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Abstract

Summary: We implemented the Self-Organizing Maps algorithm running efficiently on GPUs, and also provide sev-
eral clustering methods of the resulting maps. We provide scripts and a use case to cluster macro-molecular confor-

mations generated by molecular dynamics simulations.

Availability and implementation: The method is available on GitHub and distributed as a pip package.

Contact: guillaume.bouvier@pasteur.fr

1 Introduction

We proposed in a former paper (Bouvier et al., 2015) a Self-
Organizing Map (SOM)-based algorithm to cluster macro-
molecular conformations generated by molecular dynamics (MD)
simulations. Alternative methods exist but they either rely on pair-
wise distance computation (Gonzalez-Aleman et al., 2020) or on
including additional prior information (Olsson and Noé, 2019)
whereas SOMs are simple linear clustering algorithms. Due to the
expansion of the usage of graphics processing units (GPUs) to per-
form MD, the number of conformations from trajectories that need
to be analyzed exploded. Therefore, our previous, CPU based, im-
plementation of the SOM reached its limit. In the current paper, we
propose a fast and efficient GPU implementation of SOM, quick-
som. This is highly useful for the analysis of long MD trajectories,
but can also be used for the clustering of other massive and high di-
mensional data.

In addition, we added a set of clustering tools that can be used
on the maps produced by the methods. These tools serve to further
summarize the inputs. They rely on either automatic clustering or a
manual tool with a graphical interface. The efficiency of our tool is
demonstrated through a case study on a long MD trajectory.

2 Efficient SOMs on GPU

Our implementation of SOMs (Kohonen, 1982) is based on
PyTorch (Paszke et al., 2019). This alone speeds up operations and
in addition allows us to use GPUs to make the computations even
faster. We timed our method against the former application note
(Bouvier et al., 2015) and SOMPY(Moosavi et al., 2014), the main
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implementation of SOMs in Python that is a parallel CPU-based
tool.

We used our method on some 2-dimensional toy data as well as
on a MD trajectory resulting in 168-dimensional vectors. We show
the time necessary to perform the training loop on 100k of these vec-
tors in Table 1. We include a run on CPU for comparison as well as
a run on several cores for SOMPY.

As expected, the new method is much faster than the old one, es-
pecially when run on the GPU, with a 160-fold speedup. We have
comparable run times to the SOMPY implementation for the syn-
thetic dataset, and twofold speedup on the higher dimensional MD
data. This was unexpectedly fast for this CPU-based method.
However, the SOMPY implementation does not support custom
batch sizes, so the whole dataset is passed at once, which does not
allow flexible training and biases the training for large datasets. We
believe this to be a major limitation because tuning the optimization
for large dataset was revealed to be key, in particular for the analysis
of MD trajectories.

3 Clustering

We introduce several tools to cluster our data beyond a simple SOM
cell affectation. The idea is to merge neighboring cells that represent
several centroids inside the same cluster.

3.1 Automated approaches

The SOM yields a lattice graph whose nodes are the centroids and
whose connectivity is given by the SOM grid. Edges are weighted by
the Euclidean distance of the centroids they connect. We then com-
pute the matrix of graph distances of nodes. To detect nodes that
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Table 1. Mean time necessary to process 100k points in the training
loop N

Method Toy data MD trajectory
Old method (Bouvier et al., 2015) 87s 536s
SOMPY (Moosavi et al., 2014) 59s 6.9s
SOMPY (20 cores) 0.85s 12.4s
quicksom (CPU) 13s 101s
quicksom 1.6 33s

belong to a given community and to clusteOr these nodes, we com-
pute the topological distance matrix, and we can thus use algorithms
such as the Agglomerative Clustering algorithm. The U-matrix is an
informative 2D representation of the SOM that can depict efficiently
its topology. A U-Matrix is defined as the matrix whose value at
each grid point is the mean of the weight of its edges. To deal with
toric connectivity, we re-arrange the map by flattening it following
the graph shortest path from the global minimum, and pad it to get
a square matrix. Using this formalism, we can turn our SOM into an
image and use any segmentation algorithm to group centroids to-
gether. We default to the graph approach but implemented other
algorithms that the user can choose.

3.2 Manual approaches

These automatic methods are always prone to failure because of the
variety of possible maps resulting from the variety of possible data
at hand as well as the choice of hyperparameters for the maps.
Therefore, we also include a manual clustering option with a GUI,
available as a command-line tool. The user can click on a point on
the map and expand a region around it by hand, to select the rele-
vant zones of the map they produced. We believe that this user-
defined and application-specific clustering is a good work-around in
case automatic clustering fails.

4 Molecular dynamics clustering

The tool can be applied to efficiently cluster MD trajectories. This is
useful to create a library of representative structures. To do so, we
represent each frame by the concatenation of each atom’s coordi-
nates and train a SOM to cluster these frames. We included a script
to take a MD trajectory in the CHARMM (Brooks et al., 2009) dcd
format as input and output a npy file that can be handled by our
SOM implementation. This script also allows the user to select a set
of atoms of interest for the SOM analysis. We also included utilities
to select the frames that fall into a given cluster for visualization.

The method was applied on the trajectory analyzed in our previ-
ous implementation (Bouvier et al., 2015): 15 us MD at 330K of a
simplified sequence of a 56-residue o/ subdomain of the protein G
(Guarnera et al., 2009) starting from an extended conformation.
The analysis was performed on the C-o coordinates yielding
750 000 vectors of dimension 168. We include the results in
Figure 1. We can see that the unfolded protein conformations cor-
respond to a sparse region of the map while the most stable scaffolds
fall into dense ones. We also included a representation of the transi-
tion steps as a flow map. This flow goes from the least populated
and stable states to the more stable ones. It also enables visualization
of the paths preferentially followed by the trajectory.
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Fig. 1. Resulting U-Matrix of the clustering of a MD trajectory. The range of values
is normalized. Darker color implies closer cells that represent a data cluster. White
arrows represent the flow defined as the sum of the transition steps of the MD from

each cell. Some structures were represented with a pointer to the cell they are
mapped to by the algorithm

5 Implementation and availability

We have packaged our project into a pip package, quicksom, for
easy setup and command line usage. The source code is available at
https://github.com/bougui505/quicksom. A full description for in-
stallation and usage is available as a README.
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