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Abstract: There is an urgent need to find long-acting, natural osteogenesis-promoting drug systems.
In this study, first the potential targets and mechanism of osmanthus fragrans (O. fragrans) extract in
regulating osteogenic differentiation based on autophagy were analyzed by network pharmacology
and molecular docking. Then, osmanthus fragrans was extracted using the ethanol reflux method
and an osmanthus fragrans extract loaded Poly N-isopropylacrylamide (OF/NIPAAM) hydrogel
was prepared by electron beam radiation. The chemical components of the osmanthus fragrans
extract and the microstructure of OF/NIPAAM hydrogels were characterized by ultraviolet-visible
spectrophotometry (UV-Vis) and X-ray diffraction (XRD), respectively. Mouse embryonic osteoblast
precursor cells MC3T3-E1 were cultured with different concentrations of OF/NIPAAM hydrogel
to discover cell proliferation activity by CCK-8 assay. Alkaline phosphatase (ALP) staining and
alizarin red staining were used to observe the differentiation and calcification. Through experimental
exploration, we found that a total of 11 targets were predicted, which are TP53, CASP3, SIRT1, etc., and
osmanthus fragrans had good binding activity to TP53. In vitro, except for proliferation promotion,
OF/NIPAAM hydrogel enhanced ALP activity and formation of mineralized nodules of MC3T3-E1
cells at a concentration equal to or less than 62.5 µg/mL (p < 0.05). The addition of autophagy
inhibitor 3-methyladenine (3-MA) reduced ALP activity and mineralized nodule formation.

Keywords: osmanthus fragrans-loaded NIPAAM; hydrogel; electron beam radiation; osteogenic
differentiation; network pharmacology; molecular docking

1. Introduction

Osmanthus fragrans (O. fragrans), variously known as fragrant olive or sweet olive, is
an evergreen shrub and is widely cultivated in Asia, from the Himalayas to China, Korea,
Japan, and Thailand, due to its attractive color and strong, apricot-like fragrance [1]. It is a
traditional ornamental plant with more than 2500 years of cultivation history in China, and
it was not introduced to Europe until the late 18th century [2]. More than 160 osmanthus
fragrans cultivars have been identified based on phenotypes and classified into four groups,
Albus group (Yingui group), Luteus group (Jingui group), Aurantiacus group (Dangui
group), and Asiaticus group (Sijigui group), according to the flowing season and flower
color [3].

In addition to their extremely high ornamental value, osmanthus fragrans flowers also
have high economic value and are widely used as edible products and in traditional folk
medicine. The Chinese ancients created several methods of consuming osmanthus fragrans
flowers as an additive to improve the flavor of Chinese traditional food such as tea, honey,
cake, jam, and wine [4]. The Compendium of Materia Medica mentioned that osmanthus
fragrans flowers have cough-relieving and phlegm-reducing effects [5] and have been used
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as folk medicine in rheumatism and stomachache treatment for a long time [6]. With the
increasing attention, more extensive research on osmanthus fragrans flowers has been
carried out in terms of pharmacological activities. Osmanthus, for example, containing
nutritional and bioactive compounds, has been described to strengthen immune ability,
lower blood pressure, promote digestion, and prevent obesity and diabetes [1]. Osmanthus
fragrans not only has the above-mentioned health care functions, but also has strong
antioxidant and anti-inflammatory effects, and has great potential for pharmaceutical
application. A clinical trial showed that daily consumption of osmanthus fragrans flowers
beverage for 7 days could enhance the antioxidant levels in healthy people [7], though
it exhibited significant decreased antioxidant activities during simulated digestion [8].
Among 51 edible and wild flowers from China, osmanthus fragrans showed the highest
antioxidant capacity, with a FRAP value of 163.57 µmol Fe (II)/g [9]. The flowers were also
found to have much higher antioxidant capacity among 30 common flowers, with FRAP,
DPPH, and TEAC values of 182.57, 250.67, and 223.85 µmol Trolox/gDW, respectively [10].
It has been identified that more than 20 phytochemicals in osmanthus fragrans, such as
acteoside [11], salidroside [12], and ligustroside [13], have antioxidant effects. Osmanthus
fragrans contains a large number of antioxidant compounds and has strong free radical
scavenging ability, which provides a new strategy for the treatment of oxidative-stress-
related diseases.

Oxidative stress plays a critical role in bone homeostasis during the bone remodel-
ing processes, including osteoblast-induced bone formation and osteoclast-induced bone
resorption. The potential relationship between autophagy and oxidative stress in bone
remodeling has been increasingly reported. A growing number of drugs appear to exert
protective effects on bone homeostasis through regulating autophagy (which can alleviate
oxidative stress) [14,15]. However, research on the role of osmanthus fragrans in osteogene-
sis is limited. Furthermore, whether regulation of osmanthus fragrans in the osteogenic
process is related to autophagy has not yet been fully established, which encourages us to
conduct further investigations.

With the improvement of living standards, people have begun to pursue a long-acting,
reliable, and side-effect-free therapeutic agent, while conventional medical agents no longer
meet the needs of the public. Therefore, research on new drug systems is imminent. Smart
hydrogels have attracted great attention from researchers in the medical field due to their
ability to respond to external stimuli such as electric fields, magnetic fields, temperature,
light, and pH. Among them, the NIPAAM thermo-sensitive hydrogel has become a research
hotspot [16]. The traditional hydrogel synthesis process needs to add an initiator and
catalyst, which has the disadvantages of low purity of the polymer product, slow reaction
process, low efficiency, and easy generation of pollutants during the synthesis process.
Electron beam radiation technology bombards or irradiates objects with accelerated electron
beams to cause physical, chemical, and biological reactions that are difficult to trigger by
conventional methods. It has the advantages of simple synthesis method, no residue of
related substances, and normal temperature action.

The osmanthus fragrans extract, with a variety of components, can exert synergistic
effects through multiple targets and multiple pathways. It is difficult to analyze them
systematically and comprehensively by traditional experimental methods. Network phar-
macology is a systematic analysis method based on drug–disease-related target genes and
protein interaction networks. Molecular docking is a theoretical simulation method that
uses computer technology to explore the interaction between receptors and drug molecules
and predict their binding mode and affinity. These two technologies can save costs for new
drug development and make experiments more targeted.

Therefore, network pharmacology was used to predict the target genes, and the mech-
anism of osmanthus fragrans promoting osteogenic differentiation was analyzed by molec-
ular docking technology. Furthermore, the osmanthus fragrans extract and OF/NIPAAM
hydrogels were prepared successfully by the ethanol reflux method and electron beam
radiation, respectively. Various scientific experiments such as CCK-8, alkaline phosphatase
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(ALP) staining, and alizarin red staining were used for validation. The present study
may provide a novel insight for basic research and subsequent application of osmanthus
fragrans in promoting bone formation.

2. Results
2.1. Screening of Potential Targets of Osmanthus Fragrans Extract

The main components of the osmanthus fragrans extract obtained through a literature
search and data mining are the following seven kinds: quercetin, rutin, genistin, isorham-
netin, kaempferol, naringin, and verbascoside. The molecular structures are shown in
Figure 1. A total of 275 potential targets of these 7 components were obtained through the
SwissTarget Prediction database.
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Figure 1. Molecular structure of 7 main components of osmanthus extract.

2.2. Identification of Overlapping Gene and Construction of the PPI Network

A total of 275 osmanthus fragrans related genes, 2101 osteogenesis-related genes, and
222 autophagy-related genes were screened. The number of overlapping genes between
osmanthus fragrans and osteogenesis-related genes was 99. The 11 overlapping genes
(Figure 2) of these three were arranged in a sequence as follows: TP53, CASP3, SIRT1,
HDAC6, MAPK1, CASP8, CASP1, BCL2, HDAC6, EGFR, and PRKCD. The PPI network
of overlapping genes, as shown in Figure 3, was constructed by the STRING database
and Cytoscape software. The PPI network maps have nodes and edges. Nodes represent
proteins, and edges represent interactions between proteins. The higher the degree of
network connectivity, the closer the relationship between proteins. Map A (99 overlapping
genes) yielded 99 nodes and 990 edges, while map B (11 overlapping genes) yielded
11 nodes and 37 edges. All of these indicated that the osmanthus fragrans extract promotes
osteogenesis based on the multi-component, multi-gene, and multi-target synergistic effects.
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Figure 3. The PPI network analyzed visualized by Cytoscape software. (a) PPI network of
99 overlapping genes between osmanthus fragrans and osteogenesis-related genes. (b) PPI network
of 11 overlapping genes of osmanthus fragrans, autophagy-, and osteogenesis-related genes.

2.3. GO and KEGG Enrichment Analysis of Overlapping Genes

GO enrichment analysis revealed that 11 overlapping genes are involved in multiple
biological processes (Figure 4A), including response to drugs, external stimulus and reg-
ulation of apoptotic process, cellular protein metabolic process, and signal transduction.
Concerning cellular components (Figure 4B), the overlapping genes were enriched in the
nucleoplasm, nuclear lumen, and endomembrane system. With regards to molecular func-
tions (Figure 4C), they were primarily associated with enzyme binding, protein-containing
complex binding, catalytic activity, and ubiquitin–protein ligase binding. Pathways en-
riched by KEGG were closely related to microRNAs in cancer, apoptosis, and the NOD-like
receptor signaling pathway (Figure 4D). The overlapping targets and KEGG pathways
of the osmanthus fragrans extract, autophagy, and osteogenesis were constructed as a
network map, as shown in Figure 5. The network map contains the 7 main components of
the osmanthus fragrans extract, 11 overlapping targets, and all KEGG signaling pathways.
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2.4. Molecular Docking

The molecular docking model of the osmanthus fragrans extract and the key tar-
get TP53 molecule was constructed, and the CDOCKEREN-ERGY value was calculated
(Figure 6). It is generally believed that the lower the binding energy of the ligand to
the receptor, the more stable the binding conformation. The binding energy is less than
−4.25 kcal/mol, which indicates that the ligand has a certain binding activity with the
receptor: less than −5.0 kcal/mol has better binding activity, and less than −7.0 kcal/mol
has strong binding activity [17]. The results showed that the binding energies of each
component of the osmanthus fragrans extract with TP53 were less than −5.0 kcal/mol, and
especially the binding energies of acteoside, genistein, hesperidin, and rutin were less than
−7.0 kcal/mol, suggesting that the osmanthus fragrans extract had good binding activity
to the potential key target TP53.
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Figure 6. Molecular docking models of osmanthus fragrans extract and TP53: (A) 7 main components
of osmanthus fragrans extract were docked with TP53; (B) the affinity of each component with TP53.

2.5. UV-Vis Absorption Spectrum of Osmanthus Extract

The UV-visible absorption spectrum of osmanthus extract has two strong absorption
peaks in the range of 200–400 nm, and the absorption wavelengths are 267 nm and 330 nm
respectively, which have the typical UV spectral characteristics of flavonoids (Figure 7). The
absorption peak in the range of 300–400 nm is mainly produced by the B-ring cinnamoyl
system, and the absorption peak in the 240–285 nm range is produced by the A-ring benzoyl
system [18].
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2.6. XRD Pattern of OF/NIPAAM Hydrogels

Figure 8 shows the X-ray diffraction patterns of NIPAAM, the osmanthus fragrans
extract, and OF/NIPAAM hydrogels, respectively. It can be seen that the characteristic peak
position of NIPAAM appears at 2θ = 19.7◦ [19] and the osmanthus fragrans extract has broad
diffraction peaks at 15–30◦. After NIPAAM was cross-linked with the osmanthus fragrans
extract, the characteristic peak of the NIPAAM prepolymer was covered by the diffraction
peak of the osmanthus fragrans extract, and no new characteristic peak appeared in the
OF/NIPAAM hydrogels. In addition, the characteristic peaks of the osmanthus fragrans
extract can be seen in OF/NIPAAM, which proves that the osmanthus fragrans extract was
successfully mixed into the hydrogel. Moreover, with the increase in the impurity content
of the osmanthus fragrans extract, the intensity of characteristic peaks of the osmanthus
fragrans extract in the hydrogel increased sequentially.
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2.7. Effect of Extract on the Cell Viability of MC3T3-E1 Cells

The effect of OF/NIPAAM at different concentrations (500, 250, 125, 62.5, 31.25, 15.625,
7.8125, and 3.90625 µg/mL) of osmanthus fragrans on the proliferation of MC3T3-E1
cells was detected by CCK-8 assay after 72 h incubation. Compared with the control
group, as shown in the Figure 9, the osmanthus fragrans extract significantly increased the
proliferation, especially at concentrations greater than or equal to 62.5 µg/mL (p < 0.05).
There was no significant difference in the promotion of the osmanthus fragrans extract at
the concentration between 62.5 and 500 µg/mL, while the concentration between 62.5 and
3.90625 µg/mL had a concentration-dependent effect. The higher the concentration, the
stronger the promotion.
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Figure 9. Effect of osmanthus fragrans extract on cell viability of MC3T3-E1. Different concentrations
of osmanthus extract were co-cultured with MC3T3-E1 cells for 72 h, and cell viability was detected
by CCK-8 assay: *, p < 0.05 compared with control group.
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2.8. Osmanthus Fragrans Extract Increases ALP Activity in Osteoblasts

After MC3T3-E1 cells were treated with OF/NIPAAM hydrogels with different con-
centrations of the osmanthus fragrans extract for 7 days, ALP staining was performed. The
range and depth of staining represent the magnitude of ALP activity. In the groups with
concentrations equal to or less than 62.5 µg/mL, the range of shade was larger, in the form of
clumps and darker staining, while the group with a concentration higher than 62.5 µg/mL
had the lighter and more sparse coloration, similar to the control group (Figure 10).
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Figure 10. Effect of osmanthus fragrans extract on ALP staining of MC3T3-E1. ALP staining was
performed after MC3T3-E1 cells were treated with different concentrations of osmanthus fragrans
extract for 7 days. The coloration observed under the microscope (×20).

2.9. Osmanthus Fragrans Extract Encourages the Formation of Mineralized Nodule

After 21 days of OF/NIPAAM treatment, mineralized nodules formed in each group
with alizarin red staining, among which the group at a concentration equal to or lower than
62.5 µg/mL had a more obvious promoting effect on the mineralization of MC3T3-E1 cells,
and the number of formed mineralized nodules was significantly higher than that of the
control group and the higher concentration groups (Figure 11).
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Figure 11. Effect of osmanthus fragrans extract on alizarin red staining of MC3T3-E1. Alizarin red
staining was performed after MC3T3-E1 cells were treated with different concentrations of osmanthus
fragrans extract for 21 days. The mineralized nodule was observed under the microscope (×10).
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2.10. Osmanthus Fragrans Extract Promotes Osteogenic Differentiation Dependent on
Autophagy Upregulation

To investigate whether the promotion of osteogenic differentiation of osmanthus
extracts depends on autophagy, the autophagy inhibitor 3-MA was used, and in the
subsequent ALP staining and alizarin red staining, the concentration of the osmanthus
fragrans extract was selected as 62.5 µg/mL. Results showed that the addition of 3-MA
attenuated ALP activity and the formation of mineralized nodules of the osmanthus
fragrans extract (Figure 12).
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3. Discussion

Oxidative stress and autophagy play important roles in maintaining bone metabolism
homeostasis. Oxidative stress is an independent risk factor, which can inhibit osteoblast
differentiation and promote its apoptosis, induce the proliferation and differentiation
of osteoclast precursor cells, and increase their activity, thereby leading to bone-related
diseases, especially osteoporosis [20]. The antioxidant biological activity of polyphenols
has been widely used in various clinical fields, such as anti-cancer [21], lowering blood
lipids [22], preventing atherosclerosis [23] and cardiovascular diseases [24], etc. However,
little research has been conducted on its role in osteogenesis.

To investigate whether osmanthus fragrans extracts, which contain various polyphe-
nols, have the effect of promoting bone formation and whether the mechanism involves
autophagy, a network pharmacology approach was used. A total of 11 overlapping genes
of osmanthus fragrans related, osteogenesis-related, and autophagy-related genes were
obtained. The top three proteins by degree value are TP53, CASP3, and SIRT1. Caspase-3
(CASP3), a well-known player in apoptosis and inflammation, was recently shown to
have a non-apoptotic function during osteogenesis [25]. As for SIRT1, it was reported to
play a resistive role in H2O2-induced oxidative stress during osteogenesis [26]. TP53 is
an important tumor suppressor gene in cells. The encoded tumor protein p53 acts as a
“guardian” of genome stability and normal cellular physiological processes, and plays a key
role in regulating the differentiation, proliferation, and recoding of various types of stem
cells [27]. Over-expressed tumor protein 53-induced nuclear protein 2 (TP53INP2), one
of the proapoptotic target genes of p53, promotes osteogenic differentiation by activating
Wnt/β-catenin signaling in vitro [28]. In order to further explore the role of TP53 in the
osmanthus fragrans extract in promoting osteogenic differentiation, seven components
of the extract were molecularly docked with TP53. The results showed that all seven
components had strong binding force to TP53, indicating that osmanthus extracts may play
a pro-osteogenic effect through it.
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In order to verify the osteo-promoting effect, the osmanthus fragrans extract and
OF/NIPAAM hydrogels were prepared by the ethanol reflux method and electron beam
radiation, respectively. The results of UV-Vis spectroscopy showed that the main compo-
nents of the extract were polyphenolic compounds, which was consistent with the literature
search [18,29], while the XRD results indicated that the osmanthus fragrans extract was
successfully incorporated into the NIPAAM prepolymer. Next, CCK-8, ALP staining, and
alizarin red staining were used to verify the effect of OF/NIPAAM hydrogels on promot-
ing osteogenic differentiation in vitro. The results of CCK-8 showed that extracts with
concentrations above 7.8125 µg/mL promoted the proliferation of MC3T3-E1 cells. The
characteristics of osteogenic differentiation are the secretion of ALP and the formation
of mineralized nodules in vitro. ALP activity is an important phenotypic marker in the
early stage of osteoblasts, which directly reflects the activity of osteoblasts, and alizarin
red staining is mainly used to evaluate the degree of mineralization in the later stages of
osteoblast differentiation. According to the characteristics, ALP staining and alizarin red
staining were usually used to compare the level of osteogenic differentiation. After ALP
staining, cells in the groups with concentrations equal to or less than 62.5 µg/mL showed
positive expression, and blue ALP-positive granules could be seen in the cytoplasm, some
of which could be fused into sheets. Alizarin red staining was also used in this experiment.
Consistent with ALP staining results, there were more mineralized nodules in the groups
with the concentrations lower than 62.5 µg/mL, and the staining was orange-red, with
irregular shapes and different sizes.

Autophagy is the fundamental mechanism for maintaining the viability of every cell
and maintains the homeostasis of the intracellular environment by recycling damaged
organelles, faulty proteins, invading pathogens, and other toxic cytoplasmic components
through the lysosomal pathway. Studies have shown that during osteogenic differentiation,
autophagic activity is activated, and inhibition of autophagy inhibits osteogenic differ-
entiation [30]. In order to clarify whether autophagy is involved in osmanthus fragrans
extracts in promoting osteogenic differentiation of MC3T3-E1 cells, 3-MA, a pharmacologi-
cal blocker of the PI3K kinase, was used to inhibit autophagy in subsequent experiments.
The experimental results showed that the addition of 3-MA down-regulated ALP activity
and reduced the formation of mineralized nodules of OF/NIPAAM hydrogels. It suggested
that inhibiting autophagy restrained the enhancement of OF/NIPAAM hydrogels on the
osteogenic differentiation of MC3T3-E1 cells.

4. Conclusions

First, the potential targets and mechanism of an osmanthus fragrans extract in regulat-
ing osteogenic differentiation based on autophagy were analyzed by network pharmacol-
ogy and molecular docking. Then, osmanthus fragrans was extracted using the ethanol
reflux method and an OF/NIPAAM hydrogel was prepared by electron beam radiation.
The chemical components of the osmanthus fragrans extract and the microstructure of
the OF/NIPAAM hydrogels were characterized by ultraviolet-visible spectrophotometry
(UV-Vis) and X-ray diffraction (XRD), respectively. The cell proliferation activity, alkaline
phosphatase (ALP,) and mineralized nodule formation on MC3T3-E1 with the OF/NIPAAM
hydrogel were also studied to confirm its ability to promote osteogenic differentiation and
explore its mechanism based on autophagy. There is a very important scientific significance
for OF/NIPAAM hydrogels for osteogenesis to enrich and complement the application of
hydrogel in the field of natural drug delivery.

5. Materials and Methods
5.1. Data Collection

We searched for keywords such as “Osmanthus fragrans”, “main components” in
CNKI database and Wanfang database for data mining. The Smiles chemical formula
for each component was downloaded from the Pubchem database (https://pubchem.
ncbi.nlm.nih.gov, accessed on 20 August 2022) and uploaded to SwissTargetPrediction

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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(http://www.swisstargetprediction.ch/index.php, accessed on 20 August 2022) platform
to screen the target genes. The keyword “osteogenesis” was entered in the GeneCards
database (https://www.genecards.org, accessed on 20 August 2022) to obtain osteogenesis-
related targets. The autophagy-related genes were obtained from Human Autophagy
Database (http://www.autophagy.lu/index.html, accessed on 20 August 2022).

5.2. Overlapping Gene Identification and Protein–Protein Interaction (PPI) Network Construction

The screened osmanthus fragrans, osteogenesis-, and autophagy-related genes were
overlapped by Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/, accessed on 20
August 2022). The PPI information of osmanthus fragrans–osteogenesis (drug–disease)
overlapping genes and osmanthus fragrans–osteogenesis–antophagy (drug–disease–mechanism)
overlapping genes was constructed by the STRING database (https://string-db.org/,
accessed on 20 August 2022) and visualized by Cytoscape software (version 3.6.1, Cytoscape
Consortium, San Diego, CA, USA).

5.3. Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analysis

Osmanthus fragrans–osteogenesis–antophagy (drug–disease–mechanism) overlap-
ping genes were performed GO enrichment (including biological process, cellular com-
ponent, and molecular function) and KEGG pathway analysis using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/,
accessed on 20 August 2022). The main biological functions and pharmacological mech-
anisms of overlapping genes were screened using a cutoff of p < 0.05. The generated
results were represented in a chord plot using Sangerbox 3.0 (Hangzhou Mugu Technology
Co., LTD, Hangzhou, China) clinical bioinformatics analysis platform. The main signal
pathways obtained from KEGG enrichment and the overlapping targets of osmanthus
fragrans–osteogenesis–antophagy were imported into Cytoscape 3.6.1 (Cytoscape Con-
sortium, USA) to construct and visualize the “component–target–pathway” interaction
network relationship.

5.4. Molecular Docking Verification

The 2D structure of osmanthus fragrans extract was downloaded from the Pubchem
database (http://zinc.docking.org/, accessed on 10 September 2022), and the 3D structure
of the overlapping targets from the PDB database. PyMol software was used to delete
water molecules and small molecule ligands of the protein structure, and AutoDockTooIs
was imported for pretreatment such as hydrogenation. Finally, the extract components
were docked with the target protein, and the average binding energy data were calculated
as the result of molecular docking.

5.5. Preparation of Osmanthus Ethanol Extract and Detection of Components

Osmanthus fragrans was extracted using the ethanol reflux method according to the
following extraction conditions: 80% ethanol was added at the ratio of material to liquid
1:40 (g/mL), the reflux extraction time was 3 h, and the extraction temperature was 90 ◦C.
The obtained extract was concentrated by rotary evaporation of ethanol at 65 ◦C in a rotary
evaporator and filtered through a 0.45 µm microporous membrane to obtain osmanthus
fragrans extract [31]. The absorption spectrum of osmanthus fragrans extract was tested by
UV-Vis spectrophotometer, and the wavelength range was 200–800 nm.

5.6. Preparation of OF/NIPAAM Hydrogel

A certain amount of NIPAAM was added with deionized water to prepare a 10%
NIPAAM solution, and the monomer was completely dissolved by ultrasonic treatment.
Different concentrations of osmanthus extract were added and vacuum-packed and sealed
under anaerobic conditions. Electron beam irradiation was performed at room temperature
using a 1 MeV electron beam accelerator with a total irradiation dose of 25 kGy and a dose

http://www.swisstargetprediction.ch/index.php
https://www.genecards.org
http://www.autophagy.lu/index.html
http://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
https://david.ncifcrf.gov/
http://zinc.docking.org/
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rate of 5 kGy/pass. The hydrogel samples were dried and pulverized with a universal
pulverizer to obtain fine powders. An X-ray diffractometer was used to irradiate the
samples to observe the microstructure of hydrogels.

5.7. Cell Culture and CCK-8 Assay

Mouse pre-osteoblasts MC3T3-E1 were cultured in α-MEM medium containing 10%
fetal bovine serum, 100 U/mL penicillin and streptomycin, and placed in an incubator with
5% CO2 and 37 ◦C. MC3T3-E1 cells at a density of 1 × 104/well were seeded in a 96-well
plate, with 3 replicate wells in each group. When the cells were confluent to about 80%,
the old medium was discarded and replaced with osteogenic induction medium, and then
different concentrations of OF/NIPAAM hydrogel were added for induction stimulation.
After 72 h, the proliferation ability of cells was detected by CCK-8 kit.

5.8. ALP Staining

The cells were seeded in a 24-well plate at a density of 2 × 104 cells/well, and after
the cells reached 60% to 70% confluence, they were replaced with osteogenic induction
media containing different concentrations of OF/NIPAAM hydrogel. After 7 days of
induction, cells were fixed in 4% paraformaldehyde for 20 min at room temperature. Then,
500 µL of freshly prepared ALP incubation solution was added and incubated at room
temperature in the dark. After 30 min, the samples were observed and photographed under
an inverted microscope.

5.9. Alizarin Red Staining

To determine osteogenic differentiation related to mineralized nodule formation,
calcification deposits of cells cultured with OF/NIPAAM hydrogel at 21 days were assessed
by alizarin red staining. Briefly, after osteogenic incubation, cells in 6-well plates were fixed
in 4% paraformaldehyde for 10 min at room temperature and washed three times carefully.
Subsequently, plates were stained with fresh 2% alizarin red liquid at pH 4.2 for 30 min in
the dark to wait for dye to bind calcium salt selectively. The unbound stain and excess dye
were removed gently with tap water. Samples were air-dried and stained calcium nodes
were visualized and photographed under the optical microscopy.
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