43].

The main assumptions in the model were (1) every individual is in one of the following

states at any given time (see Fig 1): susceptible (S), exposed (E), transition (IP), asymptomatic

(IA), symptomatic (IS), hospitalized (H), recovered (R), or dead (D) and (2) three levels of
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mixing in the population: (i) community (day and night), (ii) peer groups (day), and (iii)

household (night). During the exposed state, an infected individual shows no symptoms and

does not infect others. During the transition state an infected individual shows no symptoms

but could infect others. From the transition state, an infected individual moves to the symp-

tomatic or the asymptomatic state.

S1 Appendix provides additional details on the model implementation. Table 1 provides

the input model parameters, and Fig A in S1 Appendix provides model validation using

COVID19 confirmed cases and deaths reported in Georgia.

Fig 1. Model descriptions. Agent-based model incorporates the natural history of the disease for each individual agent, by age group, and the

interactions at the household, peer group, and community, across different geographic areas. Outcome measures reported are averages of 30

replications ran for each scenario.

https://doi.org/10.1371/journal.pone.0239798.g001

Table 1. Model parameters.

Parameters Estimates References

Probability of Symptomatic 0.63 [26, 27, 38–40]

[44]

Probability of Hospitalization 0.016 for age 0–19, 0.18 for age 20–64,

0.30 for age 65+

[21]

Probability of Death 0 for age 0–19, 0.103 for age 20–64,

0.375 for age 65+

[21, 44]

Reproductive Number (R0) 2.4 [28–30]

Transmission Rate (β) 1.02 [29]

Exposed Duration Weibull with mean 4.6 days [20, 26, 32, 45]

Transition Duration 0.5 days [20]

Hospitalized Duration Exponential with mean 7 days [20, 34, 44]

Symptomatic Duration Exponential with mean 2.9 days [22]

Symptomatic-Asymptomatic Duration Ratio 1.5 [20]

Proportion of Transmission that Occurs at the

Transition or Asymptomatic Stage (θ)

0.48 [35]

Proportion of Infections Generated by those who are

Asymptomatic (ω)

0.24 [35]

Percentage of hospitalizations that require ICU 0% for age 0–19, 29.9% for age 20–64,

35.1% for age 65+

[21, 44]

Percentage of ICU patients that require ventilation 64% [46]

ICU Duration (days) 8 [36]

Ventilation Duration (days) 6 [47]

Descriptions and references for the model input parameters.

https://doi.org/10.1371/journal.pone.0239798.t001
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Intervention analysis

The following baseline scenarios and social distancing interventions are analyzed in our study:

1. No intervention (NI)–the population interacts with each other normally;

2. School Closure (SC)–no peer group interactions among children (i.e., no K-12 school

interactions);

3. Voluntary Quarantine (VQ)–All household members stay home if a household member

experiences symptoms, until the entire household is symptom-free.

4. Shelter-in-Place (SIP)–Household members stay home complying with a state order.

5. Voluntary Shelter-in-Place (VSIP)–Household members choose to follow SIP voluntarily.

Household members complying with SIP, VSIP, or VQ do not engage in peer group or

community interactions. Compliance levels (<100%) under SIP, VSIP, and VQ probabilisti-

cally determine individual compliance and corresponding community interactions.

NI and SC were considered as baselines for comparison. In Scenarios 1–9, SIP durations (4,

5, and 6 weeks) and gradually decreasing post-SIP VQ compliance levels (low, medium, high)

were tested (Fig 2); shelter-in-place was in effect for 4 weeks (April 3-April 30) in Georgia [48].

Because all K-12 schools in Georgia were closed starting March 16, 2020 until the end of July,

Scenarios 1–9 assumed school closure. Additionally, after the end of SIP in Scenarios 1–9,

Fig 2. Intervention scenarios. Description of the intervention scenarios considered in this study.

https://doi.org/10.1371/journal.pone.0239798.g002
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decreasing compliance with voluntary shelter-in-place was considered, chosen to be in line

with social mobility indicators [49]. Further details on the choice of VSIP compliance levels

can be found in S1 Appendix.

Healthcare resource needs projection model

The hospitalization output from the simulation model was used to estimate the daily demand

for hospital beds (general inpatient beds and intensive care unit (ICU) beds) and ventilators

for COVID19 patients. Daily hospital bed demand was calculated by aggregating the number

of hospital beds needed in the previous day with the number of new hospitalizations, minus

the proportion of the population that was discharged from the hospital based on the average

hospitalization duration. ICU bed and ventilator demand were estimated using the percentage

of hospitalized patients that require ICU (by age), average ICU duration, percentage of ICU

patients that require ventilation, and the average ventilation duration.

We derived county-level risk factors (see Fig B in S1 Appendix) by applying the principal

component analysis [50] on several factors known to impact a higher risk of complications

and severe outcomes for COVID19 infections, including prevalence of asthma, diabetes, obe-

sity, smoking, cardiovascular disease and chronic conditions [51]. We then adjusted the esti-

mated demand using these risk factors.

S1 Appendix and Table 1 provide additional details on the estimation approach and the

input model parameters along with their references.

Outcome measures

The outcome measures considered for the study period include:

• New Infection Count (NIC): number of daily new symptomatic and asymptomatic infections.

• Infection attack rate (IAR): cumulative percentage of the population infected.

• Peak infection (PI): maximum percentage of the population infected on a given day.

• Peak day: The day when NIC is highest.

• Clinical attack rate (CAR): percentage of symptomatic infections among the total

population.

• Hospital Bed Demand (HB): number of hospital beds (general inpatient and ICU beds)

needed due to severe outcomes among the infected.

• Intensive Care Unit Bed Demand (ICUB): number of ICU beds needed due to severe out-

comes among the infected.

• Ventilator Demand (V): number of ventilators needed due to severe outcomes among the

infected.

Results

State-level outcome measure analysis

Fig 3 shows the NIC outcome for all scenarios. Table 2 includes summaries across all scenarios

and outcomes. Fig A in S1 Appendix and S1, S2 Figs provide state-level outcomes for Scenarios

1–9.

The maximum NIC was approximately 180K (April 18th) and 113K (April 26th) under NI

and SC, respectively. Under Scenarios 1–9, the maximum NIC was below 53K, with the earliest
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Fig 3. State level outcomes: NIC under all scenarios; 4-week, 5-week and 6-week SIP scenarios. NIC under all scenarios including baseline (top left plot),

NIC under 4-week SIP followed by Low (Scenario 1), Medium (Scenario 2), High (Scenario 3) VQ compliance (top right plot), NIC under 5-week SIP

followed by Low (Scenario 4), Medium (Scenario 5), High (Scenario 6) VQ compliance (bottom left plot), NIC under 6-week SIP followed by Low (Scenario

7), Medium (Scenario 8), High (Scenario 9) VQ compliance (bottom right plot).

https://doi.org/10.1371/journal.pone.0239798.g003

Table 2. Statewide outcome measures.

Cumulative Peak

Peak Infection (%) Peak Day IAR % CAR % Deaths Hospitalizations Infections HB ICUB V

NI 1.67 18-Apr 59.15 37.26 30646 193089 6387094 33979 11356 5702

SC 1.05 26-Apr 50.31 31.70 27356 173196 5432630 23638 7995 3970

Scenarios 1 0.49 28-Jul 37.81 23.74 19431 127589 4082885 11166 3804 1861

2 0.38 22-Aug 31.47 19.60 15209 104050 3398305 8753 2993 1454

3 0.25 28-Sep 19.45 11.95 8509 61535 2100760 5638 1922 940

4 0.48 5-Aug 37.03 23.20 18850 124248 3998923 11197 3823 1861

5 0.37 2-Sep 29.62 18.36 13566 95984 3197887 8728 2980 1452

6 0.25 29-Sep 17.71 10.85 7734 55673 1912008 5484 1858 914

7 0.47 15-Aug 35.65 22.27 17481 118664 3849091 10911 3717 1816

8 0.37 8-Sep 27.45 16.93 12205 88083 2963912 8720 2984 1448

9 0.23 29-Sep 15.36 9.40 6662 47910 1658130 4659 1573 781

Statistical summaries that compare baseline and intervention scenarios with respect to Peak Infection (%), Peak Day, IAR (%), CAR (%), Cumulative Deaths,

Cumulative Hospitalization, Cumulative Infections, Peak HB, Peak ICUB, and Peak V.

https://doi.org/10.1371/journal.pone.0239798.t002

PLOS ONE The impact of social distancing on COVID19 spread: State of Georgia case study

PLOS ONE | https://doi.org/10.1371/journal.pone.0239798 October 12, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0239798.g003
https://doi.org/10.1371/journal.pone.0239798.t002
https://doi.org/10.1371/journal.pone.0239798


peak in July. Compared to NI and SC, in Scenarios 1–9 NIC was at least 36% and 25% lower,

and approximately 2.3 million and 1.4 million fewer people infected, respectively. Extending

SIP by 1–2 weeks or following SIP by high VQ further reduced NIC and delayed the peak day.

Similar trends were observed for CAR, with the number of symptomatic infections reducing

by more than 36% and 25%, compared to NI and SC, respectively.

Increasing the SIP duration from four to five weeks (i.e., extending by one week) yielded a

decrease of approximately 2–9% in IAR and CAR, approximately 3–10% in cumulative hospi-

talizations, and 3–11% in cumulative deaths. Increasing the SIP duration from five to six

weeks (i.e., extending by two weeks) yielded a decrease of approximately 4–13% in IAR,

4–14% in cumulative hospitalizations, and 7–14% in cumulative deaths.

Higher VQ compliance after SIP, regardless of the SIP duration, decreased the peak NIC

from approximately 53K to 25K and decreased IAR by up to 57%.

SC had a lower IAR outcome than NI, but led to similar severe outcomes (cumulative

deaths and hospitalizations). Healthcare resource demand estimates (HB, ICUB, and V) were

about 30% lower under SC versus NI. In the absence of social distancing interventions,

approximately 30,640 and 27,350 people in Georgia were projected to die, and approximately

193,080 and 173,190 people were projected to be hospitalized under NI and SC, respectively.

The total number of deaths for Scenarios 1–9 ranged from 6,662 (Scenario 9) to 19,431

(Scenario 1); the number hospitalized was between 47,910 (Scenario 9) and 127,589 (Scenario

1); peak hospital bed needs ranged from 4,659 (Scenario 9) to 11,166 (Scenario 1). Peak ICU

bed and ventilator needs ranged from 1,573 (Scenario 9) to 3,804 (Scenario 1) and from 781

(Scenario 9) to 1,861 (Scenario 1), respectively. Scenario 9, where SIP extended until mid-May

followed by high VQ, provided the lowest cumulative infections, hospitalizations, and deaths.

Infection spread outcome measure analysis by county

Tables A and B in S1 Appendix include the estimated peak day and percentage by county

across all scenarios. S3 Fig includes the maps of the NIC by county for different dates.

Peak day varied across scenarios and counties; however, on average, increasing SIP dura-

tion by one week moved the peak day by 6 days across counties. Each week of SIP extension

delayed the peak day by an average of 6–7 days in the most populated counties (e.g., Fulton,

Gwinnett, Cobb, DeKalb, Chatham) and 3–6 days in smaller counties (e.g., Glascock, Clay,

Webster, Quitman, Taliaferro), respectively. Increasing VQ compliance from low to medium

and from medium to high delayed the peak day by an average of 24 and 19 days, respectively.

In most scenarios, rural counties peaked on average 5 days later compared to urban counties.

Differences in the peak day observed in rural and urban counties were mostly consistent across

the scenarios.

PI fluctuated depending on SIP duration. Rural counties and urban counties did not differ

much in terms of PI. See S1 Appendix for examples of an analysis of urban and rural counties

in Georgia.

The NIC was highest in the densely populated Fulton county and other surrounding coun-

ties in the Atlanta metropolitan area across all scenarios.

Healthcare resource needs analysis by coordinating hospital region

Fig 4 presents the healthcare resource peak demand under Scenario 2, by hospital region. (A

map of the 14 coordination hospital regions of Georgia can be found in [52].) Fig 5 shows the

hospital and ICU bed needs over time for region N under Scenario 2. Similar patterns were

observed for other scenarios.
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The highest need for COVID19-related healthcare resources was in region D, with 3,117

hospital beds, 1,058 ICU beds, and 516 ventilators. Region D includes three of the top four

populous counties in Georgia. The four regions with the highest need across all outcomes were

regions D, F, J, and N, which are regions that include populous counties.

Fig 4. COVID19-related peak healthcare resource demand for 4-week SIP, Medium VQ compliance post-SIP. COVID19-related hospital bed

(top left plot), ICU bed (top right plot), and ventilator (bottom center plot) peak needs for 4-week SIP, Medium VQ compliance post-SIP (Scenario 2).

https://doi.org/10.1371/journal.pone.0239798.g004

Fig 5. COVID19-related healthcare resource demand over time for region N for 4-week SIP, Medium VQ compliance post-SIP.

COVID19-related hospital bed (left plot) and ICU bed (right plot) needs over time for region N under 4-week SIP, Medium VQ compliance post-

SIP (Scenario 2).

https://doi.org/10.1371/journal.pone.0239798.g005
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There is a gap between HB and ICUB demand and availability around the peak day in

many regions. For example, consider region N under Scenario 2. The peak hospital bed need

for COVID19 patients is projected to occur around September 2nd with a demand of 1,164

beds, yet the estimated staffed hospital bed availability for all (including non-COVID19)

patients is 1,607 [53]. Peak ICU bed demand for COVID19 patients was projected as 396, also

occurring around September 2nd whereas estimated availability for all patients is 134.

Discussion

During the early phases of a pandemic, in the absence of a vaccine or effective treatments,

non-medical interventions are of utmost importance. During COVID19, the majority of

schools in the US closed around mid-March for the remainder of the school year [54], and

governors issued shelter-in-place orders [55] during March or April. Many states ended their

shelter-in-place orders towards the end of April or early May, given the financial, social, and

psychological impacts of shelter-in-place. For example, in Georgia, schools closed on March

16, 2020 [56], shelter-in-place orders were issued on April 3, 2020, transitioning out of shelter-

in-place started on April 24, 2020 [57], and shelter-in-place officially ended on April 30, 2020.

The number of new COVID19 confirmed infections in Georgia have rapidly increased since

early June [46]. In this paper, we analyzed the impact of shelter-in-place duration and social

distancing compliance levels, particularly voluntary quarantine, using data from Georgia.

For baseline comparisons, we ran two scenarios: no intervention and school closure only.

We tested nine intervention scenarios, assuming school closures starting on March 16, 2020,

followed by shelter-in-place on April 3, 2020. In these nine scenarios, we modeled a slowly

increasing social distancing compliance prior to school closures, shelter-in-place durations of

4–6 weeks, voluntary shelter-in-place and voluntary quarantine compliance levels of low,

medium, and high after the end of shelter-in-place. Our study period extended through the

end of September.

Compared to Scenarios 1–9, infections are higher in the baseline scenarios, with peak infec-

tions occurring around mid-to-late April. Scenarios 1–9 show that shelter-in-place could sig-

nificantly slow down the disease spread, protecting public health, and offering the opportunity

for better preparedness of healthcare resource capacity. Each week extension of shelter-in-

place (beyond 4 weeks) could delay the peak day by about 6 days.

Social distancing (modeled by voluntary quarantine compliance) showed a significant

impact on all outcome metrics, particularly, peak day and peak infections. Depending on social

distancing compliance levels, the peak infections under low compliance levels could exceed

50K. State level peak percentage could also decrease significantly as the voluntary quarantine

compliance increases, observing the same effect of post shelter-in-place compliance at the

county level as well.

After the end of shelter-in-place, voluntary quarantine compliance had a significant impact

on COVID19-related deaths, which could approach 20K by the end of September in the case

of low voluntary quarantine compliance. The death numbers could be even higher because the

demand would significantly exceed healthcare capacity, especially around the peak.

Infection spread across counties varied over time, with earlier peak days in some counties

compared to others, which impacts resource allocation decisions across the state. For example,

in Scenario 1 (shelter-in-place 4 weeks, low voluntary quarantine compliance after shelter-in-

place), several of the larger counties could reach their peak around late July, with the peak days

of other counties extending to late July or mid-August. Similarly, there was a variation among

counties in terms of the peak infection percentage under different voluntary quarantine com-

pliance levels.
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Estimates for COVID19-related needs for hospital beds, ICU beds, and ventilators sug-

gested shortages in all scenarios across the 14 coordinating hospital regions in Georgia. Even if

all available hospital resources were used for COVID19 patients, at the peak, these resources

would still not be sufficient for some of the regions. In some regions, the shortage would con-

tinue for several weeks. These results further emphasize the importance of voluntary shelter-

in-place and high compliance levels for social distancing after the end of state-mandated shel-

ter-in-place.

During shelter-in-place, the withdrawal of a large percentage of the population (e.g., 80%,

depending on compliance level) from interactions raises social and economic concerns.

Hence, voluntary quarantine is an effective intervention if widely adopted, but significantly

less disruptive than shelter-in-place.

Another important advantage of voluntary quarantine is the ease of communication and

implementation. When COVID19 diagnostic testing capacity is limited, voluntary quarantine

can be implemented based on symptoms. Household members are advised to stay home if

there is a person with cold- or flu-like symptoms in the household (even in the absence of test-

ing or confirmation of COVID19), until the entire household is symptom-free. High compli-

ance with voluntary quarantine would reduce not only the spread of COVID19 but would

have the side benefit of also reducing the spread of the cold or flu.

Limitations

Most of the limitations of this study lie in the limited data available regarding COVID19 infec-

tion and transmission, and the related parameters (which were drawn from the literature),

which impact the natural history and severe outcomes for the study period. While we incorpo-

rated Georgia data on household types and sizes, children status, workflow, and population

demographics, our model made assumptions about the peer-to-peer interactions between dif-

ferent age groups, which impact the virus transmission under various intervention strategies.

Testing of a wide range of scenarios enabled a better understanding of the impact of social dis-

tancing compliance on COVID19 outcomes. This study did not consider the usage of face cov-

erings; the projected infections and deaths would decrease, but the relative effectiveness of

interventions would not change with the use of face coverings.

Conclusions

As states continuously evaluate the benefits versus social and economic costs of non-pharma-

ceutical interventions such as school closures and shelter-in-place, our results suggest that

there needs to be a very strong messaging to the public about social distancing. It is important

to re-emphasize that some people might be infected with little or no symptoms and infect oth-

ers [58]. Voluntary quarantine is one form of social distancing that is easy to communicate; it

reduces infection spread (both from symptomatic and asymptomatic individuals), but does

not entirely prevent the spread. There may be households with COVID19 infection, and yet no

household member might be experiencing symptoms–these households would not be

impacted by voluntary quarantine. Therefore, while it is essential to promote voluntary quar-

antine, strongly encouraging households to continue voluntary shelter-in-place, to the extent

possible, or other forms of social distancing would help slow the spread of COVID19. It is also

important to enact policies and guidelines for promoting voluntary quarantine at the local and

national levels. Without such policies, compliance will be low, and hence, such interventions

will become quickly ineffective.
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Supporting information

S1 Appendix. Data sources, model description and model inputs.

(DOCX)

S1 Fig. State level outcomes: IAR, CAR, HB, ICUB, V across all scenarios. State Level Out-

comes: IAR (first row left plot), CAR (first row right plot), HB (second row left plot), ICUB

(second row right plot), V (third row center plot) across all scenarios (including the baseline

scenarios).

(TIF)

S2 Fig. State level outcomes: NIC for low, medium, and high levels of VQ after 4, 5, and 6

weeks of SIP. Daily new COVID19 infections when Low VQ is combined with 4 week (Sce-

nario 1), 5 week (Scenario 4), 6 week (Scenario 7) SIP (top left plot), Medium VQ is combined

with 4 week (Scenario 2), 5 week (Scenario 5), 6 week (Scenario 8) SIP (top right plot), High

VQ is combined with 4 week (Scenario 3), 5 week (Scenario 6), 6 week (Scenario 9) SIP (bot-

tom center plot).

(TIF)

S3 Fig. Number of new infections per 100,000 people. Four maps of Georgia at the county

level recording the number of new infections per 100,000 people for June 23, 2020 (using the

actual number of infections), July 15, 2020 (simulated data from our model), August 15, 2020

(simulated data), and September 15, 2020 (simulated data), respectively [59].

(TIF)

S1 Dataset. Outcome measures for Scenarios 1–9, NI, and SC.

(XLSX)

S2 Dataset. Hospital bed, ICU bed, and ventilator demand for NI. The number of people

that need hospital beds, ICU beds, and ventilators is recorded for each hospital region under

NI.

(XLSX)

S3 Dataset. Hospital bed, ICU bed, and ventilator demand for SC. The number of people

that need hospital beds, ICU beds, and ventilators is recorded for each hospital region under

SC.

(XLSX)

S4 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 1. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 1.

(XLSX)

S5 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 2. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 2.

(XLSX)

S6 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 3. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 3.

(XLSX)

S7 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 4. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region
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under Scenario 4.

(XLSX)

S8 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 5. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 5.

(XLSX)

S9 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 6. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 6.

(XLSX)

S10 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 7. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 7.

(XLSX)

S11 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 8. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 8.

(XLSX)

S12 Dataset. Hospital bed, ICU bed, and ventilator demand for Scenario 9. The number of

people that need hospital beds, ICU beds, and ventilators is recorded for each hospital region

under Scenario 9.

(XLSX)

S13 Dataset. Average number of people in each state of the simulation for the first 226

days. Data values are averages from the 30 runs. The various states recorded are susceptible,

exposed, pre-symptomatic, symptomatic, asymptomatic, recovered, hospitalized and dead.

Since the simulation is based on the population of Georgia, and each entity in the simulation

represents ten people, all data values recorded are based on one-tenth of the population of

Georgia, that is, there are a total of roughly one million people in the simulation.

(XLSX)

S14 Dataset. Average number of daily new infections in the simulation for the first 226

days. Data values are averages from the 30 runs. The number of children, adults, elderly and

total number of people infected on a given day in the simulation is recorded. Since the simula-

tion is based on the population of Georgia, and each entity in the simulation represents ten

people, all data values recorded are based on one-tenth of the population of Georgia, that is,

there are a total of roughly one million people in the simulation.

(XLSX)

S15 Dataset. Average number of daily new symptomatic infections in the simulation for

the first 226 days. Data values are averages from the 30 runs. The number of children, adults,

elderly and total number of people who developed symptoms on a given day in the simulation

is recorded. Since the simulation is based on the population of Georgia, and each entity in the

simulation represents ten people, all data values recorded are based on one-tenth of the popu-

lation of Georgia, that is, there are a total of roughly one million people in the simulation.

(XLSX)
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S16 Dataset. Average number of daily new hospitalizations in the simulation for the first

226 days. Data values are averages from the 30 runs. The number of children, adults, elderly

and total number of people who are hospitalized on a given day in the simulation is recorded.

Since the simulation is based on the population of Georgia, and each entity in the simulation

represents ten people, all data values recorded are based on one-tenth of the population of

Georgia, that is, there are a total of roughly one million people in the simulation.

(XLSX)

S17 Dataset. Average number of daily new infections in the simulation for the first 226

days in counties. Data values are averages from the 30 runs. Since the simulation is based on

the population of Georgia, and each entity in the simulation represents ten people, all data val-

ues recorded are based on one-tenth of the population of Georgia, that is, there are a total of

roughly one million people in the simulation.

(XLSX)
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