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Abstract: Cancer is a complex expression of an altered state of cellular differentiation associated
with severe clinical repercussions. The effort to characterize this pathological entity to understand
its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this
context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis,
failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been
considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it
has been demonstrated that various physiological systems misfunction in well-characterized ways
upon the onset and establishment of the carcinogenic process. This is the case with the purinergic
system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP),
adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors
and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is
accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic
or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been
recognized as a potential therapeutic target in cancerous and tumoral ailments.
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1. Purinergic Signaling in Brief

In 1929, Drury and Szent-Györgi provided the first experimental evidence that adenine nucleotides
function as signaling molecules. However, the term “purinergic”, and ATP as a signaling molecule,
was first proposed in 1972 by G. Burnstock [1]. Although his work was controversial, today it is well
recognized that ATP, other nucleotides (adenosine diphosphate (ADP), UTP, uridine diphosphate
(UDP)) and ADO are cellular messengers that modulate diverse signaling pathways and participate in
physiological and pathological processes, mainly through specific membrane receptors (Figure 1).

Purinergic receptors have been classified into two families: P1, sensitive to ADO; and P2,
sensitive to adenine and uridine nucleotides. P1 belongs to the G-protein coupled receptor (GPCR)
superfamily, while P2 is divided in two subfamilies. The first is P2X, which are ligand-gated cation
channels formed by homotrimeric or heterotrimeric complexes of known subunits (P2X1-P2X7). ATP
is the natural ligand for P2X receptors. When activated, these receptors promote rapid depolarization
associated with Ca+2 and Na+ influx, and K+ efflux [2]. The second subfamily is P2, and eight P2Y
subtypes have been described in mammalian cells: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11-14. These
receptors can be activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12 and P2Y13), UTP (P2Y2
and P2Y4), UDP (P2Y6) and UDP-glucose (P2Y14). P2Y2, P2Y4 and P2Y6 are coupled to Gq proteins;
thus, their activation leads to phospholipase C (PLC) activation, turnover of phosphoinositides
and Ca+2 mobilization. P2Y12, P2Y13 and P2Y14 are coupled to Gi proteins producing adenylate
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cyclase (AC) inhibition [3]. Once in the extracellular space, ATP can either activate P2R or be
further dephosphorylated/hydrolyzed by a set of enzymes called ectonucleotidases (Figure 1). There
are four families of these enzymes: ectonucleoside triphosphate diphosphohydrolases (NTPDases),
ecto-59-nucleotidase (CD73), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) and alkaline
phosphatases (AP) [4].

Figure 1. Nucleotides act as autocrine and paracrine messengers. ATP is produced by oxidative
phosphorylation (OXPHOS) and glycolysis intracellularly reaching mM concentrations. It can be
released to extracellular space by cellular lysis, exocytosis, transporters, hemichannels of pannexin-1
(PNX-1) and P2X7R. Once located at the extracellular space, ATP activates P2XR (ligand activated
ion channels), P2YR receptors (belonging to GPCR superfamily), and it can be hydrolyzed by
ectonucleotidases (here, CD39 and CD73 are illustrated by their relevance in cancer) to form ADP,
AMP and adenosine (ADO). ADP is able to activate P2Y12R and ADO activate G-protein coupled
receptor (GPCR) receptors of the P1 family named (A1R, A2AR, A2BR and A3R). ADO is hydrolyzed by
adenosine deaminase (ADA) to inosine or it is transported into the cell by nucleoside transporters (NT).

These enzymes, besides limiting ATP signaling, produce additional ligands for P2Y receptors like
ADP to P2Y12, and adenosine to A2-AR (A2-adenosine receptors). Extracellular adenosine (exADO)
can activate P1 receptors which belong to a family of GPCRs. According to their sequence and signaling
properties, P1 receptors are designated A1R, A2AR, A2BR and A3R. A1R and A3R are mainly coupled
to the Gi/o subunit and thus inhibit AC and cAMP production; A2AR and A2BR are mainly coupled
to the Gs subunit and stimulate cAMP synthesis through AC activation. Finally, exADO and its
associated signaling are regulated by hydrolysis through adenosine deaminase (ADA) and transported
into the cell by nucleoside transporters (NTs) [5].

When cells are damaged or stressed by changes in osmotic pressure and mechanic deformation,
they respond by releasing ATP to the extracellular medium. Aside from this unspecific mechanism,
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ATP can be released by controlled mechanisms in response to different stimuli. These mechanisms
include efflux through membrane channels and transporters (e.g., connexins, pannexins, maxi-anion
channels, volume-regulated channels, and ATP-binding cassette (ABC) transporters), purinergic
receptors (e.g., P2X7R), and vesicle-mediated release [6]. Purinergic signaling is flexible and adaptable.
Released ATP activates paracrine and autocrine communication and, as previously mentioned, its
hydrolysis generates a cascade of additional signaling molecules. Almost every cell type expresses
a dynamic set of purinergic receptors and ectonucleotidases; therefore, the final outcome depends on
a variety of factors, including specific receptors and ectonucleotidases expressed by the cell, as well
as the constant fluctuations in the proportion of extracellular and intracellular levels of ATP and ADO.

2. Purinergic Signaling and Cancer Hallmarks

2.1. Purines in Tumor Microenvironment

Intense efforts have been made to systematize the complex organization of cancer cells within
the tumor and the interactions of these cells with the organism [7,8]. An essential concept to understand
the principles of this organization is the tumor microenvironment (TME). The TME consists of all
interactions between cancer cells and non-malignant cells, such as endothelial, fibroblast and immune
cells. The structural, cellular and biochemical composition of this enclosed space modulates cancer cell
metabolism, migration and proliferation. It also influences the host immune response [9]. Studying
the cellular and molecular composition and interaction of these regions has become increasingly
important in the field of pathology, because the downstream effects derived from these interactions
could favor tumor growth, invasion and immune evasion.

Purinergic signaling in particular has gained attention in this context, because ATP and ADO
are present in high concentrations in the TME [10,11]. Different tumor tissues and cancer cell lines
express purinergic receptors and CD39/CD73 ectonucleotidases, generating diverse cellular responses
that could depend directly on the cell context and the specific set of purinergic signaling components
expressed by the tumor and host cells, known by some authors as the “purinome” [12]. In this section,
we will review evidence about the presence of ATP and ADO in the TME.

Extracellular ATP (exATP) and exADO are accepted biochemical markers of cancer, due to their
significant levels in the tumor interstitium. ATP release by cancer cells and the subsequent activation
of purinergic receptors and intracellular pathways have been reported in various cancer models, such
as pheochromocytoma PC-12 cells stimulated with maitotoxin [13]; Ehrlich ascites tumor cells, ATP
release induced by mechanical stimulation [14]; A549 human lung cancer cells, by exocytosis triggered
by TGF-β stimulation [15]; SKOV-3 ovarian carcinoma-derived cells released by a pipette generated
flux [16]; I-10 testicular cancer cells through pannexin-1 [17]. A breakthrough was the monitoring of
ATP in vivo in a tumor-bearing mouse with the use of reporter cells carrying an extracellular ATP
sensor. ATP was within a low nM range in healthy pericellular space, but increased to high µM levels
in the tumor stroma and vicinity [18]. This observation had significant relevance, because exATP
is a putative direct source of exADO. Although ADO has not been measured within tumors using
an in vivo approach, it was reported that exADO was more abundant in microdialysates from tumoral
core regions [19]. However, some conditions in the tumor, such as hypoxia, favor ADO formation. It is
well known that, in tumor growth, there is an oxygen gradient. The areas at the center of the cellular
mass are hypoxic; in this condition, CD39 and CD73 expression is induced by hypoxia inducible factor
1α/β (HIF-1α/β), and ADO formation is promoted [20–23].

Furthermore, the ectonucleotidases CD39 and CD73 play a fundamental role in modulating
ATP and ADO levels in the TME. These enzymes are expressed in cancer cell lines, immune cells
and stromal cells, and they are considered immune checkpoints in cancer [24]. Practically all cell
types can release ATP to the extracellular space; therefore, all cells in the tumor-host interface could
contribute to the substantial amount of ATP in the tumor interstitium.
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A mechanism that has gained attention in cancer is ATP release through pannexin-1 channel
(PANX1), since a truncated PANX1 protein (PANX11−89) is significantly enriched in highly metastatic
human cancer cell lines [25]. PANX11−89 in combination with wild type PANX-1 confers gain-of-function
to channel activity, promoting a significant increase in ATP release. Moreover, this mechanism facilitated
the resistance to mechanical deformation of cancer cells. This finding is relevant, because many cancer
cells undergo apoptosis during metastasis through capillaries [25]. As previously mentioned, ATP can
also be released through P2X7R channel, and the P2X7R has been associated with the regulation of
NLRP3 inflammasome, which leads to the release of pro-inflammatory cytokines, specifically IL-1β
and IL-18 [26–28]. Importantly, antitumor therapies like chemotherapy or radiotherapy induce tissue
damage and cell death and, consequently, the corresponding release of damage-associated molecular
patterns (DAMPs), mainly ATP [29]. exATP is quickly converted into ADO by the CD39/CD73 pathway,
establishing a particular proportion of purines in the TME where both purines can potentially affect
cancer and host cells; this equilibrium is decisive for the outcome of a given clinical treatment [30].

Nucleotides in the TME primarily serve as an interface of interaction with immune system cells
since ATP can act as a “find me” signal for cells of the innate immune system [30]. However, in
the extracellular space, ATP is modified by ectonucleotidases that generate ADO, whose fundamental
antagonistic action is related to the evasion of an immune attack; this topic will be discussed later.
On the other hand, nucleotides in the tumor stroma can function as paracrine-autocrine messengers,
inducing specific cellular responses over all the cell types forming the tumor mass. Research has
demonstrated that purines can regulate cell proliferation, epithelial to mesenchymal transition (EMT)
and cellular migration in tumor cells. These actions are discussed below.

2.2. Purines in Proliferation and Tumor Growth

Nucleotides in the tumor microenvironment play a dual role; they function as lures to interact
with immune system cells and as autocrine-paracrine signals directly affecting the physiology of
cancerous cells.

Autocrine-paracrine actions of purines involve a feedback loop that joins the initial production
and release of ATP by cancerous cells, with the subsequent activation of cell proliferation and tumor
growth (Figure 2). Signaling actions of exATP depend on the presence and diversity of specific
receptors in the own cell releasing the nucleotide and neighboring cells, as well as on the actions of
ectonucleotidases, which will define the composition of ligands in the medium.

With respect to purinergic receptors, P2X7R is the best characterized in the cancer context, probably
because this receptor was described as an apoptotic inducer [31], motivating the inquiry of a role in
cancer. In addition, P2X7R has diverse signal transduction mechanisms. Unlike other P2XRs, it has
a long intracellular COOH-end with putative protein-protein interaction domains, such as SH2, SH3
and dead domains [32], creating a potential signaling mechanism independently of ionic conductance.

Incremented expression of P2X7R has been demonstrated in cancerous tissue from organs including
breast [33], thyroid [34], ovary [16], pancreas [35], colon [36,37] and liver [38]; in general, the increment
in P2X7R expression was correlated with a high tumor grade. This observation suggests that P2X7R
can be activated by autocrine-paracrine signaling and be a regulator of cancerous cell physiology.

The significance of the elevated expression of P2X7R was intriguing, because it was initially related
to apoptosis induction; however, important observations supporting proliferation and/or survival roles
for P2X7 were later reported; DiVirgilio’s group proposed that P2X7R can act as a growth-promoting
receptor based on the following evidence: 1) P2X7R exogenous expression in several cell lines
incremented proliferation; 2) the TME contains high amounts of ATP (hundreds of µM) to activate
P2X7R; 3) various cancerous tissues from different organs show high expression levels of P2X7R; and 4)
P2X7R is a positive regulator of aerobic glycolysis [39]. This apparent antagonism between the ability
of P2X7R to induce apoptosis and, in some conditions, support cell survival has been analyzed [40].
The most plausible explanation to explain this paradox could be related with the conformation of
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P2X7R in activated state, P2X7R adopt structure conformations that specifically regulate the induction
of apoptotic activity [41].

Figure 2. Purinergic signaling and tumor microenvironment (TME). (A) Cancer cells synthetize ATP
rather from aerobic glycolysis (Warburg effect) which leads to lactate formation and subsequent
extracellular acidification. (B) ATP is released from tumor cells (pannexin-1 hemichannels and P2X7R
have an outstanding role) by general mechanisms or by cellular lysis as result of anticancer therapies
and reach hundreds of mM levels, sufficient to activate any P2 receptor. (C) extracellular ATP in
autocrine/paracrine way activate P2 receptors (mainly P2X7R and P2Y2R) to induce proliferation,
migration and epithelial to mesenchymal transition (EMT) of cancer cells. (D) In TME, ATP is
hydrolyzed to ADO by subsequent action of ectonucleotidases CD39 and CD73, which are expressed in
the own tumor cells, exosomes and immune cells (i.e., CD4+, CD25+, Foxp3+ Treg); contributing to
the significant increase of ADO, which in turn inhibits antitumor response of innate immune cells and T
effector cells (CD4+ and CD8+). (E) ADO also contributes to monocyte differentiation into associated
tumor macrophages 2s), which also amplify ADO formation.

The proliferative role of P2X7R has been documented in a variety of cancers, such as ovarian
carcinoma cells [16], mesothelioma [42], pancreatic cancer cells [35,43] and osteosarcoma cells [44].
Although the molecular mechanisms of P2X7R are not completely understood, their transduction
pathways involve ERK phosphorylation of both dependent and independent intracellular Ca2+

increments [45,46], the PI3K/AKT/GSK3β/β-catenin pathway and mTOR/HIF1α/VEGF signaling [16,43].
The overexpression of purinergic P2Y receptors belonging to the GPCR superfamily has also been

observed in cancerous systems acting as promotors of cell proliferation; P2Y2R is the prototypical
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and most analyzed receptor. It has been shown that P2Y2R is overexpressed in biopsies of basal cell
and squamous cell carcinomas (non-melanoma skin cancers) [47]. One study also showed by cDNA
microarray analysis that the P2RY2 transcript is highly expressed in fresh biopsies of gastric cancer
tissue, compared to adjacent healthy tissue [48]. The incremented expression of P2Y2R was detected in
primary cultured hepatocellular carcinoma cells and in the hepatocarcinoma-derived cell lines HepG2
and Bell-7404 compared with normal hepatocytes and the normal hepatocyte cell line LO2 [49].

Accordingly, it has been demonstrated that UTP activation of P2Y2R induced proliferation in
C6 glioma cells [50], in human cutaneous squamous cell carcinoma lines (A431) [47]; in pancreatic
duct epithelial cells PANC-1 [51]; in hepatocarcinoma cell lines HepG2 and Bell-7404 [49]; and in
the gastric cancer lines AGS and MKN-74 [52]. In addition, P2Y2R-dependent cell proliferation
involves the Ras/Raf/MEK-1 pathway, modulated by PLC/PKC and Ca2+ in C6 glioma cells [50].
In PANC-1 cells, UTP increased the phosphorylation level of AKT through PKC, PI3K, SRC
and Ca2+-calmodulin-dependent protein kinase II [51].

In addition, gastric cancer cell lines also express P2X4R, the activity of which exerts
anti-proliferative effects contrary to P2Y2R activity [52]. In fact, P2X4R activity is able to revert
the proliferative effects mediated by P2X7R in breast-derived cancers [53]. Both evidences reveal that
functional interactions among subtypes of purinergic receptors are determinants for the final outcome
of purinergic signaling in cancer; both observations highlight the anti-proliferative action of P2X4R.

Although the purinergic system has mainly been associated with the positive regulation of cell
proliferation, diverse evidence supports that it is not a rule; for example, pharmacological activation
of purinergic receptors induced apoptosis in cancerous cells. Thus, it was shown that P2X7R is
downregulated in endometrial cancer. In endometrial epithelial carcinoma cells, P2X7R activation was
able to induce apoptotic cell death [54]. Furthermore, activation of P2X7R inhibited the formation of
virus-induced skin cancer in vivo [55]. As for P2YR, research has found that P2Y2R activity inhibits
cell proliferation in endometrial carcinoma cells HEC-1A and Ishikawa cells [56], human colorectal
carcinoma cell HT29 and Colo320 D [57], human esophageal cancer cells [58], and nasopharyngeal
carcinoma cells [59]. Inhibition of cell proliferation was also related to the activity of P2Y6R through
a pathway involving the store-operated Ca2+ entry (SOCE) and β-catenin [60]. These controversial
observations must be analyzed considering the detailed characteristics of each cellular system.

The most relevant compound formed from exATP is ADO. The receptors for ADO are expressed
in tumor tissues from various organs. It has been shown that A2BR, probably the best characterized
in cancer, is overexpressed in tumor biopsies and cell lines derived from human hepatocellular
carcinoma [61], colorectal carcinoma [62], oral squamous carcinoma [63] and bladder urothelial
carcinoma [64]. To further support the role of A2BR in cancer progression, studies have shown that
pharmacological or genetic inhibition of this receptor decreases cell proliferation [62–64]. Additionally,
expression of A2BR has been described in cell lines derived from prostate cancer [65], breast cancer [66]
and head and neck squamous cell carcinoma [67]. In all these systems, A2BR functioned as a cell
proliferation promoter. Moreover, inhibition of A2BR expression in EJ and T24 cell lines, derived from
bladder urothelial carcinoma, inhibited cell proliferation and arrested the cells in the G1 phase of
the cell cycle [64].

Given that the equilibrium between nucleotides and nucleosides influences the autocrine-paracrine
signals that regulate tumor growth, purinergic signaling elements, such as transporters, receptors
and ectonucleotidases, emerge as potential pharmacological targets to modulate carcinogenesis.

2.3. Purines in Cancer Cell Migration, EMT and Metastasis

Cell migration involves a response to a chemical gradient and is required for physiological
events including embryonic development and tissue repair; however, in cancer, it participates in
the metastatic activity of cancerous cells to form secondary tumors. The stages of metastasis are loss
of cell-cell adhesion in primary tumor, migration and invasion, anoikis evasion and implantation
to form the secondary tumor [68]. These stages are initiated by epithelial-mesenchymal transition
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(EMT), a process in which epithelial cells assume a mesenchymal phenotype, acquiring enhanced
invasive and metastatic capacity. Extensive evidence indicates that purinergic signaling participates in
the modulation of this phenomenon in different cancer types [69].

During EMT, cells lose their apical-basal polarity and epithelial cell-cell contacts including
tight junctions, adherent junctions, and desmosomes. In addition, they acquire a spindle-shaped
mesenchymal morphology, and gain motility by reorganizing their actin cytoskeleton. EMT is also
accompanied by the loss of epithelial genes such as E-cadherin, keratins and zona occludens-1 (ZO-1).
Conversely, the expression of metalloproteinases (MMPs), vimentin and N-cadherin is upregulated.
Some classical EMT promoters are transforming growth factor β (TFG-β), epidermal growth factor
(EGF) and wingless (WNT); these molecules elicit EMT through the activation of transcription factors
such as SNAIL and TWIST [70]. ATP and purinergic signaling also modulate the EMT process,
migration/invasion and metastasis in many different cancers.

It has been observed in different lung cancer cell lines that stimulation with high ATP concentrations,
such as those found in the TME (0.5–1 mM), favors cell detachment, migration and invasion. These
observations were associated with an increased expression of MMPs and the formation of filopodia
and cell protrusions, as well as an increased expression of vimentin, SNAIL and SLUG. In parallel,
there was a reduction of the epithelial proteins E-cadherin and ZO-1. These results were ingeniously
related with the exATP micropinocytosis process, since the genetic deletion of SNX5 (a gene involved
with cell micropinocytosis) caused a significant reduction in cancer cell proliferation, migration
and invasion [71].

Moreover, evidence reveals the interaction between ATP and classical EMT inducers. For instance,
it has been demonstrated that treatment with TGF-β1 elicits ATP release from lung cancer cells,
thus activating P2 receptors. Actin remodeling and cell migration induced by TGF-β1 required
the expression and autocrine stimulation of P2X7R, since these processes were suppressed after P2X7R
knock-down or pharmacological inhibition [15]. In the PC9 human lung cancer cell line, which has
a mutated EGFR, P2X7R was constitutively activated, promoting cell migration, even in the absence of
TGF-β1. Cell motility and lamellipodium extension of PC9 cells were abolished by AG1478, an EGFR
inhibitor. These data showed a cross-signaling between TGF-β1, P2X7R and EGFR in the regulation of
cell migration [72].

P2X7R is associated with cancer cell migration and invasion. This receptor is expressed in cells
from different types of cancer, such as pulmonary [15,70], prostatic [73], mammary [74], pancreatic [35],
glioma [75], osteosarcoma [44] and glioblastoma stem cell cancer [76]. In the prostate, breast
and osteosarcoma cell lines, it has been proven that P2X7R stimulation induces cell migration
and up-regulation of EMT-related genes. At the same time, E-cadherin is down-regulated. These
effects of P2X7R were mediated through PI3K/AKT phosphorylation and ERK1/2 signal transduction
pathways [71,74].

Considering that nucleotides promote cell migration, evidence demonstrates the interaction
between purinergic receptors and proteins involved in cell-to-cell and cell-to-extracellular matrix
(ECM) junctions such as cell adhesion molecules (CAM) and integrins. For instance, P2Y2R interacts
directly with αvβ3 and αvβ5 integrins in astrocytoma cells. These interactions are mediated through
the integrin-binding domain arginine-glycine-aspartic acid (RGD) contained in P2Y2R. The RGD
domain is necessary for UTP-induced chemotaxis through G0 protein coupling; the mechanism elicited
by P2Y2R stimulation involves Rac and Vav2 (a GEF for Rac) activation. Moreover, vitronectin, an ECM
protein that binds to integrins αvβ3 and αvβ5, is up-regulated [77]. Additionally, P2Y2R activation
through G12 coupling and integrin αvβ5 interaction mediates Rho activation, cofilin, myosin light chain
(MLC-2) phosphorylation and stress fiber formation [78]. One study showed that P2Y2R activation
increased intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) expression in a highly metastatic breast cancer cell line. This effect was also observed
in endothelial cells incubated with cancer cell conditioned medium, leading to increased adhesion
between cancer cells and ECs; this action could be associated with cancer cell metastasis [79].
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P2Y2R is a purinergic receptor that seems crucial to mediate ATP pro-metastatic effects. For
instance, ATP in prostate cancer cells promotes Cdc42 and Rac1 activation and MMP expression
through P2YR activation [80,81]. This effect is mediated through P2Y2R activation [82]. P2Y2R is also
expressed in diverse breast cancer cell lines: MCF-7, Hs578T, MDAMB-231 and T43D [83–85]. In breast
tumor tissue, P2Y2R expression is higher at the invasive edge of the tumor, in infiltrating cells in
adipose mammary tissue and in the tumor embolus in lymphatic sinuses, suggesting the participation
of P2Y2R in metastasis [84]. It has been proven that highly metastatic breast cancer cell lines release
more ATP to the extracellular medium and, thus, exhibit a greater ability to migrate and invade [86],
the effects are mediated through the activation MEK/ERK1/2-dependent signaling pathway [80,83,87].
Another pathway involved in cell invasion of breast cancer cells is ATP-P2Y2R-β-catenin [85]. Studies
in prostate [87] and ovarian cancer cells [88] found that P2Y2R activation also promoted the expression
of EMT-related genes, and demonstrated a transactivation pathway between P2Y2R and EGFR.

Conversely, CD73 over-expression using pcDNA-NT5E has shown to increase cancer cell invasion,
migration and adhesion in the breast cancer cell lines T-47D and MDAMB231 [89,90]. Following
the same experimental strategy, increased cell migration was observed in human cervical cancer
cell lines. However, the effect did not depend on CD73 activity [91]. In contrast to the general
assumption that CD73 is pro-tumorigenic, it was reported that CD73 promotes epithelial integrity
through an increase in membrane E-cadherin, β-catenin and Na+-K+ ATPase in endometrial cancer;
also, in vitro experiments showed increased migration and invasion after pharmacological CD73
inhibition [92].

Analysis of CD73 expression in human tissue from head and neck squamous cell carcinoma
(HNSCC) samples showed a higher CD73 expression in samples from patients with lymph node
metastasis. This finding correlated with in vitro experiments, in which, after CD73 knock-down, cancer
cell migration and expression of EMT-genes were reduced and A3R activation promoted HNSCC cell
migration and presumably involving the EGFR signaling pathway [93]. In ovarian cancer cells, CD73
confers stemness and the expression of EMT-associated genes [94].

CD73 expression in hepatocellular carcinoma is correlated with a mesenchymal phenotype.
CD73 activity was required for inducing mesenchymal characteristics. A2AR activation could restore
the effect of knocking down CD73. These data suggest a synergist treatment with A2AR and CD73
inhibitors [95].

Activity of CD73 produces ADO and the potential activation of P1 receptors. Virtanen et al.
in 2014 [96] demonstrated that ADO at low µM inhibited cell migration and invasion in prostate
and breast cancer cell lines. However, the authors suggested that these effects were not mediated
by the activation of P1 receptors, but by one intrinsic receptor-independent mechanism. However,
the inhibitory effect of ADO in cell migration and invasion has also been proven in human cervical
and ovarian cancer cell lines [89,97].

Despite the opposite effects regarding ADO modulation in cancer cell migration and invasion,
it is necessary to consider the receptor involved and the type of cancer under study. For instance,
pharmacological A1R inhibition reduces cell migration in renal cancer cell lines [98]. On the contrary,
gastric cancer cell incubation with ADO enhances the expression of stemness and EMT genes, which is
attributed to A2AR activation and the AKT-mTor pathway [99]. The effect of A2BR on EMT has been
evaluated in human epithelial lung cancer cells; interestingly, two modulatory roles were described.
The first consisted in a partial EMT induction through A2BR activation that involved the cAMP/PKA
and MAPK/ERK transduction pathways. The second consisted in the ability of the selective A2BR
agonist, BAY-606583, to counteract TFG-β–induced EMT [100]. These roles suggested that EMT
maintenance/inhibition is based on the balance of extracellular environment signals. In agreement, in
MDAMB231 cancer cells, ADO increased cells migration through the A2BR/AC/PKA/cAMP axis [66]
and A2BR pharmacological inhibition decreased cell migration in human epithelial lung cancer cells
and renal cancer cell lines [67,101]. Finally, A3R modulation in cell migration has been evaluated in
AT6.1 rat prostate [102], MDA-MB-23 human breast [103], HepG2 hepatocellular and Caco3 colorectal
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cancer cell lines [104]. These reports demonstrated that A3R stimulation arrested cancer cell motility,
migration and invasiveness by hindering AC/PKA and reducing NADPH oxidase activity [102]. On
the other hand, in primary cultures of glioblastoma (GBM) stem-like cells obtained from GBM patients,
and also in a GBM cell line, A3R blockade promoted a reduction in cell migration and invasion
associated with the expression of EMT genes [105].

Evaluating ATP cellular regulation and consumption during metastatic cell migration is essential,
considering that ATP is the cell’s biological energy currency. This has been elegantly achieved by
Zanotelli and colleagues, who used genetically encoded fluorescent biomarkers to evaluate cancer cell
migration in 3D matrices. They found that the ATP:ADP ratio was modulated in response to collagen
architecture. This ratio increased in denser matrices where migration is impaired and decreased in
aligned matrices where migration is facilitated. Therefore, the cellular energy requirement changes in
response to the adhesion environment. It can be suggested, however, that increases of ATP in the TME
could facilitate cancer metastasis [106]. Additionally, striking evidence has shown that ATP is required
locally in invadopodia formation. It participates in F-actin network growth, even in the absence
of MMPs [107]. These data indicate that ATP per se engages in the physiology of cell migration
and metastasis.

2.4. Energy Metabolism in Cancerous Cells

Cancer is a pathology with multifaceted expression. Neoplastic conditions that cause tumor
growth involve a variety of molecular, cellular and metabolic adequacies. Foremost among them
are biochemical reactions, considered hallmarks of cancer, especially in the form in which cancerous
cells display energy transformations in cytoplasmic and mitochondrial compartments. Almost 100
years ago, Nobel Laurate Otto H. Warburg described that carcinogenic cells obtain ATP preferably
from glycolysis, regardless of the availability of oxygen and the suitability of mitochondrial oxidative
phosphorylation [108]. This “aerobic glycolysis” or “Warburg effect,” as it was rapidly known, was
a widely spread metabolic feature in many tumor-derived cells and cancerous cell lines [109,110].

However, there is an accepted rationale for the Warburg effect in the biology of cancer. It has been
more difficult to reach consensus regarding the metabolic mechanisms that sustain this neoplastic
energy adaptation. Indeed, cancerous cells are systems specialized in cellular growth and duplication.
The more undifferentiated and aggressive the cancer cells, the more prone they are to activate
their cellular cycle and the metabolic pathways to synthesize biomolecules and build new genetic
material and phospholipidic membranes [111]. Therefore, growing tumors and carcinogenic cells face
a “metabolic dilemma”; that is, deciding what is more important in a replicating system: 1) cellular
energy like ATP to enable the biosynthetic processes, or 2) the availability of biomolecules, such
as reductive power (NADPH), fatty acids, amino acids, glycerol and sugars, to be used as structural
elements for the synthesis of membrane and genetic material. In this context, understanding
the implications of the complex metabolic adaptations associated with cancer is necessary to visualize
successful therapeutic approaches [112].

Metabolic reprogramming in cancerous cells does is not just an imbalance between cytoplasmic
glycolysis and mitochondrial oxidative metabolism. Genetic activation of glycolytic-promoting factors,
such as c-Myc and HIF-1α (transcriptional factors), glucose transporters and glycolytic enzymes
and regulators (hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase isozyme 1 and lactate
dehydrogenase A) underlie an enhanced glycolytic flux associated with aerobic glycolysis [113].
The immediate consequences of this enhanced glycolytic flux include increased glucose uptake
with concomitant glycogen formation, as well as extra-cellular acidification connected to prominent
lactate production.

Another metabolic flux that is activated in cancerous cells is the pentose phosphate pathway
(PPP). When glucose is metabolized by the PPP, it promotes the synthesis of 5-carbon sugars used
in the polymerization of nucleic acids, but most importantly, it favors the formation of the redox
coenzyme NADPH. This cofactor is key for various anabolic pathways such as lipogenesis (β-reduction)
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and isoprenoid/sterol synthesis; in addition, NADPH is necessary to maintain functional levels of
the antioxidant glutathione in its reduced form (GSH) [114].

The increased glutamine metabolism that is characteristic of neoplastic cells is also part of
the adaptations associated with the Warburg effect. In this case, glutaminase catalyzes the conversion of
glutamine into glutamate. Glutamate, by action of the glutamate dehydrogenase located within
the mitochondria, loses ammonium molecules and forms α-ketoglutarate. α-Ketoglutarate is
an intermediate of the Krebs cycle, which acts as a redox substrate, to form NADH and supply
oxaloacetate. Overall, glutamine is used by cancerous cells as an anaplerotic substrate by the coordinated
action of cytoplasmic and mitochondrial enzymes [115].

Mitochondrial citrate is also crucial in cancer metabolism. Citrate is constantly leaving
mitochondria to enter the cytoplasm and be converted into the lipogenic substrate acetyl-CoA
by the activity of ATP-citrate lyase. Acetyl-CoA acts as a substrate for the formation of fatty acids,
which are incorporated into phospholipids and triacylglycerols. Citrate exits the mitochondria, so
the mitochondrial role of glutamine metabolism is relevant for aerobic glycolysis: the amino acid
contributes as a carbon skeleton to supply the carbons lost by the exit of the mitochondrial citrate [116].
It has been reported that mitochondrial activities during carcinogenesis, such as ATP production,
glutamine metabolism, fusion/fission balance and calcium dynamics, are regulated by the metabolic
master regulator mTORC1 [117].

Some cellular populations display a Warburg-like effect in the metabolic adaptation, without being
cancerous. For example, the functional unit glia-neuron in the nervous system. It has been reported
that astrocytes are primarily glycolytic and effective lactate producers. Eventually, the lactate formed
by the glia is taken up by the neuron, where it is oxidized as energy substrate. The glycolytic activity
in astrocytes occurs whether they possess functional mitochondria and adequate oxygen availability or
not [118,119].

Warburg Effect and Purinergic Signaling

Signal transduction by purinergic receptors has been little explored in the characterization of
the Warburg effect and other metabolic adaptations in cancerous cells. Until March 24, 2020, from
the total of entries in PubMed focused on the Warburg effect (2693), only 0.7% were related to purinergic
signaling (20).

Among the purinergic signaling elements, P2X7R has been the most studied, in relation to
the metabolic adaptations that occur in cancerous cells. More than 20 years ago, it was recognized
that P2X7R promoted proliferative actions in lymphoid cells [120], in contrast to the pro-apoptotic
and necrotic role previously designated to this cationic channel receptor [121]. Growth-promoting
effects associated with elevated levels of extracellular ATP and P2X7R activation also involved
MAPK/ERK kinases, by inducing de novo synthesis of pyrimidine nucleotides [122]. The pro-mitotic
role of P2X7R was also recognized in B-cell chronic lymphocytic leukemia, one of the most common
neoplastic diseases in the Western world. P2X7R expression was higher in patients suffering from
an aggressive form of this cancer [123]. Tumor progression has also been related to the expression of
P2X7R in prostate and breast cancer [33].

A seminal article demonstrated a direct role of P2X7R in the metabolic adaptations that
underline the Warburg effect [124]. This group showed that in P2X7R-transfected HEK293 cells
and the neuroblastoma cell line ACN, there was an increased lactate output associated with cell
proliferation in the absence of serum, a hallmark of aerobic glycolysis. P2X7R action was accompanied
by the upregulation of the following glycolytic promoters: glucose transporter Glut1, glyceraldehyde
3-phosphate dehydrogenase (G3PDH), phosphofructokinase (PFK), pyruvate kinase M2 (PKM2)
and pyruvate dehydrogenase kinase 1 (PDHK1). Furthermore, P2X7R expression inhibited pyruvate
dehydrogenase (PDH) activity, increased phosphorylated Akt/PKB and hypoxia-inducible factor 1a
(HIF-1α) expression, and enhanced intracellular glycogen stores. These are all metabolic adjustments
to avoid aerobic adaptations.
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To accomplish the promotion of the Warburg effect and the proliferative effect independent of
serum, P2X7R must reach higher levels of activation to function not just as an ion channel, but as a large
conductance non-selective pore. Acting in this way, P2X7R is capable of mitochondrial stimulation by
increasing the resting mitochondrial potential (∆Ψ) and the basal mitochondrial calcium [125].

The authors of [126] reported that human non-small cell lung cancer A549 showed the capacity to
internalize the highly concentrated extracellular ATP by clathrin- and caveolae-mediated endocytosis,
but mainly by macropinocytosis. The internalized ATP favored elevation of intracellular energy
charge and promoted cancer growth, survival, and drug resistance, as well as the induction of EMT.
More recently, these observations were extended to other neoplastic cell lines [71]. In the context of
the Warburg effect, an interesting interpretation is that the metabolic role played by the internalized
ATP serves as an energy supplement for the glycolytic ATP in cancerous cells. This phenomenon
resulted only partially dependent on P2X7R [71].

It was demonstrated in prostate cancer cell lines that activation of the pro-inflammatory Toll-like
receptor 3 stimulated the Warburg effect (glucose utilization and lactate production). This effect
involved the intracellular participation of HIF-1α, and was synergized by the extracellular activation
of A2BR [127].

The high extracellular ATP concentration characteristic of neoplastic cells is also related to
the elevated presence of exADO, according to the expression and activity of various ectonucleotidases.
In this context, the nucleoside ADO has been recognized as a pro-tumoral factor [128]. For example,
in non-small cell cancer tissues and cancer-associated fibroblast, antagonists for A2AR (ZM241385
and SCH5826) inhibited cellular proliferation and the human tumor xenograft in mice [129].

P2XR is also involved in the regulation of metabolic responses and the Warburg effect. P2X1R
and P2X7Rs were studied in leukemia T cells (Jurkat) showing that basal activation of both receptors
increases the levels of intracellular calcium. Upon pharmacological inhibition of these receptors, Jurkat,
THP-1, U-937 and HL-60 cells decrease mitochondrial activity, calcium signaling and cell proliferation.
The authors concluded that the coordination of cytoplasmic and mitochondrial energy responses
promotes autocrine purinergic signaling and the uncontrolled proliferation of leukemia cells [130].

2.5. Purines and Evasion of Immune Attack

Signaling through extracellular nucleotides by tumor cells is relevant for interactions with a host
immune system. While exATP elicits a “find me” signal that promotes an innate and adaptive immune
response by attracting immune cells. In the tumor context, this response is subverted, mainly by
the sequential processing of exATP into ADO by action of the CD39 and CD73 ectonucleotidase
pathway; ADO acts as an immunosuppressive molecule directing the phenotype of infiltrated immune
cells in the TME dismantling the antitumor immune attack [24,30,131]. Thus, the purinergic molecular
code defines the significance and outcome of the interaction between the tumor and the host immune
system cells.

In the tissue damage context, cells release DAMPs in response to conditions as hypoxia,
inflammation and necrosis. ATP is recognized as a DAMP, since exATP recruits neutrophils,
macrophages and dendritic cells (DCs) to contribute to damage resolution [132–134]. In cancer, it has
been described that the ATP released by dying cells because of anticancer therapies circulates through
the TME to activate receptors in the membrane of tumor-infiltrated cells. When P2X7R is activated
in DCs, IL-1β is secreted through the P2X7R-dependent assembly of the NLRP-3 inflammasome.
IL-1β, a proinflammatory cytokine, induces the immunogenic response associated with CD8+ T cells.
Thus, anticancer therapy with oxaliplatin and anthracyclines, in p2rx7−/−, casp1−/− or nlrp3−/− genetic
background was inefficient; these evidences link NLRP-3 inflammasome activity with anticancer
therapy treatment efficacy [135,136].

Moreover, the relevance of P2X7R expression in tumor-host interactions, specifically immune cell
diversity of the TME, has been analyzed, by comparing the identity of immune cells and cytokine
expression in the TME of tumors induced by xenotransplantation of murine B16 melanoma cells (a cell
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line expressing high levels of P2X7R), in both null mice for P2X7R (p2rx7–/–) and wild-type animals
treated with a P2X7R antagonist (wtAT). Tumor growth was accelerated in the p2rx7−/− background.
The cells infiltrated in tumor-bearing p2rx7−/− contained an immunosuppressive microenvironment,
compared to those growing in the wtAT background, with fewer effector T cells (Teff) (CD8+ and CD4+),
increased Treg cells (CD4+, CD25+, Foxp3+) and a decline in cytotoxic effector CD8+ T cells (Tcyt).
Additionally, the TME was enriched in pro-inflammatory cytokines, such as IL-1β, IL-18 and IFN-γ.
Regarding ectonucleotidases, CD73 was highly expressed, not only in immunosuppressive Treg, but also
in CD8+ Teff and macrophages; CD39 was also elevated in Teff. These changes in CD39/CD73 expression
produced a reduction in exATP levels in the TME and an increment in ADO production, causing
a general immunosuppressive effect. Conversely, the pharmacological blockade of P2X7R in wtAT mice,
besides reducing tumor growth, promoted an anti-tumor immune infiltrated with incremented IFN-γ
and reduced IL-1β, but without affecting the TME exATP [137]. These results showed that P2X7R
expression in the host tissue contributed with an anti-tumor immune response, and confirmed that
the deficiency of host P2X7R induces immune failure, suggesting that P2X7R plays a relevant role in
the establishment of the immune response in the TME, thus integrating tumor-host interaction.

In contrast, it has been suggested that exATP contributes to immunosuppression in the TME.
A study in acute myeloid leukemia showed that exATP, induced by chemotherapeutic agents, promoted
the up-regulation of Treg cells [138].

Taken together, this evidence indicates that ATP mediates the interaction of tumor cells with
components of the immune system and modulates the inflammatory state in the TME. On the other
hand, a common mechanism of purine actions in TME is the formation of ADO, which will be
discussed next.

It has been established that hypoxia, aside from generating a protective environment for tumor
cells, is the main cellular condition favoring ADO accumulation in the TME. Hypoxia increments
the expression level of the ectonucleotidases CD39 and CD73 in a way that depends on HIF-1
transcription factor activity [20–23]. ADO inhibits T cell arrival in the tumor through the activation
of its receptors, thus preventing these cells from producing their cytotoxic activity against cancer
cells. It has been proven that the main P1 involved in immunosuppression is A2AR, since its genetic
deletion facilitates tumor rejection by T cells [19]. These observations are supported by findings in
which supplemental oxygenation (hyperoxia) facilitated tumor regression, enhanced tumor infiltration
of CD8+ T cells, reduced immunosuppression executed by regulatory Treg and increased levels or
pro-inflammatory cytokines and chemokines. These effects are accomplished through action on
the hypoxia/adenosine/A2AR immunosuppressive pathway, because they were not replicated in
A2AR−/− mice [22].

A2AR has been considered a target in anticancer immunotherapy. In a pharmacological
intervention assay, the efficiency of reverting the immunosuppression of induced tumors with
PD-1 antibodies (responsible for the immunological checkpoint [139]) improved, if an A2AR antagonist
was co-administrated [140]. Another approach has consisted in evaluating the effect of A2AR deletion
in cultured-activated tumor-draining lymph node (TDLN) T cells. In tissue lacking A2AR, tumor
rejection improved, immunosuppression was diminished and the secretion of IFN-γ by T cells was
enhanced [141]. Additionally, the ablation of ADO signaling promoted natural killer cell (NK)
maturation and reduced tumor growth [142]. It has also been demonstrated in colorectal cancer cells
that A2BR working synergically with A2AR, expressed in tumor-associated fibroblast, participated
in the immune checkpoint dependent on NT5E/ADO to establish the immunosuppressive response
characteristic of tumor cells [143].

Recently, it was reported that A1R deletion suppressed melanoma-derived cell growth and induced
the inhibition of T cells in co-culture, antagonizing the anti-tumor immune response depending
on another A2AR receptor, through a pathway involving overexpression of PD-L1 driven by
the transcription factor ATF3 [144]. Taken together, these observations lead us to conclude that
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actions of ARs are too complex and could be opposite in diverse physiological events. Therefore, they
need to be considered specifically.

The immunosuppressive actions of ADO are orchestrated by tumor cells, but it has been
proposed that this signaling can be amplified by influencing myeloid cell constituents of the TME,
such as tumor-associated macrophages (TAMs). An interesting work has demonstrated that ADO
generation by ovarian cancer cell lines attracts myeloid cells, inducing their differentiation in M2-TAM
(macrophages with a non-inflammatory phenotype). Moreover, TAMs display an incremented
expression of CD39 and stromal fibroblast (SF) for CD73; thus, TAMs and SF collaborate to amplify
ADO formation and, consequently, the immunosuppressive effect [145].

In general, the actions of ADO inhibiting the anti-tumor immune response have been demonstrated
in a broad group of host immune cells in the TME. An overview of these actions is presented in Table 1.

Table 1. Summary of ADO’s actions on immune cells in the TME context.

Cell Type Observations References

T regulatory cells

CD39 and CD73 are markers of Foxp3+ Treg which express A2AR.
A2AR activity induces cell proliferation and PD-1 expression,

promoting an anergic state.
ADO stimulation creates a feedback loop that maintain a constant

number of CD4+Foxp3+ Treg in tumors to inhibit antitumor response.
Blocking of A2AR increases CD8+ cells.

[146–148]

T effector cells

Teff cells express CD73; its pharmacological inhibition with APCP
induces increment of NFkB activity and IFNγ released by CD4+ T-cells.
Stimulation of A2AR induces: 1) a marked reduction in IL-1, 2, 3, 4, 12
and 13, TNFα, IFNγ, GM-CSF, CCL3 and CCL4. 2) a reduction of CD8+

and CD4+ expansion by inhibition of cell proliferation. 3) a decrement
of cytotoxic activity of CD8+ cells, and 4) T-cell apoptosis;

[149–153]

NK cells

ADO acting through A2AR, limits maturation of NK cells by
suppressing cytotoxic activity and cytokine production.

In NK cells positive to CD73, the expression of proteins related with
immune check points as: LAG-3, VISTA, PD-1, and PD-L1 have higher
expression; IL-10 is also up-regulated, producing inhibition of CD4+ T

cells proliferation and IFNγ production.
ADO acting through A2AR inhibits the cytotoxicity of activated

NK cells.

[142,154–156]

Myeloid cells

In macrophages ADO acting by A2AR inhibits M-CSF dependent
proliferation and suppresses IL-12 and TNF-α production. By A2BR

induces IL-10 synthesis.
CD14+ CD163+ -TAM, from ovarian cancer, express incremented levels
of CD39 that modulates their immunosupresive functions; ectoenzyme

expression is modulated by IL-27.
In TME ADO attract myeloid cells, induces their differentiation in M2

macrophages to favor immune evasion.
In hematopoietic cells, A2BR induce accumulation of

immunosupressive MDSC.
A2BR activity alters DC differentiation and induces generation of cells.

expressing suppressors of immune antitumor response.

[145,157–164]

Since ADO accumulation in the TME has deleterious effects on immune surveillance,
the ectonucleotidases (CD39/CD73) involved in their synthesis are an obvious target to unleash
the immune inhibition executed by ADO. Recently developed antibodies targeting these enzymes were
used to promote antitumor immunity, by targeting ectonucleotidase expression in DCs, macrophages
and T cells [165]. Previous research has demonstrated the effect of antibodies against CD39 and CD73
in the immune response against ovarian cancer cell lines; it was found that NK and T cell cytotoxicity
was improved and the proliferation of CD4+ T cells were uninhibited. These effects were achieved by
a reduction in ADO synthesis [166]. Moreover, since focal radiotherapy induces overexpression of CD73
and, thus, an increment in ADO in the TME, blocking of CD73 has been assayed in combination with
focal radiotherapy and immune checkpoint blockade (directed to cytotoxic T-lymphocyte-associated
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protein 4, PDL-1 and PD-1 in breast cancer cells); in these assays, CD73 blocks improved DC infiltration
and the induction of anti-tumor T cell-dependent responses [167].

An important mechanism of interaction between tumor cells and TME and host is
exosome-dependent signaling. Exosomes are signalosomes assembled in small vesicles (30-100
µm) that are released by exocytosis and induce cellular responses in the target. In cancer, exosomes
have been characterized as entities carrying elements to induce EMT and metastasis, such as TGF-β
and HIF-1α, as well as immunosuppressive elements [168].

The expression of CD39 and CD73 in cancer exosomes (CSE) was demonstrated in bladder cancer
cells [169]. The ability to dephosphorylate ATP to form ADO was documented in exosomes from
bladder (HT1376 line), colon cancer (CaCo line) and in malignant effusions of mesothelioma patients.
ADO promoted a negative regulation of T cells in the TME [170]. It was shown that exosomes from
the prostate carcinoma cell line DU145, expressing CD39 and CD73, inhibited DC activities that
resulted in an immunosuppressive environment [171]. Thus, exosomes represent an important piece
in the interaction and modification of the environment by purines in tumor cells.

Research is increasingly aimed at understanding the mechanism that regulates CD39 and CD73
expression. CD73 expression is regulated by a net of cellular messengers, transcription factors (TF)
and miRNA [172]. Recently, it was shown that the P30 isoform—but not the wild-type version
of CEPBA TF, a protein frequently mutated in acute myeloid leukemia (AML)—interacts with
the promoter region of the NT5E gene in AML, to induce its expression and mediate AML progression
via the NT5E-A2AR pathway [173]. In hepatic stellate cells, it has been shown that SMAD2, SMAD3,
SMAD4 and SMAD5 and SP1 TF bind the CD73 gene promoter [174], demonstrating that TGF-β is
a regulator of CD73 expression [175]. Additionally, it has been observed that HIF-1 binds the NT5E
gene promoter, confirming that hypoxia is a strong regulator of immune checkpoints dependent
on ADO [20]. In a model of induction and reversion of EMT in hepatocellular carcinoma, TNF-〈
induced overexpression of the NT5E gene and reversion of EMT downregulation [176]. In agreement,
a bioinformatics analysis using the gene Signature Finder Algorithm (gSFA) found in colorectal cancer
that NT5E belongs to the gene signature of this disease, and that it is a transcriptional target of
TNF-〈 [177]. In Th17 cells, differentiated in vitro by a combination of IL-6 and TGF-®, IL-6 through
Stat3 positively regulated NT5E expression, while TGF-β through Gfi-1 repressed its expression, but
the cells displayed an immunosuppressive phenotype [178]. Moreover, the processing of RNAs coding
for NT5E is regulated by a miRNA group, the presence of this miRNA contributes to the role of CD73
in cancer [170].

3. Concluding Remarks

Cancer is a complex disease; intense efforts have been made to understand and systematize
the general principles underlying cancer cells identity and tumor-host interactions, to decipher how
tumor cells self-regulate their differentiation, growth and expansion. For that, cancer hallmarks
involve an important frame of reference, encompassing those characteristics that made cancer cells
biologically successful [7,8]. In this review, we organized existing evidence showing that purinergic
signaling is an important modulator in the acquisition and maintenance of cancer cell phenotypes,
the establishment of their social interactions and bidirectional relationship with the environment.

From the accumulate data, it is deduced that purinergic system in TME impacts tumor biology
in two main ways: (1) exerting autocrine-paracrine actions over the own tumor cells, to establish
a feedback loop that integrate energy metabolism with cellular tasks, such as cell proliferation,
migration and metastatic induction; and (2) regulating the cellular interactions with the host, mainly
by mediating a dialog with the immune system, to avoid a correct immunological response. Thus,
purinergic signaling could be considered a master regulator of tumor cells identity and collective
cellular properties.
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A detailed knowledge of purinergic signaling elements and its mechanistic processes in the distinct
level of cellular interactions in cancerous cells will be necessary to open new avenues in the search of
therapeutic targets against carcinogenesis.
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