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Abstract

SARS-CoV-2, a novel coronavirus spreading worldwide, was declared a pandemic by

the World Health Organization 3 months after the outbreak. Termed as COVID-19,

airborne or surface transmission occurs as droplets/aerosols and seems to be

reduced by social distancing and wearing mask. Demographic and geo-temporal

factors like population density, temperature, healthcare system efficiency index and

lockdown stringency index also influence the COVID-19 epidemiological curve. In

the present study, an attempt is made to relate these factors with curve characteris-

tics (mean and variance) using the classical residence time distribution analysis. An

analogy is drawn between the continuous stirred tank reactor and infection in a given

country. The 435 days dataset for 15 countries, where the first wave of epidemic is

almost ending, have been considered in this study. Using method of moments

technique, dispersion coefficient has been calculated. Regression analysis has been

conducted to relate parameters with the curve characteristics.
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1 | INTRODUCTION

The highly contagious coronavirus disease 19 (COVID-19), originated

from China and is caused by the virus SARS-CoV-2, which is part of a

family of coronaviruses that have in the past caused severe acute

respiratory syndrome (SARS) and Middle East respiratory syndrome

(MERS).1 Since December 2019, COVID-19 has rapidly spread to over

200 countries worldwide, causing more than 40 million infections and

1 million deaths till November, 2020.2 Compared to SARS and MERS,

the fatality rate of COVID-19 is lower, however as the disease is more

infectious, the total number of fatalities is much higher.3 On March

11, COVID-19 was officially declared a pandemic by the WHO.

Several models have been developed based on different approaches,

with the initial attempts resulting more in confusion than clarity.4,5

Underreporting and inaccurate reporting of cases and deaths has

made it difficult to fully understand the impact of the disease includ-

ing ambiguity regarding spread, severity and duration of pandemic.

Validity of models based on artificial intelligence has been questioned

due to limitation of the training dataset.6 Forecasting day level data

based on prior patterns has been attempted, although prediction of

changes is not in its scope7 Agent based models, depending on

population movement, distancing and virus infectivity characteristics,

have been difficult to simulate.8 Conventionally, differential equation

models considering susceptible (S), infective (I), and recovered

(R) fractions have been used for predicting pandemic dynamics. How-

ever, the efficiency of most of the SIR models developed to predict

the impact was higher for short-term intervals in comparison to the

long term.9 Modified versions of SIR models are the SEIR models,

which also incorporate the exposed (E) population but demand more

data for development.10 As a result, COVID-19 poses a distinctive

difficulty in attempting to control the disease and limit the number of

infections. Due to the lack of a vaccine and public health infrastruc-

ture designed to handle an outbreak of this magnitude, preventative

measures have become necessary.

All over the world, governments, healthcare systems, and eco-

nomic systems have implemented measures to slow the spread of the

disease and minimize its impact.11,12 This includes, but is not limited

to, enforcing lockdowns, closing borders, school and work closures,

social distancing, increasing sanitation and hygiene, and using

facemasks.13 As the stringency of these measures has varied by
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country, the size of the outbreak has as well. A case study relating

outbreak in China with government and individual action demonstrate

different effect of these actions on daily cases.14 In countries such as

the USA, Brazil, and India, governments have struggled with a coordi-

nated, effective, and timely response to COVID-19, which have dis-

proportionately affected vulnerable and economically challenged

populations in these countries.15 Comparatively, the majority of

Western European countries have managed to “flatten the curve,”
reaching a plateau with the cumulative number of cases during the

timeline considered for the analysis in this study.16 With so many

components influencing the spread of COVID-19, looking at the

effect of various factors on the trajectory of the outbreak can provide

an insight into how the spread of the disease can be slowed down.

This article attempts to examine patterns in COVID-19 data,

demographic factors, lockdown stringency, and country characteristics

using residence time distribution (RTD) analysis. RTD is a theoretical

modeling technique used to predict the distribution of residence

times, typically in continuous flow systems. With applications in many

biomedical sciences, RTD is most often used to analyze industrial

units such as chemical reactors, fluidized beds, flotation cells, and

mixers.17,18 One key application of RTD is in chemical engineering,

where the technique is used to analyze the residence times of parti-

cles in chemical reactors. However, we demonstrate that the RTD

concept can be applied toward examining the epidemiological data

related to COVID-19 and new insights can be acquired.

2 | RESIDENCE TIME DISTRIBUTION (RTD)

The residence time theory deals with the particles that enter, flow

and leave the system. There are situations when the reactor fluid is

F IGURE 1 Total number of infected cases and deaths for the
countries considered in the study.
Source: https://www.worldometers.info/coronavirus/#countries
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Illustration depicting the analogy of the present study with the residence time distribution analysis [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Effect of dispersion on output concentration of tracer
for different extents of back mixing
(Source: Levenspiel, O., Chemical Reaction Engineering23). Similar
profiles are seen in COVID-19 daily cases trends for different
countries. Also, tracer response for tank in series system follows same
behavior

2 of 7 NIKITA ET AL.

https://www.worldometers.info/coronavirus/#countries
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


neither perfectly mixed nor perfectly in plug flow. In such cases, RTD

analysis helps in estimating the time the fluid has spent inside the reac-

tor. Two model approaches, viz., one parameter approach and two

parameter approach, are used commonly for simulating non ideal reac-

tors. In this article, one parameter approach has been considered to deal

with tank in series and axial dispersion model. RTD has been determined

using the tracer injected in the reactor at time t = 0 in the form of pulse.

It is assumed that the age of the particles while entering the system is

zero and while leaving the system is equal to the residence time.19–21 If

the path of a particle is traced using a tracer with concentration, c(t), then

the tracer amount, ΔN, leaving the reactor between time t and t + Δ is c

(t)νΔt; ν is effluent volumetric flow rate.22

For pulse injecting, the RTD function, E(t), is defined as

E tð Þ¼ vc tð Þ
N0

ð1Þ

On integrating the outlet concentration, N0 can be obtained

N0 ¼
Z ∞

0
vc tð Þdt ð2Þ

For constant ν, the RTD then becomes,

E tð Þ¼ c tð ÞR∞
0 c tð Þdt ð3Þ

The base properties of the distribution function are defined

by its moments. It is common to compare RTD using moments

instead of full distribution. For order r, the general moment is

defined as Equation (4). The zeroth moment, r = 0, depicts the

area under the distribution function. The first moment, r = 1, tells

the centroid position indicating the mean or the expectation of

residence time

Mr ¼
Z ∞

0
trE tð Þdt ð4Þ

F IGURE 4 7 day moving average of daily new cases in the countries;
Source: https://www.worldometers.info/coronavirus/#countries [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Exit age distribution
curves [Color figure can be viewed at
wileyonlinelibrary.com]
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The physical meaning of the mean is related the volume/mass of

the system per volumetric/mass out flow rate. Higher order

moments are used to find out the experimental errors and for

parameter estimation of the distribution function. Second moment

(r = 2) gives the variance of the distribution (σ2t ) and is usually calcu-

lated around the mean value that is, central moment. In order to com-

pare residence time distributions for the different system, the

dimensionless form, σ2, is used which is given as: σ2 ¼ σ2t
t2m
. Method of

moments technique is applied to determine the dispersion coeffi-

cients. For any closed system, the relation between the tracer concen-

tration and the model parameter can be obtained by solving unsteady

state mass balance Equation (5).

D
∂2c
∂z2

�∂ Ucð Þ
∂z

¼ ∂c
∂t

ð5Þ

where D is dispersion coefficient, c is tracer concentration, and U is

superficial velocity.

For pulse input, Equation (5) is converted into dimensionless form

to obtain

1
Per

∂2φ

∂λ2
�∂φ

∂λ
¼ ∂φ

∂θ
ð6Þ

where, φ¼ c
c0
;λ¼ z

L ;θ¼ tU
L .

Applying Danckwerts boundary conditions at λ = 0 and λ = 1,

then solving numerically for mean residence time, tm and σ2 can be

estimated as shown in Equation (7)

σ2 ¼ σt
t2m

2 ¼ 2
Pe

� 2
Pe2

1�e�Pe
� � ð7Þ

Pe¼ uL
D

ð8Þ

TABLE 1 COVID-19 epidemiologic curve characteristics

S. No. COUNTRY M1 (days) τRTD M2 (days
2) σ2t SD σ Normalized variance σ2 ¼ σ2t

t2
Pe D = u*L/Pe

1 Afghanistan 198.82 8016.5 89.53 0.2027 8.733 1,835,548.69

2 Australia 175.77 5263.2 72.54 0.1703 10.64 459,727.83

3 Belize 305.16 2112.4 45.96 0.0226 87.15 5833.94

4 Burkina Faso 322.05 6580.6 81.12 0.0634 30.49 16,469.81

5 Haiti 220.51 9749.7 98.74 0.2005 8.84 83,499.65

6 Iceland 219.33 10,821 104.02 0.2249 7.7434 22,670.12

7 Ireland 163.74 14,520 120.49 0.5415 2.2 154,421,947.53

8 Kyrgyztan 289.63 11,549 107.46 0.1376 13.44 2,013,801.23

9 Morocco 320.73 1464.4 38.26 0.0142 139.48 5501507.11

10 Myanmar 241.76 5703.3 75.52 0.0975 19.44 4,316,647.98

11 Nepal 316.98 8291.9 91.06 0.0825 23.18 10,466,045.94

12 New Zealand 287.33 3194.4 56.51 0.0386 50.66 429.72

13 Nigeria 141.78 3666.7 60.5534 0.1824 9.8514 17,906.09

14 Singapore 272.94 2586.2 50.85 0.0347 56.59 236,044.41

15 Brazil 294.78 9446.9 97.19 0.108715956 17.33 30,762,345,790.95

16 India 265.17 5285.4 72.7 0.075167323 25.566 21,357,056,023.00

17 Sweden 328.08 6609.8 81.3008 0.061408545 31.53 61,113,715.41

18 USA 300.16 7169.1 84.67 0.079571767 24.09 132,722,072,239.37

TABLE 2 List of variables used in the analysis

Variables Factors

x1 Population

x2 Population density

x3 Total infected (%)

x4 Infected men (%)

x5 Infected women (%)

x6 Containment health index

x7 Stringency Index

x8 Total tests

x9 Tests per million

x10 Median population age (years)

x11 Average annual temperature in degrees Celsius (2014)

x12 Average annual humidity (%)

x13 Average total annual rainfall (mm) (1901–2016)

x14 Average annual wind speed (m/s)

x15 Average annual Air Quality Index (AQI) (Average AQI

March 2021)

x16 PM2.5 Conc. (μg/m3)

y1 Mean

y2 Variance
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where, u¼ L
tm
, u is mean velocity of particle (m/s), L is length of fluid-

ized bed (m), and tm is mean time.

3 | RTD ANALOGY WITH COVID-19
PANDEMIC

In the present study, the countries (Figure 1) beating the coronavirus

disease 2019 (COVID 19) were considered. The countries are selected

based on the fact that the number of daily cases is less than one tenth

of maximum value. Analogy is drawn with RTD analysis as shown in

Figure 2. Here, we consider the country as a reactor system where

in virus, a tracer, is inserted into the system as a pulse with the num-

ber of people entering the country for the time till strict lockdown in

implemented barring the international travel and strict self-isolation of

people traveling from outside. Thus, it is assumed that the virus enters

the system once during analysis. The curve becomes skewed with

increase in dispersion representing the back mixing in a reactor as

shown in Figure 3. For the COVID-19 spread, the spread of virus can

be compared to the combination of tank in series, which is equivalent

to a non-ideal plug flow reactor. In addition, it is assumed that the

activity and behavior of the coronavirus is not known. The outflow

from the system is the number of cases daily, indicating virus spread.

Figure 4 shows the daily new cases with a 7-day average for different

countries. Discrete data for 435 days (January 22, 2020 to March

31, 2021) are taken into consideration.

The trend for the countries as shown in Figure 4 seems to be

Gaussian that is, bell-shaped curves with different means (first moment)

and variances (second moment). For normalization, the exit age distri-

bution curves, E curve, is obtained for all the countries (Figure 5). Then

the mean, variance, Peclet number, and dispersion coefficient were cal-

culated as listed in Table 1. The mean depicts the average time the

coronavirus stayed in a particular country. Variance tells us the degree

of spread of distribution. The more the variance, the more the spread

of disease. Apart from these, Skewness and Kurtosis indices were also

calculated. These values were indicated shift in the peak toward left or

right and the presence of tail in the curve, respectively. The values were

in line with curve profile. This can also be observed from visual inspec-

tion. Thus, here only first (mean) and second moment (variance) were

considered. Peclet number quantifies the flow of virus in the society

(direct infection and person to person infection transmission) and dis-

persion coefficient measures the spread of the distribution around

the mean value. During calculations, u was taken as rate of cases

with respect to time infection stayed in the country and L was

taken as total number of infected persons.

Once the characteristic parameters (mean and median) are deter-

mined, their correlation with the factors like population, population

density, and its demographic characteristics (median population age,

population infected [%], infected by gender), environmental factors

(Average annual temperature (�C); Average humidity (%); Average

total annual rainfall (mm); Average annual wind speed (mph);

Average annual Air Quality Index (AQI); PM2.5 Conc. (μg/m3)), and

government policies quantified using containment health index, total

tests, test per million, and lockdown stringency index can be exam-

ined. For data sources, refer to Table S1 and for data refer to

Tables S2–S4. For performing regression, partial least square method

F IGURE 6 Comparison between the observed values and the predicted values for mean and variance for different countries [Color figure can
be viewed at wileyonlinelibrary.com]

BOX 1 Case study

The proposed model is applied to Belgium for validation.

The demographic factors were obtained and the mean and

variance were calculated using Equations (7) and (10). The

Gaussian curve was plotted for the predicted mean and vari-

ance based on the average data for 435 days. Figure 7 com-

pares the normalized predicted curve for the countries with

the exit age distribution for the country. However, it is seen

that the total number of test changes significantly affected

mean and variance. For October 2020, 5,019,826 tests were

conducted whereas the number increased to 9,487,542 by

February 2021. Similar other statistics also varied month

wise. Thus, the model can be used for short time span.
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is adopted. Partial least square regression technique generalizes mul-

tilinear regression and principal component analysis wherein it

reduces the number of predictors to uncorrelated components and

perform regression. This technique is useful in cases when data is

highly collinear and number of observations are less than predictors.

The X (predictors) and Y variables are mention in Table 2.

The main objective of PLS is to explain X space, Y space and the

greatest relation between the two. For the present study, PLS is per-

formed using the JMP software. The prediction formula obtained for

mean and variance are given by Equations (7) and (10).

y1 ¼264:73163þ59:26697 7:58169e�11x1�4:8084e�7x2
�

þ1:9651e�8x3�1:03225e�2 x4þ1:032254e�2x5�5:6080078e�3x6
�4:7682615e�3x7þ1:603318e�9x8 �2:25189382e�7x9
þ 7:1562e�3x10�2:19540e�2x11þ2:4598e�2 x12
þ2:401391e�4 x13 �0:14032033x14 �3:01809e�3x15
þ9:1029e�3x16Þ

ð9Þ

y2 ¼18903:738728414þ3554:7815 �5:75194e�9x1
�

þ7:498057e�6x2þ2:19167e�7x3�0:055827x4þ0:0558271x5
þ0:220175x6�0:172117x7þ3:703774761e�10x8
þ3:036815e�6x9�0:2695x10�0:022033x11�0:0016909x12
þ0:000338473x13þ0:085650x14 þ0:00142608x15
�0:00295370x16Þ

ð10Þ

Figure 6 shows the prediction efficiency for mean and variance.

Normalized root mean square value (NRMSE) of 0.7481, normalized over

standard deviation, is obtained for mean whereas NRMSE of 0.4724 is

obtained for variance. Residual by predicted plot was obtained by plotting

individual residual values with respect to the predicted value). The residuals

are randomly distributed around zero line with no specific pattern indicat-

ing that they are independent of one another. Leverage plots were used to

understand the effect of individual parameters assuming that other param-

eters are accounted in model already. To monitor the statistical interactions

between the parameters, prediction profiler was used (Box 1).

4 | PERSPECTIVE

Mathematical modeling has played a key role in shaping the policies

and responses of many countries during the COVID-19 pandemic.

This was observed during the strategy shift in UK's response to the

pandemic from an earlier herd-immunity based response to the cur-

rent approach, which implements stringent movement controls and

social distancing measures. This change was the result of a model by

Ferguson et al.24 which projected 500,000 deaths if the herd immu-

nity approach continued. A similar change was also implemented in

the US when another model projected 2.2 million deaths without

action.25 The success observed in countries can be attributed to

implementing a wide range of different statistical modeling-based pol-

icies. Most countries in our analysis formulated policies, which

included a combination of measures such as border controls, schools,

or university closures, lockdowns and movement controls including

restrictions on public and social gatherings and stay-home measures.

In particular, two notable strategies that largely helped mitigate the

pandemic spread were the proactive approach taken by Denmark26

and the high testing and contact tracing approach implemented by

South Korea.27 It is also of note that Djibouti managed to control the

spread despite being the only lower-middle income country in our

analysis, largely due to its response plan being aligned with WHOs

four pillars (testing, isolating, early case management, and contact

tracing).28 To summarize, the key common factors leading to mitiga-

tion in the pandemic spread were proactiveness in implementing

model-based data-driven decisions in policymaking and effective com-

munication and trust between the governments and the public. We

believe that the presented regression analysis-based approach can be

used to predict the curve characteristics for different country.

This will help us to estimate the level of the pandemic and plan for

the suitable strategies to avoid the spread.
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