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Abstract: The gut microbiome is involved in the host’s metabolism, development, and immunity,
which translates to measurable impacts on disease risk and overall health. Emerging evidence sup-
ports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable
staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects
of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice
were fed an obesogenic diet formulation with or without 35% of the protein component comprised
by each of four commonly consumed pulses—lentil (Lens culinaris L.), chickpea (Cicer arietinum L.),
common bean (Phaseolus vulgaris L.), or dry pea (Pisum sativum L.). Mice consuming pulses had
distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity
ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes
and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in
pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaf-
fected by most of the pulses was identified. These compositional changes are accompanied by shifts
in predicted metagenome functions and are concurrent with previously reported anti-obesogenic
physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption.

Keywords: lentil; chickpea; dry pea; common bean; pulses; high-fat diet; gut microbiome; cecal
microbiota; mice

1. Introduction

The foods we eat directly contribute to our physical health and making better di-
etary choices can reduce disease risk [1,2]. However, current challenges in both nutrition
and agriculture, including overpopulation that increases consumer demand and climate
change that affects agricultural production, can reduce access to nutrient-dense whole
foods. Concomitantly, reduced physical activity and a faster pace of life have created a
worldwide milieu in which low-quality dietary patterns are considered “normal,” despite
their contribution to an increasing burden of chronic diseases [3]. Improvement of dietary
behaviors may benefit from the promotion of “novel superfoods” that provide ease of
consumption, health benefits, and sustainability, and therefore fit well into the contempo-
rary way of life [4]. Nevertheless, everything new is a well-forgotten old: pulses, a candidate
category of superfoods, are nutritious, healthful, economical, ecologically sustainable, and
gastronomically diverse foods that have been consumed by people across the globe for
over ten millennia [5].

Pulses are leguminous dry grains, popular in culinary culture for their high protein
and fiber content, making them a suitable alternative to foods of animal origin when
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compared to other plant foods that typically do not possess abundant protein [6]. With low
amounts of fat and a high content of slowly digested carbohydrates, consumption of pulses
lowers the glycemic index of a dietary pattern, creating a potential avenue to address
chronic metabolic diseases, including diabetes and obesity [7]. Pulses also contain bioavail-
able micronutrients and bioactive compounds, such as potassium, iron, and vitamins as
well as phenols, tannins, and flavonoids, which contribute to their health benefits [8]. The
healthfulness of this staple food can manifest not only from consuming pulses as whole
foods but also from the incorporation of pulses as a food ingredient [5]. Overall, regular
pulse consumption has been associated with lower levels of inflammation and oxidative
stress, improved weight management, lower risk of developing cardiovascular diseases and
various types of cancer, and even increased longevity [9]. And yet, despite the extensive
research on the benefits of pulses and the consequences of their consumption, an important
question remains—what are the mechanisms underlying pulse-induced health improvements?

The gastrointestinal tract is a frontline mediator of effects that consumed foods ex-
ert on health and well-being, but there is more to this than just digestion and extraction
of nutrients, absorption thereof, and removal of the wastes. Emerging research high-
lights the crucial role of the bidirectional effects between diet and gut microbiota on host
health [10,11]. Intestinal bacteria contribute to the digestion of dietary components and
synthesize vitamins, essential amino acids, short-chain fatty acids, and other bioactive
compounds that affect not only local gut health but the overall health of the host [3,12]. A
major part of the dietary impact on whole-body physiology may indeed be mediated by the
gut microbiota, and such evidence is increasing rapidly [3,11–14]. Likewise, components of
the diet stimulate or suppress specific groups of bacteria to modulate the composition of
the gut microbiota and its downstream metabolite production. Identifying such eco-groups
would allow the creation of a framework for describing the pattern of gut microbial changes
in response to pulse consumption [15].

Despite many reports of the health benefits from the consumption of pulses, the
data on their effects on gut microbiota composition and function are limited, and to our
knowledge, a comparative analysis of effects on the gut microbiome among pulses has
not been reported. Protein, polyphenols, and especially dietary fiber are major factors that
drive changes in gut microbial communities and these components vary among pulses [6].
The work reported herein compares the impact of the four most consumed pulses—lentil
(Lens culinaris L.), chickpea (Cicer arietinum L.), common bean (Phaseolus vulgaris, L.), or
dry pea (Pisum sativum L.)—on microbiome composition and its predicted function in a
murine model. The objective of this effort is to provide insights about pulse-associated
microbial profiles and their potential role in maintaining health and well-being, as well as
in disease pathogenesis, with the goal of identifying the gut microbial eco-groups affected
by consumption of each pulse.

2. Materials and Methods
2.1. Experimental Design

This study was performed in accordance with the Colorado State University Institu-
tional Animal Care and Use Committee (protocol 18-7746A). Anthropometric data from this
study were initially reported in [16]. In the experiment presented here, cecal content from
that study was subjected to a detailed analysis of the gut microbial ecosystem. Briefly, male
21–28-day-old NCI C57BL/6NCrl mice were purchased from Charles River Laboratories
International, Inc., (Frederick, MD, USA). A total of 72 weanling mice were housed in
solid bottomed polycarbonate rodent cages and maintained on a 12 h light/dark cycle
at 27.5 ± 2 ◦C with 30% relative humidity with ad libitum access to the purified high-fat
diet and distilled water. Mice were adapted to the purified diet formulation and animal
husbandry routine during a 2-week timeframe (3 to 5 weeks of age). At 5 weeks of age,
mice were randomized by body weight and assigned to their experimental diet groups
(n = 6–8/group): The Control cohort was sustained on the high-fat diet (pulse-free); other
diet groups consumed the high-fat formulation with lentil, chickpea, common bean, or
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dry pea powder replacing 35% of the protein content (Table 1). All the mice were fed
their respective diets for 17 weeks. At 22 weeks of age, the experiment was terminated
as animals were euthanized by cervical dislocation after isoflurane-induced anesthesia.
Subsequently, the content of the ceca was harvested and snap-frozen in liquid nitrogen
prior to DNA extraction. This study differs from other reports in that a single animal
feeding experiment included the four pulses, while the vendor, shipment, and animal
husbandry practices were the same, and thus their associated differences were minimized.

Table 1. Formulations of experimental diets.

Ingredient High-Fat Pulse-Free Control 1 High-Fat Pulse-Based Diet 1,5

g/100 g g/100 g

Solka-Floc 6.46 0
Pulse Crop 5 0 40

Casein 25.85 17.05
Cerelose 16.15 0
Sucrose 8.89 0.3

Vitamin mix 2 1.29 1.29
DL-Methionine 0.39 0.39
L-Tryptophan 3 0 0.01

Choline bitartrate (41% choline) 0.26 0.26
Mineral mix 4 5.82 5.82

Soybean oil 3.23 3.23
Lard 31.66 31.66

1 Experimental diets modified from the original diet formulations; 2 Dyets #310025 AIN-93G vitamin mix; 3 Sigma
T0254-25G L-Tryptophan; 4 Dyets #210025 AIN-93G mineral mix; 5 Dumas nitrogen(%) of complete diet mixture
before oil was added: high fat, 6.3; chickpea, 5.8; dry pea, 6.3; lentil, 6.5; kidney bean, 7.0.; For each pulse
treatment group, the whole pulse was cooked and processed with the leachate, freeze-dried, and homogenized
into a fine powder.

2.2. 16S rRNA Gene Library Preparation and Sequencing

DNA from cecal contents collected at necropsy was extracted using the QIAamp
PowerFecal DNA kit (Qiagen, Germantown, MD, USA) following the manufacturer’s
protocol, then checked for purity (260/280 and 260/230 ratios) and concentration via
NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA). Paired-end sequencing libraries
of the V4 region of the 16S rRNA gene were constructed using the 515F-806R primer set
according to the Earth Microbiome Project protocols [17], followed by sequencing using
the MiSeq Reagent Kit v2 2 × 250 bp on an Illumina MiSeq instrument (Next-Generation
Sequencing Facility at Colorado State University).

2.3. Sequence Processing

The resulting forward and reverse paired-end sequence reads were processed with
QIIME 2 platform, version 2021.2 [18]. Sequences were demultiplexed without Golay error
correction and denoised by DADA2 pipeline [19]: each sequence pair was trimmed at 13 bp
and truncated from 155 bp, checked for chimeras, and filtered for quality control. Taxonomy
was assigned to amplicon sequence variants (ASVs) using Naive Bayes classifier [20,21]
pre-trained on Greengenes (16S rRNA, version 13_8) marker gene reference database
trimmed to the V4 domain (bound by the 515F/806R primer pair) with 99% sequence
identity threshold [22]. The dataset was filtered to remove all features annotated as
“mitochondria” and “chloroplast.” Based on the remaining features found in our data, a
rooted phylogenetic tree was generated. The resulting dataset was used in two output
forms—the raw abundance tables for ASVs and their respective taxonomic assignments.

2.4. Statistical and Bioinformatics Analyses

Data analysis was conducted in MicrobiomeAnalyst web-based platform [23,24] using
the Marker-gene Data Profiling module therein. High-quality read counts ranged from
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31,369 to 96,177 per sample. Features with less than two counts were automatically removed
by pre-processing steps of MicrobiomeAnalyst’s integral Sanity Check. Data were further
filtered for low abundance—a minimum of 10% samples contained at least four counts—as
well as for the low variance—5% based on the inter-quantile range were removed. Total
sum scaling (TSS) was performed to normalize the data. Consequently, the resulting
datasets comprised an abundance table with 395 ASVs as well as an abundance table of
their taxonomic composition mapped to 48 bacterial communities.

α-diversity was calculated from resulting ASV counts, analyzed via Chao1 and Shan-
non’s indices, and statistically compared using the Kruskal-Wallis non-parametric test
on the feature level of taxonomy across the diet groups. Principal component analysis
(PCoA) of β-diversity distances matrix based on Bray-Curtis index as well as Weighted
and Unweighted UniFrac metrics were assessed on the feature level of ASV tables using
permutational multivariate analysis of variance (PERMANOVA).

Phyla level analyses were performed on abundance tables obtained from Microbiome-
Analyst post filtering. Ratios were calculated by dividing raw Control counts from each
phylum by their respective pulse-based groups. Pairwise comparison was performed in
R studio (R version 4.1.1) using the Kruskal-Wallis and Dunn tests with the Benjamini-
Hochberg method of p-values adjustment.

The method of Random Forests Classification was used to determine a ranked list of
the most important predictive bacterial taxa (biomarkers) able to discriminate among the
diet groups [25]. The algorithm used 5000 trees and seven predictors with a randomness
setting “on” to create a model trained on the feature level of the abundance data table
of taxa.

Bacterial biomarkers were also discovered using the linear discriminant analysis (LDA)
effect size (LEfSe) method [26]. Briefly, this algorithm allows detection of differentially
abundant taxa among the experimental groups using the Kruskal-Wallis test and then
evaluates their relevance via LDA score. LEfSe was performed on the feature level of the
taxa table using cutoffs at less than 0.05 for the FDR-adjusted p-value and beyond the
absolute value of 2.0 for the logarithmic LDA score.

Variation of taxonomic abundance related to the diet group was visualized on a
heatmap after Ward’s hierarchical clustering algorithm based on Minkowski distances.
Feature level was used for the analysis of the taxa-assigned abundance table.

Correlation analysis was performed to build a correlation network between bacte-
rial pairs using Sparse Correlations for Compositional data (SparCC) algorithm [27] with
100 permutations in MicrobiomeAnalyst. Only bacteria that passed the correlation thresh-
old 0.4 and 0.7, as well as p-value threshold 0.05, were included in the results.

Functional attributes of the identified microbial communities were predicted using
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2
(PICRUSt2) pipeline, version 2.4.1 [28]. With the previously obtained ASVs dataset as
an input, PICRUSt2 performs phylogenetic placement by aligning ASVs to the reference
16S sequences (HMMER, www.hmmer.org) and incorporating them into the reference
tree (evolutionary placement algorithm (EPA)-NG and genesis applications for phyloge-
netic placement analysis (GAPPA) [29,30], followed by the hidden-state prediction of gene
families (castor R package [31]) and, finally, generation of metagenomic predictions and tab-
ulation of pathways’ inferences and abundances (Minimal set of Pathways (MinPath) [32]
and MetaCyc [33]. Statistical analysis of taxonomic and functional profiles (STAMP) soft-
ware, version 2.1.3 (Robert Beiko, Halifax, NS, Canada), was used to analyze and visualize
PICRUSt2 output data [34]. In brief, the pulse-free Control group and samples from pulse-
based diet groups were compared using Welch’s two-sided t-test with 0.95 Welch’s inverted
CI method and Benjamini-Hochberg FDR multiple test corrections method. Changes in
pathways with effect size below 20% for difference between proportions and above 1.5-fold
ratio of proportions were considered relevant.

www.hmmer.org
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3. Results
3.1. Overall Response to Pulse Consumption

After filtering and normalization steps (described in Section 2.1), the final dataset
contained 395 ASVs that were mapped to 48 bacterial groups at different taxonomic levels.
The bacteria were distributed among eight phyla (Figure 1).
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Figure 1. Relative abundance of identified Phyla across individual samples per each diet formulation.

Bacteroidetes and Firmicutes were the most abundant across all diet groups, followed
by Proteobacteria. The pulse-based diet groups had a 2.5–4.9-fold increase in the Bac-
teroidetes abundance in comparison to the pulse-free Control, with the Bean diet having
the lowest and the Lentil having the highest fold change. The latter two pulse groups also
had a 1.7- and 1.4-fold decrease in Firmicutes levels, respectively, compared with the pulse-
free Control diet, whereas Chickpea and Dry Pea diet groups had comparable amounts
thereof. The Firmicutes to Bacteroidetes ratio was 3.3 for the pulse-free Control and ranged
from 0.48 to 0.97 among the pulses, with the Lentil group exhibiting the lowest value. Pro-
teobacteria was the third most abundant phylum, especially in the pulse-free Control diet
(32% of the total, represented predominantly by bacteria from the Deltaproteobacteria class).
The abundance of Proteobacteria decreased 16–29.2-fold in the pulse-based diets. Both
Bean and Lentil groups were also distinguished by a higher abundance of Verrucomicrobia,
represented by A. muciniphila (2.1- and 5.2-fold increase, respectively, versus the pulse-free
Control). Deferribacteres were 2.9–19.5-times more abundant, whereas Tenericutes were
less present in the control diet (Table 2). Interestingly, unlike the pulse diet groups, the
pulse-free Control group did not have any representatives of the Saccharibacteria phylum.
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Table 2. Relative abundances of phyla per each diet group.

Phyla Control, % Lentil, % Chickpea, % Bean, % Dry Pea, %

Actinobacteria 0.020 0.008 0.016 0.023 0.017
Bacteroidetes 15.533 64.941 1,*** 52.212 1,* 54.500 49.689 1,*
Deferribacteres 0.966 0.166 1,** 0.109 1,** 0.071 1,*** 0.294
Firmicutes 51.189 30.838 1,* 45.475 41.992 48.367 2,*
Proteobacteria 31.654 1.496 1,** 1.898 1.545 1,*** 1.484 1,**
Saccharibacteria 0.000 0.001 0.013 1,*; 2,* 0.012 0.015 1,*; 2,*
Tenericutes 0.089 0.100 0.213 1,* 0.239 0.106
Verrucomicrobia 0.549 2.450 0.064 1,*; 2,* 1.619 0.026 1,*; 2,*

1 Significantly different from the Control group; 2 Significantly different from the Lentil group; Statistically signifi-
cant phyla were determined by the Kruskal-Wallis test with * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.
p-values adjusted with the Benjamini-Hochberg method.

LEfSe indicated that all identified phyla, except for Saccharibacteria and Actinobac-
teria, were statistically significantly different between the diet groups with Bacteroidetes,
Proteobacteria, and Firmicutes scoring above 6.0 (Figure 2). However, according to the
Kruskal-Wallis and Dunn tests pairwise comparison results, Saccharibacteria were differen-
tial across several diets (Table 2).
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3.2. Effects on α-Diversity

The microbial communities maintained by each of the diets were analyzed for their
intragroup dissimilarity. The diet groups were statistically different in terms of their α-
diversity distributions (Figure 3). Estimated species richness (Chao1) and both community
richness and evenness (Shannon’s index) had p-values < 0.001 and <0.01, respectively,
using Kruskal-Wallis testing. The pulse-free Control group showed a tendency to be the
least intra-individually diverse. The most diverse microbial communities were found in
the Chickpea and the Dry Pea groups.
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3.3. Effect on β-Diversity

The diet-induced bacteria were also analyzed for their intergroup dissimilarity based
on their ASV values as reflected in β-diversity with statistical testing using PERMANOVA.
PCoA based on Bray-Curtis indices shows that the pulse-free Control group separates
completely from the pulse groups along the PC1 (Figure 4a). The latter tend to cluster
together, with the Lentil group showing separation along PC2. Plotting unweighted
UniFrac distances confirmed this separation (Figure 4b, p-value < 0.001). This metric
incorporates phylogenetic ties and focuses on the absence and presence of the taxa, making
it more sensitive towards rare and low-abundant organisms. The pulse-free Control
separates from the pulse groups along the PC1 axis, and the Lentil group, to a much smaller
extent, differs the most from the rest of the pulses along PC2. Such differences between
Lentil and the rest of the pulse-based diet groups correspond to the Kruskal-Wallis results
of the phyla abundances differences (Table 2). However, when β-diversity was assessed
using Weighted UniFrac distances (Figure 4c), which emphasize the impact of the most
abundant bacteria in the community on the qualitative differences among the diet groups,
the pulse-free Control separates from the pulse groups, but without distinction among
pulse groups (p-value < 0.001). These findings point to the prominent similarity of the
microbial communities among the pulse-based diet groups in terms of the most abundant
and dominant bacteria in the gut.



Nutrients 2021, 13, 3992 8 of 20Nutrients 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 4. Measures of β-diversity across the diet groups at the ASVs level plotted in the Principal 
component analysis (PCoA) in 2D. Axes 1 and 2 represented principal components 1 (PC1) and 2 
(PC2), respectively. Samples are colored and grouped into ellipses by their corresponding diet 
group. Differences in the β-diversity were tested by the permutational multivariate analysis of var-
iance using distance matrices (PERMANOVA): (a) Bray-Curtis distances were used to explain β-di-
versity across diet groups. PERMANOVA F-value = 16.312; R2 = 0.67792; p-value < 0.001; (b) Un-
weighted UniFrac distances were used to explain β-diversity across diet groups. PERMANOVA 
F-value = 13.642; R2 =0.63772; p-value < 0.001; (c) Weighted UniFrac distances were used to explain 
β-diversity across diet groups. PERMANOVA F-value = 20.808; R2 =0.72862; p-value < 0.001. 

Figure 4. Measures of β-diversity across the diet groups at the ASVs level plotted in the Principal
component analysis (PCoA) in 2D. Axes 1 and 2 represented principal components 1 (PC1) and 2
(PC2), respectively. Samples are colored and grouped into ellipses by their corresponding diet group.
Differences in the β-diversity were tested by the permutational multivariate analysis of variance using
distance matrices (PERMANOVA): (a) Bray-Curtis distances were used to explain β-diversity across
diet groups. PERMANOVA F-value = 16.312; R2 = 0.67792; p-value < 0.001; (b) Unweighted UniFrac
distances were used to explain β-diversity across diet groups. PERMANOVA F-value = 13.642;
R2 = 0.63772; p-value < 0.001; (c) Weighted UniFrac distances were used to explain β-diversity across
diet groups. PERMANOVA F-value = 20.808; R2 = 0.72862; p-value < 0.001.
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3.4. Which Bacteria Are the Major Players in Accounting for Differences Due to
Pulse Consumption?

The Random Forest supervised learning algorithm was performed to determine the
most important predictive microbial communities (represented by their lowest taxonomic
rank that was assigned) to classify the diet groups (Figure 5). The top 10 most influ-
ential biomarkers that drive the differences between the diets mapped to unclassified
Bacteroidales, B. pullicaecorum, Sutterrella, A. muciniphila, B. acidifaciens, Mogibacteriaceae
(II), Muribaculaceae, Lactococcus, Rikenellaceae, and Clostridiales (II).

Nutrients 2021, 13, x FOR PEER REVIEW 9 of 22 
 

 

3.4. Which Bacteria Are the Major Players in Accounting for Differences Due to  
Pulse Consumption? 

The Random Forest supervised learning algorithm was performed to determine the 
most important predictive microbial communities (represented by their lowest taxonomic 
rank that was assigned) to classify the diet groups (Figure 5). The top 10 most influential 
biomarkers that drive the differences between the diets mapped to unclassified Bacteroi-
dales, B. pullicaecorum, Sutterrella, A. muciniphila, B. acidifaciens, Mogibacteriaceae (II), Mu-
ribaculaceae, Lactococcus, Rikenellaceae, and Clostridiales (II). 

 
Figure 5. Top 15 bacteria to discriminate between the diet groups predicted by the Random Forest 
algorithm. Features are ranked by their contributions to classification accuracy (Mean Decrease Ac-
curacy). Relative abundance per diet group is represented on the heatmap to the right. 

3.5. Diet-Specific Microbial Ecosystems 
In order to ascertain which bacteria are statistically different across the diet groups, 

LEfSe was performed at the feature level on the compositional abundance dataset. Over-
all, there were 35 microbial groups that were statistically different among all the diets 
(Figure 6a). LEfSe was supplemented with the hierarchical clustering analysis plotted on 
a heatmap so as to elucidate how the cecal bacteria were distributed across the samples 
(Figure 6b). These tests allow the determination of the most differential bacteria in the gut 
microbiome as well as distribution thereof across the diet groups. Next, pairwise LEfSe 
contrasting Control versus each pulse separately was performed to identify pulse-specific 
microbial changes. Finally, LEfSe was also performed on the dataset containing pulse-
based diet groups only to complete the overall comparative picture of differential micro-
bial communities—18 bacteria were significantly distinct in their abundance amongst the 
pulse-based diets. Results derived from such LEfSe-based analyses are summarized in 
Table 3.  
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3.5. Diet-Specific Microbial Ecosystems

In order to ascertain which bacteria are statistically different across the diet groups,
LEfSe was performed at the feature level on the compositional abundance dataset. Over-
all, there were 35 microbial groups that were statistically different among all the diets
(Figure 6a). LEfSe was supplemented with the hierarchical clustering analysis plotted on
a heatmap so as to elucidate how the cecal bacteria were distributed across the samples
(Figure 6b). These tests allow the determination of the most differential bacteria in the
gut microbiome as well as distribution thereof across the diet groups. Next, pairwise
LEfSe contrasting Control versus each pulse separately was performed to identify pulse-
specific microbial changes. Finally, LEfSe was also performed on the dataset containing
pulse-based diet groups only to complete the overall comparative picture of differential
microbial communities—18 bacteria were significantly distinct in their abundance amongst
the pulse-based diets. Results derived from such LEfSe-based analyses are summarized
in Table 3.
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Table 3. Bacterial abundance changes across the diet groups compared with Control.

Cecal Bacteria Lentil Chickpea Bean Dry Pea

Adlercreutzia ≈ ≈ ≈ ≈
Akkermansia muciniphila * ↑ ≈ ↑ ≈

Allobaculum ↑ ↑ ↑ ↑
Anaerotruncus ↓ ↓ ≈ ↓
Bacteroidales * ↑ ↑ ↑ —

Bacteroides acidifaciens * ↑ ↑ ↑ ↑
Bacteroides * ↓ ≈ ↓ ≈
Bilophila * ≈ ≈ ≈ ≈

Butyricicoccus pullicaecorum * ↑ ↑ ↑ ↑
Christensenellaceae ↓ ↓ ↓ ↓

Clostridiales (I) ≈ ≈ ≈ ≈
Clostridiales (II) * ↓ ≈ ≈ ≈

Clostridium colinum * — ≈ — ↑
Clostridium hathewayi ≈ ≈ ≈ ≈
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Table 3. Cont.

Cecal Bacteria Lentil Chickpea Bean Dry Pea

Clostridium (I) ≈ ≈ — ≈
Clostridium (II) * — ↑ ↑ ≈

Clostridium methylpentosum ↓ ↓ ↓ ↓
Coprococcus ≈ ≈ ≈ ≈

Dehalobacterium * ↓ ≈ ≈ ↓
Desulfovibrionaceae ≈ ≈ ≈ ≈

Dorea * ↓ ↓ ↓ ↓
Enterobacteriaceae ≈ ≈ ≈ ≈
Erysipelotrichaceae ≈ ≈ ≈ ≈

F16 ≈ ≈ ≈ ≈
Lachnospiraceae (I) ≈ ↑ ≈ ≈
Lachnospiraceae (II) ≈ ≈ ≈ ↑

Lactobacillus (I) ↑ ↑ ≈ ↑
Lactobacillus (II) — — ≈ —

Lactococcus ↓ ↓ ↓ ↓
Mogibacteriaceae (I) * ↑ ≈ ≈ ≈
Mogibacteriaceae (II) * ↑ ↑ ↑ ↑

Mucispirillum schaedleri * ↓ ↓ ↓ ↓
Muribaculaceae ↑ ↑ ↑ ↑

Oscillospira ↓ ↓ ↓ ↓
Parabacteroides gordonii ≈ ≈ ≈ ≈

Peptococcaceae ↓ ↓ ↓ ↓
Peptostreptococcaceae — — — ≈

rc4 4 * ↑ ↑ ↑ ↑
RF32 ↑ ↑ ↑ ↑
RF39 ≈ ↑ ≈ ≈

Rikenellaceae ↑ ↑ ↑ ↑
Roseburia * — — — ↑

Ruminococcaceae (I) ≈ ≈ ≈ ≈
Ruminococcaceae (II) * ≈ ≈ ≈ ↓
Ruminococcus gnavus ↓ ↓ ↓ ↓

Ruminococcus
(Lachnospiraceae) ≈ ≈ ≈ ≈

Ruminococcus
(Ruminococcaceae) ≈ ≈ ↑ ≈

Streptococcus ↓ ↓ ↓ ↓
Sutterella * ↑ ↑ ↑ ↑

* Bacteria significant amongst the pulse-based diet groups only according to LEfSe. “↑” in green indicates a
statistically significant increase in abundance; “↓” in red—a decrease; “≈” in yellow—no statistical changes; and
“—” indicates absence in respective pulse-type group.

As one can see, within each of the groups, a number of selected bacteria were the same
for every pulse type (Table 3). Abundances of Muribaculaceae, B. acidifaciens, Rikenellaceae,
Allobaculum, B. pullicaecorum, Sutterella, Mogibacteriaceae (II), rc4 4 (of Peptococcaceae), and
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RF32 (of Alphaproteobacteria) were commonly enhanced in pulse-based diets compared
with the Control. The dietary effect of pulses can also be evaluated from the perspective
of the microbiota that were decreased, i.e., taxa with significantly lower abundance in
the pulse-containing versus the Control diet: Oscillospira, R. gnavus, M. schaedleri, Dorea,
C. methylpentosum, Lactococcus, Peptococcaceae, Christensenellaceae, and Streptococcus. Fi-
nally, no statistically significant differences were detected in the abundances of Adlercreutzia,
Bilophila, Clostridiales (I), C. hathewayi, Coprococcus, Desulfovibrionaceae, Enterobacteri-
aceae, Erysipelotrichaceae, F16, P. gordonii, Ruminococcaceae (I), and Ruminococcus (of
Lachnospiraceae) between each pulse-based diet and Control group. Interestingly, unclas-
sified species of Coprococcus and Ruminococcaceae (I) appeared significantly differential in
the LEfSe results across all tested diet groups (Figure 6a) but were assigned as unaffected
by the pulse consumption due to their lack of statistical significance in the pulse-specific
and pairwise comparison against the Control group analyses (Table 3). Such discrepancy
may be due to their uneven distribution across all the tested samples (Figure 6b).

Finally, correlation analysis was performed on the compositional abundance dataset
to uncover potential co-occurrence patterns amongst bacteria across all the diet groups,
and the results thereof were presented in the form of a correlation network (Figure 7).
267 bacterial pairs had a correlation coefficient above 0.4 (Supplementary Table S1), out
of which 57 pairs strongly correlated with a SparCC coefficient above 0.7. Previously
identified eco-groups tend to significantly correlate with each other—the pulse-enhanced
bacteria correlated positively with each other and negatively with those pulse-suppressed,
and vice versa.

The pulse-based diets exhibited overall similarity in their gut microbial composition,
especially in the identified common eco-groups; however, some differences were still
present as determined by excluding the Control group from the dataset and subjecting the
remaining data to LEfSe analysis (Table 3, marked *). The Lentil cohort, which differed the
most from the rest of the pulse-based diets, was characterized by a higher abundance of
unclassified Bacteroidales and B. acidifaciens, A. muciniphila, Sutterella, both unclassified
Mogibacteriaceae, and even suppressed Dorea. Compared with the Control, this diet group
significantly decreased the presence of Anaerotruncus, Dehalobacterium, Bacteroides, and
unassigned Clostridiales (II), exhibiting the lowest abundance of the latter two, unlike the
other pulses. The Chickpea group was typified by an enhanced abundance of unclassified
Lachnospiraceae (I), Lactobacillus, RF39 of Mollicutes, and unassigned Clostridium (II) of
Clostridiaceae family compared with the Control, whereas from the rest of the pulses,
Chickpea differed by the higher counts of unclassified Bacteroides, Bilophila, and especially
B. pullicaecorum. The Bean-based diet group significantly enhanced A. muciniphila, unas-
signed Bacteroidales, Ruminococcus of Ruminococcaceae, and exceptionally unclassified
Clostridium sp. (II) of Clostridiaceae compared to the pulse-free Control. The latter, together
with the rc4 4 of the family Peptococcaceae, as well as unaffected Dehalobacterium and
Ruminoccoccaceae (II), had the highest relative abundance even next to the pulse-based
cohorts. Finally, the Dry Pea-induced gut microbiome was distinctly represented by Lacto-
bacillus, Lachnospiraceae (II), and especially by highly correlated C. colinum and Roseburia,
among the enhanced from the Control group bacteria, as well as Ruminococcaceae (II),
Dehalobacterium, and Anaerotruncus on top of pulse-suppressed eco-group. Furthermore,
from the rest of the pulses, the Dry Pea cohort has significantly the highest abundance of
M. Schaedleri and unclassified Clostridiales (II). Additional molecular studies are needed to
determine whether these differences translate into the altered cell and metabolic signaling
within the host.



Nutrients 2021, 13, 3992 13 of 20Nutrients 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 7. Correlation network of cecal microbiota across the diet groups. Each node represents a taxon, colored by the 
mean abundance in a respective diet group. Nodes are connected by the edges representing correlations and their value 
between taxa pairs: blue indicates negative, while red indicated positive correlation. A correlation network was generated 
using the SparCC algorithm with 100 permutations, depicting only taxa that met the p-value threshold 0.05 and the corre-
lation threshold 0.7. 

The pulse-based diets exhibited overall similarity in their gut microbial composition, 
especially in the identified common eco-groups; however, some differences were still pre-
sent as determined by excluding the Control group from the dataset and subjecting the 
remaining data to LEfSe analysis (Table 3, marked *). The Lentil cohort, which differed the 
most from the rest of the pulse-based diets, was characterized by a higher abundance of 
unclassified Bacteroidales and B. acidifaciens, A. muciniphila, Sutterella, both unclassified 
Mogibacteriaceae, and even suppressed Dorea. Compared with the Control, this diet 
group significantly decreased the presence of Anaerotruncus, Dehalobacterium, Bacteroides, 
and unassigned Clostridiales (II), exhibiting the lowest abundance of the latter two, unlike 
the other pulses. The Chickpea group was typified by an enhanced abundance of unclassi-
fied Lachnospiraceae (I), Lactobacillus, RF39 of Mollicutes, and unassigned Clostridium (II) 
of Clostridiaceae family compared with the Control, whereas from the rest of the pulses, 
Chickpea differed by the higher counts of unclassified Bacteroides, Bilophila, and especially 
B. pullicaecorum. The Bean-based diet group significantly enhanced A. muciniphila, unas-
signed Bacteroidales, Ruminococcus of Ruminococcaceae, and exceptionally unclassified 
Clostridium sp. (II) of Clostridiaceae compared to the pulse-free Control. The latter, to-
gether with the rc4 4 of the family Peptococcaceae, as well as unaffected Dehalobacterium 
and Ruminoccoccaceae (II), had the highest relative abundance even next to the pulse-
based cohorts. Finally, the Dry Pea-induced gut microbiome was distinctly represented by 

Figure 7. Correlation network of cecal microbiota across the diet groups. Each node represents a taxon, colored by the mean
abundance in a respective diet group. Nodes are connected by the edges representing correlations and their value between
taxa pairs: blue indicates negative, while red indicated positive correlation. A correlation network was generated using
the SparCC algorithm with 100 permutations, depicting only taxa that met the p-value threshold 0.05 and the correlation
threshold 0.7.

3.6. Pulse-Predicted Microbial Function

Lastly, the metagenomic changes of microbial functions induced by each diet formula-
tion were predicted and functionally annotated by the PICRUSt2 pipeline. Using Welch’s
two-sided t-test with Benjamini-Hochberg FDR corrections, 179 statistically significant
differential metabolic pathways were identified (Supplementary Figure S1), out of which
22 had effect size over 20% for the difference between proportions, and over 1.5-fold for
the ratio of proportions (Figure 8).

As a result, pulses most effectively upregulated pyruvate fermentation to propanoate
I, the tricarboxylic acid (TCA) cycle V (2-oxoglutarate: ferredoxin oxidoreductase), aerobic
respiration I (cytochrome c), TCA cycle VI (obligate autotrophs), incomplete reductive
TCA cycle, TCA cycle I (prokaryotic), L-arginine biosynthesis III (via N-acetyl-L-citrulline),
super-pathway of pyrimidine deoxyribonucleotides de novo biosynthesis, super-pathway
of thiamin diphosphate biosynthesis I, pentose phosphate pathway, pyrimidine deoxyri-
bonucleosides salvage, mannan degradation, L-histidine degradation I, and anhydro-
muropeptides recycling among others. In contrast, the pulse-free Control group exhibited
upregulation of super-pathway of glycolysis and Entner-Doudoroff, UDP-N-acetyl-D-
glucosamine biosynthesis I, super-pathway of N-acetylneuraminate degradation, tetrapyr-
role biosynthesis I (from glutamate) and II (from glycine), super-pathway of UDP-glucose-
derived O-antigen building blocks biosynthesis, colonic acid building blocks biosynthesis,
and the peptidoglycan biosynthesis IV (Enterococcus faecium).
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Figure 8. PICRUSt2 results indicating differential pathways between the pulse-free and pulse-based diet groups. Twenty-
two out of 179 significant pathways with effect size over 20% for the difference between proportions and over 1.5-fold for
the ratio of proportions are presented here. Pulse-free diet (“Control”) is indicated in beige, while pulse-based diet samples
(“All other samples”)—in green: (a) Heatmap plot indicating the abundance of pathways assigned to each sample. (b)
Extended error bar plot indicating the mean proportion of pathways assigned to each group, difference between them, and
corrected p-value (q-value) of each.
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4. Discussion

Considerable effort has been expended to identify dietary habits associated with
human health benefits and, most recently, on the determination of the microbial ecosys-
tems maintained in the gut by disease-associated versus health-promoting dietary pat-
terns [15,35]. Pulses are unique among other widely consumed categories of food in two
important aspects relative to human health: (1) the one-to-one-ratio of fiber and protein
per unit weight in the absence of a significant amount of lipids, and (2) the fact that pulses
are generally consumed as a whole food, but when they are consumed as an ingredient the
whole cooked seed can be milled and freeze-dried such that the ingredient powder (flour)
is equivalent to the whole food [5,6]. Therefore, we focused our data-driven approach
on elucidating the microbial ecosystem characteristic of a level pulse consumption that
exerts anti-obesogenic activity [16]. The null hypothesis that no differences would exist in
microbiota composition across the five diet groups was rejected—perhaps best evidenced
by highly significant differences in α- and β-diversity (Figures 3 and 4). Those differences
are easily visualized at the phylum level (Figures 1 and 2, Table 2). The results of the
unweighted and weighted UniFrac analyses (Figure 4) led us to conceptualize the identifi-
cation of a pulse-induced ecosystem consisting of three eco-groups: one enhanced by all
pulses, irrespective of pulse-type, an eco-group that was suppressed by pulse consump-
tion, i.e., the taxa that were predominant in the pulse-free control diet, and an eco-group
of microbiota unaffected by the pulse consumption, i.e., abundance was not statistically
different between pulse-free and pulse-containing diets. It was achieved by performing
differential analyses using the LEfSe method on the same dataset but with a different focus
(Tables 3 and 4) and confirmed by the cluster and correlation analyses (Figures 6b and 7).

Table 4. Summary of the pulse-induced gut microbial ecosystem.

Eco-Groups Microbial Composition

Pulse-enhanced

Allobaculum
Bacteroides acidifaciens
Butyricicoccus pullicaecorum
Mogibacteriaceae (II)
Muribaculaceae
rc4 4 (Peptococcaceae)
RF32 (Alphaproteobacteria)
Rikenellaceae
Sutterella

Pulse-suppressed

Christensenellaceae
Clostridium methylpentosum
Dorea
Lactococcus
Mucispirillum schaedleri
Oscillospira
Peptococcaceae
Ruminococcus gnavus
Streptococcus

Pulse-indifferent

Adlercreutzia
Bilophila
Clostridiales (I)
Clostridium hathewayi
Coprococcus
Desulfovibrionaceae
Enterobacteriaceae
Erysipelotrichaceae
F16
Parabacteroides gordonii
Ruminococcaceae (I)
Ruminococcus (Lachnospiraceae).
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We discovered nine microbial communities in a high-fat diet, the abundance of which
was increased by pulse consumption, irrespective of type (Table 4). Among these, Bac-
teroidales, which include Muribaculaceae, B. acidifaciens, and Rikenellaceae scored the
highest LDA and were the most representative of the pulse-based diets (Figure 6). They
were also the main representatives of Bacteroidetes that accounted for the decrease in the
Firmicutes/Bacteroidetes ratio in the pulse groups. Mostly known as S24-7 [36], the Murib-
aculaceae family is one of the most dominant murine gut bacteria, known for its ability to
degrade complex dietary carbohydrates [37]. Their abundance was shown to be decreased
in obese mice [38] and significantly increased under high fiber [39]. In this experimental
setting, Muribaculaceae were the most abundant in the Bean-based diet compared to the
other groups, whereas in the pulse-free Control they were the least abundant.

The other nine bacterial groups had significantly lower abundance in the pulse-
containing versus the Control diets (Table 3). Most of these bacteria have been connected
to obesity development and a higher risk of metabolic diseases [40–43]. Reduction in
their abundance herein is a promising discovery in the context of anti-obesogenic and
other reported health benefits of pulses. Mucispirillum schaedleri has been reported to be a
marker of a high-fat diet [44]; it also positively correlates with serum levels of leptin and
body fat [45] and decreases upon dietary treatment of non-alcoholic steatohepatitis [46,47].
Ruminococcus gnavus has been associated with gut dysbiosis and inflammatory diseases,
such as inflammatory bowel disease, spondylo-arthritis, eczema, and pouchitis, but also
allergic, coronary artery, and obesity-related diseases [48–54]. Interestingly, R. gnavus
showed inverse relationships with A. muciniphila in the intestinal epithelium during the
progress of the inflammatory bowel disease, despite both of them being the mucolytic
bacteria [55]. Other bacteria that decreased upon pulse consumption, possibly owing to
casein reduction, are Lactococcus sp. [56–58].

The abundance of eleven bacteria was statistically unchanged across diet groups based
on differential abundance analyses and thus were deemed indifferent to the pulse consump-
tion. Amongst these are bacteria that belong to the phyla that were also not significantly
differential across the diets according to LEfSe (Figure 2). Interestingly, Desulfovibrionaceae
and their genus Bilophila were visually representative bacteria of the pulse-free Control but
did not reach significance in the Control vs. pulses LEfSe results possibly due to the high
variation in abundance across the Control samples. However, while Desulfovibrionaceae
correlated positively with members of pulse-suppressed eco-group members, such as C.
methylpentosum, R. gnavus, M. schaedleri, and Oscillospira, pulse-enhanced Allobaculum, B.
acidifaciens, and Rikenellaceae exhibited moderately negative relationships with this family
(Table S1). Similarly, correlation analysis allows inference of associations of other pulse-
indifferent bacteria, such as Adlercreutzia, Bilophila, C. hathewayi, Coprococcus, F16, P. gordonii,
Ruminococcaceae (I), and Ruminococcus (of Lachnospiraceae family) with microbiota that
were suppressed by pulses (Table S1).

Metagenomic functional predictions demonstrated that pulse-based diets differ from
the control diet by 82 upregulated pathways and 97 downregulated bacterial pathways
(Figure S1). Propanoate production, which scored the highest, is associated with lowering
energy intake and protecting from obesity and cancer development via reduced lipoge-
nesis, circulating cholesterol, and inflammatory response [59–61]. Pulse consumption
also predicted synthesis of vitamins and organic cofactors, such as thiamin, heme b, pyri-
doxal 5′-phosphate, flavin, folic acid (via 6-hydroxymethyl-dihydropterin diphosphate),
NAD, phospho-pantothenate, coenzyme A. These data imply additional health benefit of
pulse consumption associated with vitamin production [62]. Biosynthesis of a number of
amino acids, e.g., L-methionine, L-phenylalanine, L-tyrosine, is predicted to be enhanced,
whereas L-ornithine, L-lysine, L-threonine, L-tryptophan, L-isoleucine, L-valine biosyn-
thesis was predicted to be reduced. Moreover, L-histidine, L-leucine (with additionally
reduced biosynthesis), L-glutamate degradation pathways were also upregulated in the
pulse-associated bacteria. L-arginine biosynthesis showed mixed results: citrulline-driven
pathway was enhanced, whereas its other anabolic pathways were inhibited. This com-
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plex array of predictions requires further investigation to measure pulse-specific effects
via metabolomics. Other predictions about the impact of pulsed consumption included:
(1) reduced biosynthesis of colonic acid building blocks, and phosphatidylglycerols, and
(2) stimulated degradation of IMP, glycerol, and several carbohydrates, such as mannan,
xylose, rhamnose, lactose, galactose. In contrast, pathways associated with carbohydrate
synthesis, especially those associated with building blocks for bacterial membrane compo-
nents, were predicted to be enriched in the pulse-free Control microbiome. Additionally,
pulse consumption was predicted to enhance the degradation of glucose, whereas the Con-
trol diet was predicted to upregulate glucose-producing pathways in the gut microbiota.
These microbiota-driven effects could possibly contribute to the reduced glycemic response
associated with pulse consumption [63].

As noted above, we have previously reported that each type of pulse that was investi-
gated induced a significant reduction in adiposity in the absence of an effect on growth
rate [16]. To our knowledge, this is the first in-depth comparative analysis of the nature
of such differential effects of these pulses on the microbial ecosystem. In addition, the
work focuses on the microbiome in cecal content rather than excreted fecal pellets. In
so doing the ability to detect differences in populations of obligate anaerobes, a type of
commensal microorganism thought to have a considerable impact on the health of the
host, was maximized, while the variation that may occur, when excreted fecal pellets are
evaluated, was reduced [64]. Finally, a high-fat diet was used to mimic an obesogenic
dietary pattern, whereas its pulse-based modifications matched macronutrient content with
the former but varied in their source of dietary protein and carbohydrate: casein-derived
protein and carbohydrate from refined sources, i.e., mono- and disaccharides, as well as
corn starch and cellulose, in the Control were replaced by 35% with the respective pulse
protein and its associated carbohydrate. Thus, this approach modeled four different dietary
patterns from populations around the world that preferentially consume one type of pulse.
Despite these strengths, mice are not people, and this will remain a limitation in any study
of the effects of diet on gut microbial composition and function conducted in preclinical
models [65,66]. Nonetheless, the control afforded by such preclinical models allows for
the deconstruction of complex observations made in human populations which is the
counterbalancing strength of the work reported herein. Furthermore, efforts were made to
minimize the impact of recognized sources of variation in preclinical studies of diet and
the gut microbiome.

The work presented here has empirical value in clarifying that macronutrient-matched
pulse-free versus pulse-containing diets can be expected to differentially impact the gut
microbiome and that pulse-type is an important variable that needs to be considered in both
the design and interpretation of human studies. However, while advancing the concept
of a pulse-induced ecosystem, it should be anticipated that the three components of the
ecosystem will be populated by different microbial taxa in results emerging from different
studies, and particularly those reported by different laboratories, in part due to factors such
as a source of animals and differences among studies in animal husbandry practices [67].
Our data imply that the positive effects of pulse consumption on health may, in part, be
mediated by the gut microbiota based on the magnitude of their pulse-driven community
differences despite the obesogenic environment. Future work needs to address the dearth
of knowledge about the dietary components that drive the differences reported herein
and about how the pulse-induced microbial ecosystem exerts its effects on the host. It is
likely that multi-omics approaches will provide the greatest insights as preclinical models
are used to deconstruct the mechanisms underlying pulse-induced health benefits, and in
so doing, facilitate the design of precision nutrition approaches to health promotion and
disease prevention in human populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13113992/s1, Figure S1: PICRUSt2 results indicating differential pathways between the
pulse-free and pulse-based diet groups; Table S1: Pairwise comparison of bacterial composition at
phylum level across the diet groups.
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