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Abstract: Systems biology is a computational field that has been used for several years across different scientific areas of 
biological research to uncover the complex interactions occurring in living organisms. Applications of systems concepts at 
the mammalian genome level are quite challenging, and new complimentary computational/experimental techniques are 
being introduced. Most recent work applying modern systems biology techniques has been conducted on bacteria, yeast, 
mouse, and human genomes. However, these concepts and tools are equally applicable to other species including rumi-
nants (e.g., livestock). In systems biology, both bottom-up and top-down approaches are central to assemble information 
from all levels of biological pathways that must coordinate physiological processes. A bottom-up approach encompasses 
draft reconstruction, manual curation, network reconstruction through mathematical methods, and validation of these 
models through literature analysis (i.e., bibliomics). Whereas top-down approach encompasses metabolic network recon-
structions using ‘omics’ data (e.g., transcriptomics, proteomics) generated through DNA microarrays, RNA-Seq or other 
modern high-throughput genomic techniques using appropriate statistical and bioinformatics methodologies. In this re-
view we focus on top-down approach as a means to improve our knowledge of underlying metabolic processes in rumi-
nants in the context of nutrition. We also explore the usefulness of tissue specific reconstructions (e.g., liver and adipose 
tissue) in cattle as a means to enhance productive efficiency. 
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INTRODUCTION 

 Systems biology is an interdisciplinary field that concen-
trates on experimental and computational biology. At the 
core of this approach, which is not novel, is the concept of 
dealing with a system as a whole rather than its constitutive 
parts. Advancements in computational biology, genome se-
quencing, and high-throughput technologies in the last dec-
ade have increased the awareness of the scientific commu-
nity for approaching biological systems in an integrative 
fashion, i.e. allow access to the functional capabilities of an 
individual organism en masse. However, the notion of deal-
ing with a system as a whole was proposed several decades 
earlier. For instance, in 1934 the Austrian biologist Ludwig 
von Bertalanffy proposed the application of the “general 
systems theory” (GST) in biology, cybernetics (structural 
study of regulatory systems) and other areas [1]. In the mid-
20th century, the geneticist and biochemist Henrik Kacser 
focused on the use of systematic approaches instead of ana-
lyzing separate components of a metabolic system [2]. Miha-
jlo Mesarovic (1968), a mathematician and engineer at Case 
Western Reserve University, also emphasized the need for 
systematic applications in biology [3].  

 The field of genomics and transcriptomics has already 
provided an enormous amount of biological information. 
Currently, there is a need to communicate biological  
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knowledge systematically, e.g., linking the genome to the 
whole organism. Newly emerging bioinformatics techniques 
along with biological data generated from genomics and 
transcriptomics studies have already allowed biologists to 
apply modern systems approaches to study interactions oc-
curring inside living systems. The work of Palsson’s group 
from the 1990’s onward contributed to the development of 
genome-scale mathematical models to understand the bio-
logical interactions from simpler organisms (e.g., microbes) 
to humans. From 1999 onward, with the first genome-wide 
metabolic reconstruction of Haemophilus influenza [4], re-
search in the field of modern systems biology has exploded. 
Several genome-wide and tissue-specific reconstruction pro-
jects across a broad range of species have been published, 
e.g., more than 50 in 2009 [5] to more than 80 in 2011. It is 
likely that work in this area will continue to grow. Currently 
available genome-scale metabolic reconstructions ranging 
from bacteria, archaea, to multicellular eukaryotes are shown 
in Fig. (1). (Retrieved from Systems Biology Research 
Group, University of California San Diego; on June 19, 2011 
[http://systemsbiology.ucsd.edu/In_Silico_Organisms/Other_
Organisms]). 

 Genome-scale metabolic network reconstructions of 
model organisms have been assembled in a BiGG (bio-
chemically, genetically, and genomically structured) knowl-
edgebase [6] that aims to represent all known metabolic 
pathways of an organism. The BiGG knowledgebase works 
with the COBRA (constraint based reconstruction and analy-
sis) toolbox [7], while metabolic network reconstructions 
hosted by it are created using the steps described in details 
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by Reed et al. [8], Feist et al. [9] and Thiele and Palsson 
[10]. These reconstructions have been assembled for more 
than 80 different organisms ranging from unicellular (e.g., 
bacteria [4, 11] and yeast [12]), to multicellular organisms 
(e.g., mouse [13], Arabidopsis thaliana [14], and humans 
[15, 16]). 

 The expanding suite of tools for applying modern sys-
tems biology requires bioinformatics expertise. Bioinformat-
ics is generally defined as a field that relies on computational 
resources to analyze biological data (e.g., genome, transcrip-
tome, metablome, or fluxome) on a large scale [17]. It also 
encompasses the development of tools ranging from genome 
to proteome analyses including transcriptomics data [18, 19]. 
One of the goals of bioinformatics is to accelerate the inter-
pretation of large amounts of ‘omics’ data [19]. For instance, 
Lemay et al. [20] applied this technique on mouse mammary 
tissue microarray data that was generated during pregnancy, 
involution and lactation time points. 

 With the rapid development of bioinformatics analysis 
tools, there is a need to tailor some of those to help in the 
automation of ruminant genomics. From a ruminant animal 
perspective, one long-term goal of this process involves the 
development of mathematical and mechanistic models that 
would link the genome (e.g., bovine, caprine) to the whole 
organism [21]. The pioneering work of Baldwin and his col-
leagues [22-24] provided one of the first comprehensive 
mathematical models (‘Molly’) that attempted to link geno-
typic to phenotypic data [25]. The model was aimed at de-
termining the relationship between diet and animal perform-
ance [26]. In essence, the goal was to develop “simple” 
models to understand the relationship between digestive 
processes and their effects on metabolic pathways in liver, 
mammary, and adipose tissue of dairy cattle (Bos taurus). 

Upon successful completion of the cattle genome sequencing 
project [27], the process of genome-wide and tissue-specific 
reconstructions in this species was accelerated with the ap-
plication of both “top-down” and “bottom-up” approaches. 
An initial attempt to assemble genome-wide metabolic 
pathway information has already been performed by Seo and 
Lewin [28]. Further information about these metabolic path-
ways can be found using the online BioCyc and MetaCyc 
databases [29-31]. 

 The aim of this review is to provide a brief description of 
modern systems biology concepts and their applications in 
high-producing ruminants (i.e., dairy cattle). We succinctly 
describe the top-down and bottom-up approaches but mainly 
focus on the top-down approach for metabolic pathways re-
construction and analysis. The overall goal is to underscore 
the uniqueness of these approaches to provide a holistic view 
of complex biological interactions occurring in ruminants. 
We also discuss current methodologies that would help to 
accelerate metabolic reconstruction in ruminants as a means 
to enhance our biological and practical knowledge. In par-
ticular, we provide tissue-specific examples of ongoing ef-
forts in the top-down reconstructions in the bovine. We be-
lieve that such knowledge will, in the long-term, help to im-
prove efficiency of nutrient use in particular, and contribute 
in meeting the growing needs of high-quality food for human 
consumption.  

MODERN SYSTEMS BIOLOGY 

 Modern systems biology refers to the use of both mathe-
matical and ‘omics’ approaches to expand the knowledge of 
biological functions [32]. In this context, one of the widely-
accepted approaches for mathematical modeling is the use of 
constraint-based modeling established by Price et al. [33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Genome-scale metabolic network reconstructions statistics from 1999 to 2011. Year-wise (red) and cumulative (green) studies with 
respect to total number of reconstructions. The data include a wide range of species from bacteria to eukaryotes. 
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Within this approach, constraints are applied under mathe-
matical frameworks to mimic real-life biological activities 
(e.g., the interaction between reactants and products) in 
silico. These constraints implicitly define the solution space 
of a metabolite and its reactions with respect to other me-
tabolites. The solution space is a mathematical term that can 
be defined using biological phenomena such as an allowed 
region in a biological network where reactants can be con-
verted into one or more possible products [33]. During such 
conversions a steady-state flux distribution is required 
through all the reactions. These steady-state flux distribu-
tions are described in terms of extreme pathways whereas 
these extreme pathways are categorized into three main types 
that measure the flux distributions among the participating 
substrates, cofactors, and products during a series of reaction 
steps [34, 35].  

 The detailed methodology of constraint-based modeling 
was developed into a computational tool called COBRA by 
Becker and his colleagues [36]. The COBRA toolbox is 
widely used in systems biology to reconstruct genome-scale 
mathematical models. This toolbox performs flux-balance 
analysis (FBA) that is used to define the metabolic behavior 
of substrates and their products within a solution space con-
text [37, 38]. Recently, this tool is further modified into a 
new version 2.0 by Schellenberger et al. [7] to contain im-
proved functions such as “network gap filling, 13C analysis, 
metabolic engineering, omics-guided analysis, and visualiza-
tion”. This tool has facilitated efforts to integrate biological 
systems, effectively expanding from the reductionist meth-
odologies.  

 The reconstructed mathematical models are used to simu-
late user-defined biological conditions in silico. For exam-
ple, these models can be used in drug designing [39], biofuel 
production [40], or in numerous other related applications. 
An important focus of systems biology has been to uncover 
new characteristics emanating from the network interactions, 
all of which should lead to a more holistic view of an organ-
ism [19] and its useful applications for the benefits of hu-
mans. This emerging field also is dedicated to understanding 
the physiology of normal and abnormal (diseased) states 
from a cellular level to the whole organism [18]. 

SYSTEMS BIOLOGY APPROACHES 

 The metabolic behavior of a cell can be approached in 
either a bottom-up or top-down directionality. The former 
encompasses the development of automated tools and im-
plementation of mathematical models; whereas, the latter 
encompasses data processing from ‘omics’ levels to path-
ways and/or individual gene levels of an organism [41]. Olt-
vai and Barabasi depicted these approaches in the form of a 
pyramid describing two different levels in terms of “organ-
ism specificity” and “universality”. They emphasized that a 
cell can be approached from both bottom to top (universal-
ity) or from top to bottom (organism specificity) equally, i.e., 
from molecules to the scale-free networks or modules, or 
moving from a network scale-free and hierarchical nature to 
organism-specific modules [42]. In contrast, Kummel et al. 
[43] combined these two sets of approaches with the second 
law of thermodynamics under the name of “network embed-
ded thermodynamics (NET) analysis”. NET analysis essen-

tially combines these three ideas into a single approach to 
reveal functional behavior of the metabolic network interac-
tions. This is indeed a novel approach to deal with biochemi-
cal properties in terms of physical laws of thermodynamics 
and aimed to help us improve our knowledge of cell physiol-
ogy. There also are ongoing efforts for building automated 
tools that incorporate the steps of the bottom up approach to 
automatically create genome-scale models. One example is 
the availability of a software called SEED which was ini-
tially validated with Staphylococcus aureus [44]. 

A) Bottom-up Approach 

 The bottom-up approach is aimed at thoroughly crafting 
detailed models that can be simulated under different physio-
logical conditions. This approach combines all organism-
specific information into a complete genome-scale model to 
provide an integrative view of the biological interactions 
occurring inside living systems. It employs the methodology 
built on constraint-based modeling [33], that allows to build 
genome-scale mathematical models using four main steps, 
which are i) draft reconstruction, ii) manual curation, iii) 
converting curated models into mathematical format, and 
then iv) validation of these models using literature reviews 
(bibliomics data), biochemical assays, and ‘omics’ data [9, 
10]. These four steps are summarized below:  

i) Draft Reconstruction 

 Draft reconstruction encompasses data collection from 
different online resources such as genomics, biochemical, 
metabolic, and/or organism-specific databases. The data are 
extracted through bioinformatics software tools e.g., path-
way tools [45] and metaSHARK [46]. In the case of rumi-
nant draft reconstruction projects, freely accessible genomics 
databases include NCBI [47], EntrezGene [48], UCSC Ge-
nome Browser [49], UniPort [50] and BGD (Bovine Genome 
Database) [51]; biochemical databases include KEGG 
(Kyoto Encyclopedia of Genes and Genomes) [52], 
BRENDA (BRaunschweig ENzyme DAtabase) [53, 54], 
PubChem identifier [55], CAS (Chemical Abstracts Service) 
[56], CheBI (Chemical Entities of Biological Interest) [57], 
and Transport DB [58]; and among the metabolic- and or-
ganism-specific reconstruction databases are (but not limited 
to) Reactome [59], BioCyc and MetaCYC [29-31]. Draft 
reconstruction is an automated process; hence, there are 
equally likely chances of incorporating incorrect information 
of metabolites or failing to include key metabolites or their 
reaction information [10]. To avoid this misrepresentation, 
further manual curation is required, which is briefly de-
scribed in the following step.  

ii) Manual Curation 

 This step is human-intensive and dependent on the actual 
organism-specific genome, metabolome, or fluxome infor-
mation. Software-assisted (e.g., pathway tools) draft con-
struction steps help to add missing data or to remove unnec-
essary information. To validate the constructed draft, text-
books, scientific articles, literature reviews, biochemical 
assays (i.e., validation), and organism-specific databases are 
used [9, 10]. For ruminant-specific reconstructions, knowl-
edge of metabolic pathway conservation relative to other 
mammals (e.g., mouse, human) is also useful. For example, 
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evolutionary divergence of metabolic pathways can be help-
ful to uncover similarities and differences between the or-
ganism of interest (e.g., bovine) and known organisms (e.g., 
human) to build a common evolutionary relationship. This 
illustration can be exemplified using the creation of fish 
metabolic network (MetaFishNet) [60]. This metabolic net-
work is built upon homology-based searches using relation-
ships from diverse species. 

iii) Conversion to Mathematical Models 

 Following the completion of a curated draft, it is trans-
formed into a mathematical language to perform simulations. 
For this purpose, mathematical software tools such as Matlab 
(Mathwork, Natwick, MA, USA) embedded COBRA tool-
box [36], SBML (systems biology markup language) soft-
ware [61], and linear programming (LP) or quadratic pro-
graming (QP) solver can be used. During this step, balanced 
stoichiometric matrices are constructed, biomass objective 
functions [62] are defined, FBA [38] is performed, and then 
flux variability analysis (FVA) is conducted to verify the 
robustness of the model [63].  

iv) Network Validation 

 The fourth and final step involves the iterative refinement 
of the model using different gap-filling algorithms. The 
model is checked for inconsistencies using defined objective 
functions. If a reconstructed model is not consistent with the 
expected results, then the draft is rechecked from step 2 and 
necessary changes are made. Due to the missing metabolic 
knowledge in some species, such as gaps (a missing reaction 
that consumes or produces a metabolite) and orphan reac-
tions (reactions with incomplete or absent information about 
genes or enzymes), this approach faces some real challenges. 
[10]. These gaps and orphan reactions can be treated by im-
plementing several gap-filling algorithms described by Orth 
and Palsson [64]. However, in version 2.0 of COBRA tool-
box, gap-filling properties are also included. Following these 
metabolic network reconstructions, condition-specific mod-
els can be derived from a single reconstruction [65]. Fig. (2) 
represents the summary of these four steps. 

B) Top-down Approach 

 The top-down approach originates from experimental 
data and information is spanned to reconstruct metabolic 
models. It can help to unravel biological behavior and under-
lying interactions using ‘omics’ data, which can be obtained 
via standard top-down methodologies such as DNA microar-
rays [66], RNA-Seq [67], or other genome-enabled tech-
nologies. According to Van Dien and Schilling [32], the flow 
of information in the top-down approach occurs from the 
transcriptome and proteome to flux-balanced metabolic 
pathways. This approach covers the whole genome; thus, it 
is considered as a “potentially complete” approach in that it 
deals with all the genome-wide transcriptomic information 
[41, 68]. From our perspective, the top-down approach can 
be explicitly divided into the following five stages. We have 
presented these stages using the existing DNA microarray 
case studies Fig. (3): 

Stage 1: Sample Collection and Laboratory Experiments 

 Experiments are designed such that animals are allowed 
sufficient amounts of time for specific treatments or stimuli 

to have their effects on selected physiological parameters 
(e.g., milk production, growth, or fat deposition). More com-
prehensive studies involve repeated sampling of the same 
animal over extensive periods of time (e.g. the lactation cy-
cle in dairy cattle or the neonatal period in calves). At the 
end of a suitable treatment period, tissue samples are col-
lected (e.g., via biopsy or at slaughter) from control and 
treated animals. Some experiments may not necessarily deal 
with a treatment per se, but may involve evaluation of onto-
genic changes of the transcriptome, proteome, metabolome, 
or fluxome (e.g. during the lactation cycle). After sample 
collection, RNA is extracted for subsequent analyses. The 
RNA extraction protocols may vary, but for most experi-
ments, these involve reagents containing phenol and are 
based on a classical method developed by Chomczynski and 
Sacchi [69]. The purification steps involve the use of com-
mercial columns, while extra impurities including residual 
DNA (if acid phenol-chloroform is not used during extrac-
tion) are removed using a commercial DNase I enzyme. The 
extracted RNA is then reverse-transcribed to cDNA or 
cRNA and subsequently used for hybridization to DNA, oli-
gonucleotide, or other types of expression microarrays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A bottom-up systems biology approach. The four conven-
tional steps of modern systems biology are summarized in the fig-
ure. Information obtained from biochemical and metabolic data-
bases is given as an input to start building the genome-scale compu-
tational models. Step 1 deals with the automated draft reconstruc-
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tion bioinformatics tools such as pathway tools and metaSHARK. 
This first stage still leaves some gaps, missing reactions, and dead-
end metabolites (i.e., metabolites having unknown reactants or 
product information). Once the automated draft is created, it needs 
manual curation, which is completed during step 2. This step in-
volves consulting through organism-specific databases, adding 
missing reactions, and dealing with dead-end metabolites. Step 3 
involves the conversion of the refined draft into mathematical mod-
els using stoichiometric calculations. This step involves the applica-
tion of Matlab-embedded tools (e.g., COBRA, SBML) and lin-
ear/quadratic programing solvers to create mathematical models 
and allows visualization of results on the Matlab interface. Step 4 
involves the simulation and evaluation of the reconstructed ge-
nome-scale mathematical models under optimal conditions. If there 
are some inconsistencies in the model, then it is re-evaluated from 
Step 2. If the model is working correctly in the final stage, then it is 
considered for further computational applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Top-down systems biology approach. This approach is 
categorized into five main stages. After designing an experiment, 
the first stage involves biological sample collection (e.g. tissue 
biopsy) of control and treated animals. This is followed by labora-
tory experiments including RNA extraction, purification, and ex-
pression profiling. Stage 2 involves high-throughput genomics us-

ing microarray platforms (e.g. Affymetrix) and RNA-Seq. Stage 3 
involves data normalization to remove noise and obtain high-
quality expression profiling data for statistical analysis utilizing 
suitable tools (e.g. SAS) and incorporating the key aspects of the 
experimental design (e.g. time, treatment, and any potential interac-
tions). After the statistical tests, differential expression is deter-
mined based on a certain p-value criterion. In the stage 4 the sig-
nificant data are analyzed through bioinformatics techniques. The 
last stage involves data interpretation and knowledge discovery 
leading towards the development of new scientific hypothesis. 

Stage 2: Microarray Platform 

 DNA microarrays are widely used to determine the ex-
pression level of mRNA in specific cell or tissue types. Cus-
tom microarray platforms or commercially available plat-
forms, such as Affymetrix [67], Agilent [68], and Amersham 
BioSciences [69] are generally used. Each microarray slide 
contains a fixed number of spots, and each spot represents a 
particular gene. The experiment is performed according to 
standard protocols mainly involving cDNA synthesis via 
reverse transcriptase polymerase chain reaction (RT-PCR) 
from extracted RNA, labeling with fluorescent dyes (e.g., 
Cy3 and Cy5), hybridization to the arrays, washing, and then 
scanning of these arrays using confocal laser scanners [70-
73]. After scanning array images, data are readily available 
for normalization and statistical analysis. 

Stage 3: Statistical Analysis 

 Before employing the standard statistical analysis, data 
are preprocessed by using one of several available normali-
zation techniques to remove systematic bias while preserving 
the variation in gene expression occurring due to biologically 
relevant or treatment-related changes in transcription. Data 
are usually normalized by log-transformations (e.g., log base 
2). Following log-transformations, fold-change values can be 
calculated relative to a control sample or to some reference 
time point. Subsequently, statistical tests (e.g., paired student 
t-test [74]) can be applied using statistical software such as 
SAS (Statistical Analysis System [75]) or R ( Statistical 
Computing Language [76]). The statistical probability values 
(p-values) to determine differentially expressed genes (DEG) 
are obtained and adjusted for multiple comparisons using 
correction methods such as Bonferroni [77] or Benjamini 
and Hochberg’s false discovery rate (FDR) [78, 79].  

Stage 4: Implementation of Bioinformatics 

 Microarray (genes/oligonucleotides) inserts/spots are 
annotated using different databases such as NCBI [47], 
DAVID [80], or bioDBnet [81]. Annotation helps discern the 
DEG affected by a particular stimulus or stimuli (e.g. dietary 
treatments, drug effects, or biological or developmental time 
points). Typically the FDR probability value cutoff criterion 
less than 1% (p  0.01) or 5% (p  0.05) is used to determine 
DEG. After selecting the list of DEG, bioinformatics soft-
ware tools are applied to determine the functional signifi-
cance of affected genes. There are several software packages 
for microarray data analyses and interpretation ranging from 
commercial (e.g., MAS 5.0 from Affymetrix platform; Inge-
nuity Pathway Analysis®) to open-source software (e.g., R 
bioconductor). According to a survey conducted by Huang 
and colleagues in 2009 [82] there are approximately 68 bio-
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informatics enrichment-analysis tools, which are available 
for curating DEG lists. Among these tools, the DAVID bio-
informatics resource is a popular and user-friendly tool to 
extract biological information from large gene or protein lists 
[80]. This resource has multiple applications including anno-
tation of large gene lists, function prediction, and function 
categorization within “chromosomes”, “KEGG pathways” 
“biological processes”, “cellular components” and “molecu-
lar functions”. 

 To further analyze the biological interactions or pathways, 
DEG lists can be mined with software tools as implemented in 
several research projects such as GeneSpring GX [83] is used 
by Loor et al. [70, 71], Ingenuity Pathway Analysis® [84], 
used by Loor et al. [84], and Genesis [85] used by Graugnard 
et al. [86]. Our research group also has recently developed a 
novel approach termed the dynamic impact approach (DIA) 
[87, 88] for functional analysis of expression profiling data. 
The KEGG database [89] is used to visualize the DEG by up-
loading the list of gene IDs and their respective fold-change 
values to the KEGG array tool. Ultimately, the goal of these 
tools is to provide a visualization of the genes and their inter-
actions [90], protein-protein interaction networks [91], or 
more recently, the dynamic evaluation of changes in metabolic 
pathways evaluated in terms of overall impact or flux [92]. 
(Table 1) provides a list of most commonly used tools for the 
systematic study of ruminant expression profiling data.  

Stage 5: Data Interpretation and Knowledge Discovery 

 Following the bioinformatics analyses, the resulting path-
way and network data are evaluated by using available scien-
tific articles and organism-specific databases. Heat maps also 
can be generated from the expression profiling results ob-
tained through DNA microarrays, RNA-Seq or other high-
throughput technologies to provide a compact view of the 
‘omics’ data [93]. These heat maps of DEG provide results in 
the form of gene clusters, which could represent an evolution-
ary relationship among closely and distantly related genes in 
the genome [94]. Despite the multitude of tools available, 
there is still a need to develop bioinformatics resources that 
provide more biologically relevant meaning to the ruminant 
data. Our group developed the DIA particularly for dealing 
with the functional analysis of time-course experiments. The 
approach takes into account the magnitude and significance of 
change in DEG [87]. Fig. (3) summarizes the above five 
stages of the proposed top-down systems biology approach in 
ruminants. 

 As the top-down approach deals with the whole genome, it 
is considered as a potentially complete approach [41]. There 
also are certain limitations [95] in this approach; however, the 
major advantage of this approach is that it provides a more 
precise view of the fate of metabolites. Hence, it can help us to 
understand the molecular behavior (e.g., metabolism, signal-
ing, transport) of genes or proteins under certain environ-
mental or dietary conditions and physiological states, such as 
parturition (stressed condition), and negative energy balance in 
the post-partum period [96].  

The Role of Systems Biology in Ruminant Metabolism 

and Physiology 

 Within the context of nutrient usage as it relates to physi-
ology, ruminant systems biology focuses on the systematic 

study of complex biological interactions occurring in differ-
ent tissues that are directly (mammary) or indirectly (liver, 
muscle, adipose tissue) involved in coordinating physiologi-
cal adaptations, and particularly susceptible to nutritional 
management. Recent advances in bioinformatics and systems 
biology techniques have accelerated the genome-wide and 
tissue-specific reconstruction to enhance our knowledge at 
the systems level. Domestic cattle (Bos taurus) are likely the 
most-extensively studied ruminant species. Here we present 
examples of tissue-specific metabolic network reconstruc-
tions from human and bovine species. The analysis of tissue-
specific pathways and their functional behavior is an integral 
part of systems biology. This concept as it relates to rumi-
nants has been discussed recently [95] using liver, mammary 
gland and adipose tissue as an illustration.  

 A putative cattle genome-wide metabolic pathway as-
sembly was conducted by Seo and Lewin [28] using a bot-
tom-up approach. They essentially applied the comparative 
analysis approach for the reconstruction process, and ob-
served that between cattle and human metabolic pathways, 
there was ca. 35% similarity at the enzyme level and 54% 
similarity at the functional, level with the exception of some 
differences in individual enzymes and alternative reactions. 
They also observed that the most-conserved pathways in-
clude “energy and nucleotide/nucleoside metabolism,” which 
are considered to be present in evolutionarily ancient path-
ways [97].  

 Genomic approaches may also help to identify previously 
unrecognized complex biological mechanisms that are 
unique to ruminants; hence, improving our opportunities for 
enhancing livestock productivity. Due to the high cost, few 
nutritional studies with ruminant species have been per-
formed [95]; whereas, more extensive work in this area as it 
relates to livestock and agriculturally-important species has 
been conducted using chickens [98]. The high-throughput 
transcriptomics work conducted to date has greatly expanded 
our understanding of fundamental molecular mechanisms in 
ruminants [99, 100]. By analyzing the physiological condi-
tions at critical levels in a ruminant species such as dairy 
cattle (e.g. lactation, dry period, parturition), in the future we 
might be able to increase the productive efficiency by opti-
mizing management at the farm level. We and others [101] 
believe that this can be achieved by obtaining fundamental 
knowledge of genotypic to phenotypic transitions at the sys-
tems level using top-down approaches. Despite the progres-
sive implementation of bioinformatics and systems biology 
tools in human and microbial species, their applications in 
livestock species are still in its infancy stages.  

 DNA microarray and other high-throughput sequencing 
techniques such as RNA-Seq, are used to measure the ex-
pression of the entire transcriptome of an organismin a single 
or series of experiments. These can detect not only mRNA 
from highly expressed genes but also from less abundant 
genes [70, 71, 99]. In fact, RNA-Seq has several advantages 
over DNA microarrays including the detection of single nu-
cleotide polymorphisms (SNP), alternative splice variants, 
and RNA editing [102]. These approaches have the ability to 
unravel genomic information at systems level in contrast to 
the reductionist paradigm. The resulting data can be used to 
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create networks of genes and/or proteins or to incorporate 
molecular control points into mechanistic models [101] lead-
ing to enhanced knowledge of network biology [103] and 
overall information at a functional level. 

Tissue-Specific Applications 

 As indicated above, the genome-scale reconstruction 
provides a holistic view of an organism; whereas the tissue-
specific reconstruction provides a view of metabolic path-
ways in a tissue-specific manner. Clearly, each tissue has a 
unique set of metabolic objectives, some of which differ 
markedly between tissues. Differential expression of genes 
and proteins in a tissue specific manner plays an important 
role in determining metabolic fates [104].  

 Human tissue-specific applications using the systems-
biology have been developed by Gille et al. [105], Jerby et 
al. [106], and Shlomi et al. [104]. For instance, Gille and 
colleagues [105] reconstructed the human liver using bot-
tom-up constraint-based modeling, which led to develop-
ment of HepatoNet1. This model has the capability of recre-
ating liver-specific functions, such as cholesterol biosynthe-
sis, bile formation, and ammonia detoxification under opti-
mal conditions. These authors performed FBA on 442 meta-
bolic objective functions to test the liver-specific 
stoichiometric model as a way to examine hepatic cell be-
havior. This tissue-specific reconstruction project provided a 
complete mathematical approach to assess biological func-
tions. The model also allows for evaluating effects of mini-
mal nutritional requirements on pathway behavior. Recently, 
a tissue-specific metabolic scale-free network using systems 
biology approaches has also been reconstructed for bovine 
mammary gland tissue [107]. 

 The biological intricacy of livestock inexorably requires 
the systematic study of tissue-specific interactions. The 
above mentioned approaches are equally applicable to the 
study of tissue-specific transcriptomes. Liver, mammary, and 
adipose tissue-specific microarray studies have been con-
ducted by our group and others (Table 2) in the last few 
years to evaluate the effects of nutrition and physiological 
state on the transcriptome. This technology allows us to ex-
amine the temporal expression of known components of 
metabolic networks, which is an appropriate means for ad-
dressing the issue of transcriptional regulation. This tran-

scriptional regulation is related to tissue-specific metabolism 
as a response to growth and/or nutritional management in 
ruminants [108]. To date, more than 46 transcriptome ex-
pression profiling research articles using high-throughput 
genomics techniques on different bovine tissues have been 
published. (Table 2) contains information from published 
articles between 2003 and 2012. The following liver and 
adipose tissue examples are two particular applications of 
tissue-specific, top-down reconstructions in cattle (Bos tau-
rus). 

i) Liver 

 In contrast to tissue-specific bottom-up reconstruction in 
human hepatocytes, the top-down approach as exemplified by 
the applications of DNA microarray data has been employed 
in studies of dairy cattle liver (13 of 46 papers published since 
2003, Table 2). Similar to humans, bovine liver performs a 
wide range of tissue-specific functions, including cholesterol 
biosynthesis [109], urea synthesis [110, 111], gluconeogenesis 
[112], oxidation of non-esterified fatty acids (NEFA), keto-
genesis, or esterification of NEFA into triacylglycerol (TAG) 
[100, 113]. Despite the information generated by these studies, 
the scope of the bioinformatics analysis based on time-course 
experiments is quite limited due in part to the reliance on 
software tools built on the analytical features dealing with 
overrepresented approach (ORA) [114]. To overcome such 
limitations, particularly when dealing with time-course or 
multiple treatment transcriptome data, our group recently has 
developed and validated a novel DIA analysis [87, 88], which 
outperforms over the ORA and produces biologically more 
meaningful interpretation of longitudinal transcriptome data.  

 We have recently applied DIA analysis to mine the he-
patic transcriptome from late pregnancy through early lacta-
tion in cows receiving different levels of dietary energy pre-
partum. For this study, already available DNA microarray 
data were obtained from NCBI GEO (accession number GSE 
3331) [70, 71] and re-analyzed using the Proc MIXED 
model of SAS. The study was based on two dietary conditions 
i.e., overfed (OF) versus restricted energy (RE) intake. The 
tissue biopsies were harvested at days -65, -30, -14, +1, +14, 
+28, and +49 relative to parturition. A Benjamini-Hochberg 
FDR correction resulted in a total of 4,111 DEG with a sig-
nificant diet  time interaction (FDR <0.05). The bioinformat-
ics analysis was carried out using the DIA methodology as

Table 1. List of Bioinformatics Software Commonly Used for Data Mining and Analysis in Ruminant Research. The Reference 

Column Provides Selected Examples of Published Studies that have used these tools 

Sr. # Name Link Reference 

1. DAVID http://david.abcc.ncifcrf.gov/ [92] 

2. GeneSpring GX http://www.genomics.agilent.com/ [70, 71] 

3. IPA http://ingenuity.com/ [84, 127] 

4. Genesis http://genome.tugraz.at/genesisclient/genesisclient_description.shtml [86] 

5. KEGG http://www.genome.jp/kegg/ [92] 

6. DIA Dynamic Impact Approach [88] 

7. MetaCore http://www.genego.com/metacore.php [128] 

8. GOseq http://www.bioconductor.org/packages/2.9/bioc/html/goseq.html [129] 
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Table 2. Published Bovine Studies Between 2003-2012 Using High-Throughput Genomics Technologies 

Title Year Tissue(s) Technology Used Reference 

“Bovine mammary gene expression profiling using a cDNA 

microarray enhanced for mammary-specific transcripts” 
2003 Mammary DNA Microarray [130] 

“Generation of a bovine oocyte cDNA library and microarray: 

resources for identification of genes important for follicular 

development and early embryogenesis” 

2004 Fetal ovary DNA Microarray [131] 

“Transcriptional profiling of skeletal muscle tissue from two 
breeds of cattle” 

2004 Skeletal muscle DNA Microarray [132] 

“Pregnancy-associated changes in genome-wide gene expression 
profiles in the liver of cow throughout pregnancy” 

2004 Liver DNA Microarray [133] 

“Temporal gene expression profiling of liver from periparturient 

dairy cows reveals complex adaptive mechanisms in hepatic 

function” 

2005 Liver DNA Microarray [70] 

“Plane of nutrition prepartum alters hepatic gene expression and 
function in dairy cows as assessed by longitudinal transcript and 

metabolic profiling” 

2006 Liver DNA Microarray [71] 

“Developmental aberrations of liver gene expression in bovine 

fetuses derived from somatic cell nuclear transplantation” 
2006 Fetal liver DNA Microarray [134] 

“Identification of estrogen-responsive genes in the parenchyma 
and fat pad of the bovine mammary gland by microarray analy-

sis” 

2006 Mammary DNA Microarray [135] 

“A gene coexpression network for bovine skeletal muscle in-
ferred from microarray data” 

2006 
Skeletal muscle and 
adipose 

DNA Microarray [136] 

“Nutrition-induced ketosis alters metabolic and signaling gene 

networks in liver of periparturient dairy cows” 
2007 Liver DNA Microarray [84] 

“Target genes of myostatin loss-of-function in muscles of late 
bovine fetuses” 

2007 Muscle DNA Microarray [137] 

“Image analysis and data normalization procedures are crucial 
for microarray analyses” 

2008 Muscle and adipose DNA Microarray [138] 

“Gene expression patterns during intramuscular fat development 
in cattle” 

2008 
Muscle and lean mass 
(LM) tissue 

DNA Microarray [139] 

“Comparative proteomics and transcriptomics analyses of livers 

from two different Bos taurus breeds: "Chianina and Holstein 
Friesian"” 

2009 Liver DNA Microarray [140] 

“Pleiotropic effects of negative energy balance in the postpartum 
dairy cow on splenic gene expression: repercussions for innate 

and adaptive immunity” 

2009 Spleen 
Affymetrix GeneChip Bovine 
Genome 

Array 

[141] 

“Feasibility of a liver transcriptomics approach to assess bovine 

treatment with the prohormone dehydroepiandrosterone 
(DHEA)” 

2010 Liver DNA Microarray [142] 

“Negative energy balance and hepatic gene expression patterns 
in high-yielding dairy cows during the early postpartum period: 

a global approach” 

2010 Liver 
Affymetrix GeneChip Bovine 
Genome 

Array 

[143] 

“Dietary supplementation of selenium in inorganic and organic 

forms differentially and commonly alters blood and liver sele-

nium concentrations and liver gene expression profiles of grow-
ing beef heifers” 

2010 Liver DNA Microarray [144] 
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(Table 2) contd…. 

Title Year Tissue(s) Technology Used Reference 

“Effect of diet supplementation on the expression of bovine 
genes associated with fatty acid synthesis and metabolism” 

2010 Adipose 
Affymetrix GeneChip Bovine 
Genome 

Array 

[145] 

“Omega-6 fat supplementation alters lipogenic gene expression 

in bovine subcutaneous adipose tissue” 
2010 Adipose DNA Microarray [146] 

“Altered gene expression in human adipose stem cells cultured 
with fetal bovine serum compared to human supplements” 

2010 Adipose DNA Microarray [147] 

“Microarray analysis of gene expression profiles in the bovine 
mammary gland during lactation” 

2010 Mammary 
Affymetrix GeneChip Bovine 
Genome Array 

[148] 

“Enhanced mitochondrial complex gene function and reduced 
liver size may mediate improved feed efficiency of beef cattle 

during compensatory growth” 

2010 Liver DNA Microarray [149] 

“Transcriptomic profiling of bovine IVF embryos revealed 
candidate genes and pathways involved in early embryonic 

development” 

2010 
IVF-derived blastocysts 
and embryos 

DNA microarray [150] 

“Comparison of transcriptomic landscapes of bovine embryos 
using RNA-Seq” 

2010 Embryos RNA-Seq [151] 

“SNP discovery in the bovine milk transcriptome using RNA-

Seq technology” 
2010 Milk somatic cells RNA-Seq [152] 

“Characterization of the abomasal transcriptome for mechanisms 
of resistance to gastrointestinal nematodes in cattle” 

2011 Fundic abomasum RNA-Seq [153] 

“Indistinguishable transcriptional profiles between in vitro- and 
in vivo-produced bovine fetuses” 

2011 Liver and placenta DNA Microarray [154] 

“Global gene expression profiling reveals genes expressed dif-

ferentially in cattle with high and low residual feed intake” 
2011 Liver DNA Microarray [155] 

“Gene expression differences in oocytes derived from adult and 

prepubertal japanese black cattle during in vitro maturation” 
2011 Oocytes Microarray gene chips [156] 

“Microarray analysis of differentially expressed microRNAs in 
non-regressed and regressed bovine corpus luteum tissue; mi-

croRNA-378 may suppress luteal cell apoptosis by targeting the 

interferon gamma receptor 1 gene” 

2011 Corpus luteum miRNA microarray [157] 

“Transcriptome profiling of bovine milk oligosaccharide me-

tabolism genes using RNA-sequencing” 
2011 Milk somatic cells RNA-Seq [158] 

“Gene expression in the arcuate nucleus of heifers is affected by 
controlled intake of high- and low-concentrate diets” 

2012 Brain DNA Microarray [159] 

“Endometrial gene expression during early pregnancy differs 
between fertile and subfertile dairy cow strains” 

2012 Endometrial tissue DNA Microarray [160] 

“Gene expression profiling of bovine peripartal placentomes: 

detection of molecular pathways potentially involved in the 

release of foetal membranes” 

2012 Placentomes 
Affymetrix 

GeneChip Bovine Genome Array 
[161] 

“Muscle transcriptomic analyses in angus cattle with divergent 
tenderness” 

2012 Muscle Microarray [162] 

“Transcriptome analysis of subcutaneous adipose tissues in beef 
cattle using 3' digital gene expression-tag profiling” 

2012 
Subcutaneous adipose 
tissue (backfat) 

Digital gene expression-tag pro-
filing 

[163] 

“Level of nutrient intake affects mammary gland gene expres-

sion profiles in preweaned Holstein heifers” 
2012 Mammary DNA microarray [164] 
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(Table 2) contd…. 

Title Year Tissue(s) Technology Used Reference 

“Reconstruction of metabolic network in the bovine mammary 
gland tissue” 

2012 Mammary DNA Microarray [107] 

“Cytoskeleton remodeling and alterations in smooth muscle 
contractility in the bovine jejunum during nematode infection” 

2012 Jejunum RNA-Seq [165] 

“Characterization of the longissimus lumborum transcriptome 

response to adding propionate to the diet of growing Angus beef 
steers” 

2012 
Longissimus lumborum 

muscle 
RNA-Seq [102] 

“Conceptus-endometrium crosstalk during maternal recognition 
of pregnancy in cattle” 

2012 Endometrium tissues RNA-Seq [166] 

“RNA-Seq analysis uncovers transcriptomic variations between 
morphologically similar in vivo- and in vitro-derived bovine 

blastocysts” 

2012 Blastocysts RNA-Seq [167] 

“Effect of the metabolic environment at key stages of follicle 
development in cattle: focus on steroid biosynthesis” 

2012 Ovarian follicle RNA-Seq [127] 

“Transcriptional profiling of bovine milk using RNA sequenc-
ing” 

2012 Milk somatic cells RNA-Seq [128] 

“RNA-seq analysis of differential gene expression in liver from 
lactating dairy cows divergent in negative energy balance” 

2012 Liver RNA-Seq [129] 

“Characterization and comparison of the leukocyte transcrip-

tomes of three cattle breeds” 
2012 Leukocytes mRNA-Seq [168] 

“Perturbation dynamics of the rumen microbiota in response to 
exogenous butyrate” 

2012 Rumen epithelium Pyrosequencing [169] 

 
described by Bionaz et al. [87]. This novel tool uses the in-
formation from the KEGG pathway database (http:// 
www.genome.jp/kegg/pathway.html) and can help rank each 
pathway-based on higher or lower impacted values. In this 
particular experiment, DIA estimates the overall magnitude 
of physiological changes (impact) and direction (flux; activa-
tion, inhibition, or no change) over time and in response to a 
dietary treatment. 

 The Fig. (4) contains a set of five highly-impacted path-
ways obtained from bovine liver data analysis. Among the 
top affected pathways by plane of nutrition, the five path-
ways include ubiquinone and other terpenoid-quinone bio-
synthesis, sulfur metabolism, arachidonic acid metabolism, 
complement and coagulation cascade and base excision re-
pair. A preliminary interpretation of these results revealed 
unique responses of bovine liver during transition from 
pregnancy to lactation. For instance, ubiquinone (coenzyme 
Q) and other terpenoid-quinone biosynthesis are involved in 
oxidative phosphorylation as part of the cellular respiratory 
chain [115], and during the transition into lactation a signifi-
cant induction was observed in OF cows; while sulfur me-
tabolism was inhibited. 

 From a biological standpoint, and because its anionic 
property, the observed adaptation in sulfur metabolism in OF 
cows might help the liver balance the cation-anion concen-
tration [116]. Metabolism of sulfur also plays a role in the 
synthesis of sulfur-containing amino acids [117], and indi-
rectly may play a role in lipid metabolism. The activation of 

arachidonic acid metabolism after parturition in OF cows, 
i.e. d 1 postpartum, could be related with the synthesis of 
signaling molecules that may play a role in the overall adap-
tation of liver to the onset of lactation. Similarly, the inhibi-
tion of the complement and coagulation pathway before par-
turition coupled with its activation at 14 d postpartum in OF 
cows is an indication that they were more sensitive to mount-
ing an inflammatory response [118]. The gradual activation 
of the base excision repair pathway between -14 d through 
14 d around parturition in OF cows suggested a potentially 
greater degree of DNA damage because this pathway is cen-
tral in repairing damaged DNA[119] and the control of cell 
proliferation [120]. Overall, these results indicate that OF vs. 
RE prepartum elicited a stronger transcriptional response 
potentially leading to alterations in immune response, me-
tabolism, and DNA damage. These findings are supported in 
part by the original studies conducted by Loor et al. [71]. 

ii) Adipose Tissue 

 Relatively fewer transcriptome studies (6 published since 
2003, Table 2) have been conducted on bovine adipose tissue 
[121-123]. Sumner et al. [122] performed transcriptome pro-
filing of subcutaneous adipose tissue during the transition 
from pregnancy to lactation, and used the ORA approach to 
mine the DEG. In collaboration with the McNamara group, 
we used the KEGG-based DIA analysis to evaluate the im-
pact of change in physiological states on biological pathways 
in bovine adipose tissue. The tissue biopsies were obtained 
on days -21, -7, +7, and +28 relative to parturition [124]. The 
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ANOVA with an FDR correction resulted in 1,802 DEG 
with a time effect (FDR < 0.10).  

 The DIA approach revealed that the onset of lactation 
resulted in a gradual decrease in the utilization (metabolism) 
of glucose, lactate, and acetate to produce energy (e.g., most 
impacted pathways included metabolism of fatty acids, bio-
tin, pyruvate, and TCA cycle) [124]. Furthermore fatty acid 
desaturation, elongation, and PPAR signaling were markedly 
inhibited during lactation. Among the significantly-affected, 
the complement and coagulation cascade pathway of the im-
mune system also was induced. While implementing the DIA 
using the DAVID bioinformatics resources, it was observed 
that fatty acid biosynthesis, linoleic acid metabolism, biotin 
metabolism, and glycerolipid metabolism were markedly in-
hibited postpartum than prepartum; whereas, complement and 
coagulation cascades and riboflavin metabolism were among 
the only pathways with sustained induction postpartum rela-
tive to prepartum. 

 Overall, the preliminary evaluation of the combined 
results from both bioinformatics approaches indicated that 
the adipogenic capacity of adipose tissue is quite robust 
during late pregnancy while the innate immune response of 
the tissue is more predominant during early lactation. The 
latter may be a response of the tissue due to stressors such 
as cytokines/hepatokines, NEFA, and/or pathogens. Alter-
natively, it may represent a mechanism associated with 
tissue remodeling [124]. The liver and adipose-specific 
applications provide evidence that systems biology ap-
proaches inevitably lead to a better understanding of the 
functional changes in an organism due to internal or exter-
nal factors. 

CONCLUDING REMARKS AND FUTURE CHAL-
LENGES 

 The primary objective of this review was to provide a 
concise overview of the evolution of systems biology ap-
proaches and its potential applications in ruminants using 
transcriptomic data. To enhance our understanding of the 
complex biological behavior in ruminants, there is a need 
for integration of genome-enabled and computational tech-
niques. Work during the previous 15 years on model organ-
isms has clearly demonstrated the applicability of high-
throughput technologies coupled with genome-scale mod-
els to elucidate systematic interactions [125]. 

 Bottom-up systems biology deals with the known 
stoichiometry of chemical reactions in biological systems by 
means of labor-intensive literature surveys and computa-
tional resources in silico. There is a substantial body of work 
on biochemical pathways and their regulation in the rumi-
nant animal [25]. That information will prove useful when 
applying the bottom-up approach within the systems frame-
work. However, the bottom-up approach leaves some gaps in 
genome-scale models because of our incomplete knowledge 
in non-model organisms such as cattle. These gaps could be 
filled by using conserved evolutionary relationships among 
species. Top-down systems biology examines molecular 
interactions in complex biological systems through genome-
wide ‘omics’ studies. As part of this approach we can un-
cover relationships among genes and proteins, but more im-
portantly, among biological networks.  

 Both approaches are complimentary in the search for inter-
relationships between genotypes and phenotypes. With the 
availability of tissue-specific genome-scale models constructed 
from ‘omics’ data and already published research articles, our 
understanding of the impact of genomic background on an ob-
served phenotype will be enhanced. Ultimately, these models 
will help to explain diverse molecular interactions among vari-
ous networks, from the cellular level up to the organism level in 
an integrative manner [126]. It is also worth mentioning that 
both reductionist and integrative approaches can help describe 
the functional behavior of a cell [103].  

 Even though much progress has taken place in ‘omics’, 
bioinformatics, and systems biology, its specific applications 
in ruminants are still minor relative to model organisms [95]. 
To accelerate progress in ruminant systems biology, there is a 
need for automation to help handle the growing number of 
datasets originating from genome-enabled tools. The applica-
tion of modern computational resources in ruminant biology 
can improve our understanding about molecular interactions in 
silico. Over the long term, the end result of this work could 
help to improve productive performance, and ultimately lead 
to more efficient ways of managing dairy cattle for production 
of milk and meat to meet the demands for highly nutritious 
food for humans worldwide. 
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Fig. (4). Top 5 impacted pathways sorted by overall impact in response to overfeeding (OF) versus restricting dietary energy (RE) during the 
prepartum period in dairy cattle. The data correspond to days -65, -30, -14, +1, +14, +28 and +49 relative to parturition. The impact values 
are shown in light-blue colored horizontal bars (from 0 to 100 based on the biological perturbation in a pathway), while flux values are de-
picted in red (activated/induced) to green (inhibited/reduced) shades of color (-100 to 100). The impact corresponds to the overall perturba-
tion in a pathway while flux corresponds to the direction of the impact. The “mean” column represents the overall change of impact and flux 
from day -65 to day +49. 
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