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Non-intrusive, easy-to-use and pragmatic collection of biological processes is warranted to
evaluate potential biomarkers of psychiatric symptoms. Prior work with relatively modest
sample sizes suggests that under highly-controlled sampling conditions, volatile organic
compounds extracted from the human breath (exhalome), often measured by an electronic
nose (“e-nose”), may be related to physical and mental health. The present study utilized a
streamlined data collection approach and attempted to replicate and extend prior e-nose
links to mental health in a standard research setting within large transdiagnostic community
dataset (N = 1207; 746 females; 18–61 years) who completed a screening visit at the
Laureate Institute for Brain Research between 07/2016 and 05/2018. Factor analysis was
used to obtain latent exhalome variables, andmachine learning approaches were employed
using these latent variables to predict three types of symptoms independent of each other
(depression, anxiety, and substance use disorder) within separate training and a test sets.
After adjusting for age, gender, body mass index, and smoking status, the best fitting
algorithm produced by the training set accounted for nearly 0% of the test set’s variance. In
each case the standard error included the zero line, indicating that models were not
predictive of clinical symptoms. Although some sample variance was predicted, findings did
not generalize to out-of-sample data. Based on these findings, we conclude that the
exhalome, as measured by the e-nose within a less-controlled environment than previously
reported, is not able to provide clinically useful assessments of current depression, anxiety
or substance use severity.
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INTRODUCTION

Volatomics, the study of volatile metabolites (1) (such as ethanol
and amino acids) and emanations from the human body,
especially human breath known as exhalome, is an area of
active investigation (2). The human exhalome contains more
than 1,800 volatile organic compounds (VOCs) (3), which
researchers hope can elucidate the inner workings and status
of bodily functions. This hope for exhalome as a measure of
physical and mental health status is well-grounded as a growing
literature links various types of psychopathology with altered
central and peripheral markers of bodily processing within the
bidirectional brain–body context (4–7). Few exhalome studies
have examined the extent to which VOCs are altered as a
function of psychopathology and investigations such as the
present study could help fill this gap in the field.

Some have argued that the brain itself is an endocrine gland
that triggers stress responses (8). VOC patterns in the breath may
shed light on brain–body dysfunction (9). For example, upper
respiratory tract infections such as influenza are linked to stress
(10) that could be associated with dysfunctional changes in
exhaled breath composition. Moreover, impaired quality of life
(11) and presence of obsessive compulsive and bipolar disorders
(12) are also linked to upper respiratory tract infections. More
research is warranted to investigate the utility of exhalome for
indexing clinical symptoms and potentially, differentiating
between particular psychiatric disorders.

In psychiatry, assessment of illness severity relies almost
entirely on report by the affected individual or by a mental
health provider, which can be subject to a number of different
biases. The identification of quantitative measures of illness
severity, which is based on the underlying biological processes
that are affected by the disorder, would be a major advance in
the field. The measures could have broad applicability for the
selection of individuals for treatment and the monitoring of the
efficacy of different behavioral or pharmacological interventions.
Moreover, these types of measures would build a much stronger
case for hypothesis testing and reaching objective, evidence-
based conclusions (13). As many clinical symptoms are
transdiagnostic, or present across multiple mental disorders
(e.g., insomnia, appetite change, negative mood, concentration
difficulties), identifying non-invasive biological markers of
dimensional as well as categorical symptom clusters could
improve mental health screening and intervention efforts (14).

Modern breath analysis can be traced back to the seminal
work of Pauling et al. (15) wherein they showed the presence of a
colorful cast of compounds in human breath, using gas–liquid
partition chromatography (16). Two classes of instruments have
traditionally been used for breath analysis: (1) gas chromatographic
technologies coupled with a mass spectrometric detector (GC–
MS); and (2) electronic “nose” also known as “e-nose” (17). Early
studies (18) used GC–MS technologies that are relatively expensive,
difficult to use, and require specially-trained and field-experienced
technicians to operate (19). Over the past two decades, exhalome
researchers have increasingly employed easy-to-use, non-invasive,
relatively fast, and low-cost tools (16) to investigate links between
Frontiers in Psychiatry | www.frontiersin.org 2
exhalome and symptoms of physical and mental health disorders
(12, 13, 19). In contrast to GC–MS technology, e-nose devices
enable researchers to easily study “smell-prints” (the molecular
pattern of chemical compounds recorded by the sensors inside the
device) derived from various VOCs using pattern recognition and
modern machine learning methods (16).

E-nose-driven metrics have shown potential in differentiating
case/control groups, especially in respiratory diseases (16). For
example, Dragonieri et al. (20) distinguished between controls
and people with asthma (with 10 subjects per group, four
different groups), without the need to observe intricate
molecular components of the breath. One of the main
differences between GC–MS and an e-nose is that e-nose
researchers do not need to confront a long list of compounds
and their concentrations within a particular sample, but instead
need to know to what degree a detected smell-print matches a
known compound pattern (21). From an evolutionary biology
perspective, this process is roughly similar to the way the human
olfactory system has evolved since it does not directly recognize
the presence of a particular chemical compound; rather, it senses
a pattern similar to what it has already been experienced by the
brain without knowing what particular chemical compound has
implemented that pattern on the sensory organ (17, 22). The
study of human breath, as well as potential biomarkers it may
actualize to monitor brain health and functions, has not been
fully investigated within large samples using robust statistical
methods (13). Additional research in this area could pave the
way for the establishment of breath analysis in the diagnosis of
various psychiatric symptoms.

According to a recent review (22), biological sources of the
VOCs in respiration measured by e-nose devices are known to
some extent. In the work of Bajtarevic et al. (23), isoprene,
acetone, methanol, and benzene were employed as biomarkers of
lung cancer. The concentrations of these VOCs decreased in
patients compared to healthy subjects due to uncontrolled
creation of new and unnecessary lung cells as well as retention
of old damaged cells (24). However, Sánchez et al. (22) also
noted that the VOCs present in exhaled breath are not
necessarily produced by endogenous biochemical processes
(e.g., acetonitrile is commonly found in the breath of smokers,
occurring exogenously).

Breath analysis has shown some success in indexing a variety of
physiological symptoms (13, 17) within modestly sized samples,
demonstrating that candidate VOCs can plausibly index the
presence of certain disorders within individuals. For instance, e-
nose technology has distinguished between: (1) smokers and non-
smokers (21); (2) mild/severe asthmatics from non-asthmatics (20);
(3) smokers with and without lung cancer (25); and (4) individuals
with Alzheimer’s disease, Parkinson’s disease, and healthy controls
(26, 27). Moreover, altered levels of nitric oxide in the breath have
been associated with: (1) cardiovascular, neurological, and
respiratory disorders (13); and (2) increased negative affect
(anxiety, depression) and stress via weakening of the immune
system (28–33). Further research is warranted to determine
whether a broader spectrum of VOCs beyond nitric oxide is
implicated in psychiatric symptoms (13).
September 2020 | Volume 11 | Article 503248
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There has been attempts to standardize e-nose instruments
and sampling procedures and highlight the potential technical
issues for exhalome research (34). However, there are some gaps
to be filled in the exhalome literature, including, small and non-
representative sample sizes and failure to account for non-
linearity of data arising from the measurement of exhaled
breath (13, 35). In addition, variability in e-nose detectors
(whether commercially available or custom-built in labs),
which are typically constructed with a small number of sensor
arrays (14) could limit the resolution to detect complex VOC
patterns in breath samples. Although the recommended e-nose
analysis pipeline for breath analysis consists of “data acquisition,
data pre-processing including data reduction/feature selection,
generation of a pattern recognition algorithm in a training set,
and testing of the algorithm in a validation set” (36), some
studies do not perform external validation or confirmation of
their findings, thereby limiting reliability and validity of their
reports (37).

In investigations where a cohort design is analyzed and
individuals with physical and/or mental disorder comorbidities
will be involved, it is postulated that conventional unsupervised
methods like principal component analysis (PCA), which has
been widely used thus far in exhalome studies (16), will have
difficulty differentiating between cases and controls (37).
Although researchers recommend that supervised dimension
reduction techniques such as partial least squares discriminant
analysis (PLS-DA) be used in such designs, the combination of
PCA and linear discriminant analysis (LDA) tends to yield more
consistent results (36). Furthermore, with respect to clinically
relevant prediction/classification, no published exhalome
studies have employed a substantial heterogeneous sample of
individuals to identify whether exhaled breath patterns can
differentiate transdiagnostic clinical symptoms (e.g., negative
affect, anxiety, substance use, and depression). In order for a
particular VOC pattern to be a useful biomarker of impairment,
it must be sensitive and specific, distinguishing abnormal from
normal functioning. In addition to data analysis concerns, issues
regarding the collection of e-nose data are crucial to address. For
e-nose to be more widely tested in research settings, hardware
must be easy and straightforward to use and validated in
less-controlled environments (e.g., outpatient clinic or
hospital setting).

The goal of this study was to identify whether patterns of
human exhalome collected with a straightforward sampling
approach and extracted by modern instruments (e-nose) and
analyzed by machine learning approaches can replicate prior
work linking VOC patterns to depression and anxiety symptoms
(38). As some research has attempted to show that breath
patterns vary as a function of gender and age (39), we also
incorporated gender and age as factors in our analysis. As more
women than men suffer from mood and anxiety disorders (40),
breath patterns may show differential classification for men and
women. To measure exact breath composition patterns, we
utilized an e-nose (Cyranose 320; Smiths Detection, Pasadena,
CA, USA) with 32 sensors to improve VOC detection accuracy
and reliability (21). Furthermore, we investigated whether these
Frontiers in Psychiatry | www.frontiersin.org 3
goals are achievable under less-controlled, simpler sampling
conditions without the need for sophisticated equipment such
as VOC filters, separated air tubes, valves, medical air capsules
and controlled sampling room conditions.
METHODS

Participants
A total of 1,550 participants (947 female; ages 18–66 years) were
recruited via fliers, radio, and internet advertisements from the
greater Tulsa, OK area and completed a screening visit at
Laureate Institute for Brain Research (LIBR) between 07/01/
2016 and 05/21/2018 to determine further eligibility for various
ongoing studies at LIBR. Participants with psychosis or cognitive
impairments or medical conditions causing neuropsychiatric
disorders were excluded. Written and informed consent was
obtained from all participants, and the study was approved by
Western IRB, WIRB Protocol No. 20101611. Participants
received compensation for their participation.

During their screening visit, participants completed
a demographics questionnaire (to obtain age, gender, and
nicotine smoking status) as well as the Patient Health
Questionnaire 9 (PHQ-9) (41), the Drug Abuse Screening Test
(DAST-10) (42, 43) and the Overall Anxiety Severity and
Impairment Scale (OASIS) (44) to index symptoms of
depression, substance use disorder, and anxiety respectively.
Body mass index (BMI) was calculated by using an InBody370
Impedance Body Composition Analyzer (InBody Co., Ltd., South
Korea). After excluding participants with incomplete/unknown
smoking status data, 1,207 participants were included in the
analysis. Although formal sample size estimation was not
performed prior to study start, a sample of 1,207 subjects was
sufficient to detect an effect with Cohen’s d of 0.081 with 80%
power and significance level of 0.05. When queried about their
nicotine use status, 36% (n = 435) were found to be current
smokers and 64% (n = 772) were found to be non-smokers. The
consort diagram for participant inclusion in this work is
presented in Figure 1. Demographic and clinical characteristics
of the final participants involved in this study are presented in
Table 1. All participants were instructed to abstain from any
food, drink, and chewing gum consumption, except for water,
within 2 hrs of breath sample collection, and refrain from
smoking and brushing their teeth.

Technology and Hardware
A commercially available e-nose (Cyranose 320; Smiths
Detection, Pasadena, CA, USA), was utilized to acquire exhaled
VOC patterns (sampling procedure below). This e-nose utilizes
32 sensors and on-board pattern recognition algorithms to detect
chemical vapors of interest to produce a “smell print”. As these
sensors are semi-selective for various compounds, all of them will
respond to the mixture (breath sample) in varying degrees.
Sample differentiation is organized by basic properties
(polarity, hydrogen bonding, acidity/basicity, etc.) rather than
by specific compounds (e.g., oxygen, nitric oxide, carbon
September 2020 | Volume 11 | Article 503248
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dioxide) meaning that it seeks an established pattern of
compounds on the sensor array and not each specific chemical
compound alone. First the e-nose is initiated by registering levels
of ambient air (baseline measurement) over time. Next, when
VOCs from exhaled breath pass over organic insulated polymer
within the e-nose, polymer swelling produces a change in
electrical resistance output as a function of time for each
sensor. Raw signals are output as a function of resistance
(ohms) by time (seconds) for baseline and registered breath.
These signals are then processed to compute percent signal
change from baseline for each of the 32 sensors.

Sampling Procedure
After participants provided informed consent and completed
questionnaires, they provided one exhaled breath sample,
collected in sampling bags comprised of Nalophane film (16
in) and a 3-in poly-tetra-fluoro-ethylene tube attached as a
mouth-piece for the participant (and also as an interface to be
attached to the e-nose). Nalophane bags were employed,
because they are cost-effective, reliable and well-suited for
exhalome investigations (45). The breath sample collection
procedure was administered by a trained research assistant.
Participants were instructed to take a deep breath and blow
one vital capacity exhalation into a sampling bag. A baseline
metric of ambient air from the e-nose equipment (6 min) was
obtained in accordance to manufacturer’s guidelines. The bag
Frontiers in Psychiatry | www.frontiersin.org 4
was secured and connected to the e-nose to sample the
exhaled breath for duration of 1 min. This procedure was
followed by a subsequent ambient air collection (1 min) and
then the second breath sample measurement was performed
for another 1 min from the same sampling bag in the same
manner described above.

Data Preprocessing
First, raw e-nose breath signals were corrected for baseline drift
(25) by fitting a five-degree polynomial to the signal acquired
from each of the 32 e-nose sensors. Second, percent signal
change (PSC) from baseline was computed as the corrected
breath signal divided by the corrected baseline signal, with the
highest value during the first breath sample as the metric of
interest for each of the 32 sensors. Third, a regression model was
fitted using an 11th-order polynomial with respect to each
participant’s e-nose collection date to correct long-term
temporal drift (36). Fourth, to correct for heterogeneity in
overall VOC concentration magnitude across participants, a
double standardization procedure was performed on the data:
(1) all participants’ breath samples were standardized (z-scored)
on one sensor; and (2) all 32 sensor responses were standardized
on one participant’s breath sample. Fifth, as several sensor
responses were significantly correlated, principal components
analysis (PCA) was applied as an exploratory machine learning
method to reduce data dimensions and generate linearly
FIGURE 1 | Consort-like diagram for participant inclusion, according to research inclusion criteria.
September 2020 | Volume 11 | Article 503248
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independent breath factors. All 32 principal components were
used for data analysis. Details regarding data preprocessing steps
are presented in the Supplementary Material.

Statistical Analysis
We computed intraclass correlations (ICCs) (46) based on
responses from both breath sample draws for each sensor to
evaluate the short-term stability of sensor readings. Large ICCs
would indicate relatively stable measurements, implying little
difference between selecting the first or second sample draw.
Conversely, small ICCs would be indicative of rapidly decaying
or unstable sensor measurements.
Frontiers in Psychiatry | www.frontiersin.org 5
Figure 2 illustrates the machine learning analysis pipeline used
in the present study, wherein transformed PSC e-nose data were
related to demographic and clinical variables. In machine learning,
it is common to perform cross-validation so that a model is
repeatedly trained and tested on the dataset to obtain robust
performance and accuracy results. A training set is used in order
to let the machine “learn” from the data (fit the model to data) and
a test set is used for evaluating the fitted model on training data in
terms of accuracy (how close the model’s output is to the real data).

Supervised machine learning algorithms were applied to the
transformed PSC data using the R and Python statistics platforms.
Specifically, Random Forest (RF) (47–49), Support Vector Machine
(SVM) (50), and linear/logistic regression learning algorithms with
varying hyperparameters and nested cross-validation (51, 52) (five-
fold for both the inner and outer loops) were applied to the
questionnaire, BMI, and e-nose data. SVM solves an optimization
problem to find support vectors which are a subset of points from
the training dataset, and the decision boundary is calculated based
on these support vectors. On the other hand, RF is an ensemble
learning method that is constructed by multiple bagged decision
trees. To evaluate model accuracy, Area Under the receiver
operating characteristic Curve (AUC) and R2 values were used.
The primary variables of interest related to e-nose VOCs were three
mental health variables: PHQ-9, OASIS and DAST-10 scores. Other
measures included were age, sex, BMI, and nicotine smoking status.
We also attempted to replicate the results from Cheng et al. (21),
who differentiated subject smoking status based on the first two PCs.

Furthermore, nested validation was applied for model
hyperparameter tuning and feature selection (e.g., selecting
number of trees in RF or regularization term in SVM) in each
inner loop iteration (53). The dataset was first divided into five
disjointed and equally-sized subsets or “folds”. There were two
nested loops (inner and outer loops) within this pipeline (see
Figure 2) and on each repetition, one of the folds was used as the
test/validation set, whereas the remaining folds were treated as
the training set. Although the divisions were established by
randomization for regression problems (age, BMI and mental
health scores), one-way analysis of variance (ANOVA) test was
implemented to ensure these subsets had the same population
mean of the dependent variable; stratified division was applied
for classification problems (gender and smoking status). Both
loops were iterated five times to evaluate and cross validate
results. In each run of this nested CV structure, prediction
performance was measured, and the model with the best
accuracy was specified as the final result of this pipeline.
RESULTS

The machine learning pipeline (Figure 2) was applied to
depression, anxiety, and addiction variables of interest
including PHQ-9, OASIS, and DAST-10 (Figure 3). In general,
although some of the algorithms learned to predict different
psychiatric symptoms, explaining as much as 20% of the variance
(blue bars, Figure 3), these models did not generalize to the test
set (orange bars, Figure 3). For the independent test dataset, very
TABLE 1 | Participant characteristics.

Overall(n = 1207)

Age
Mean (SDa) 32.1 (10.4)
Median [Min, Max] 30.0 [18.0, 61.0]
Missing 4 (0.3%)

Sex
Female 756 (62.6%)
Male 451 (37.4%)

Smoking Status
Current Smoker 435 (36.0%)
Non-Smoker 772 (64.0%)

BMIb

Mean (SDa) 27.6 (5.77)
Median [Min, Max] 26.6 [16.1, 52.1]
Missing 21 (1.7%)

Depression PHQ-9c

Mean (SDa) 9.29 (7.15)
Median [Min, Max] 8.00 [0.00, 27.0]
Missing 19 (1.6%)

Anxiety OASISd

Mean (SDa) 7.05 (4.92)
Median [Min, Max] 7.00 [0.00, 20.0]
Missing 20 (1.7%)

Addiction DAST-10e

Mean (SDa) 1.74 (3.01)
Median [Min, Max] 0.00 [0.00, 10.0]
Missing 18 (1.5%)

Race Ethnicity
White 723 (59.9%)
Black 129 (10.7%)
Native American 190 (15.7%)
Hispanic 66 (5.5%)
Asian 22 (1.8%)
Other 47 (3.9%)
Missing 30 (2.5%)

Education
Less than seven years of school 2 (0.2%)
Junior high school (7th, 8th, 9th) 22 (1.8%)
Some high school (10th, 11th) 55 (4.6%)
High school graduate (including equivalency exam) 216 (17.9%)
Some college or technical school (at least one year) 488 (40.4%)
College graduate 282 (23.4%)
Graduate professional training (Masters or above) 92 (7.6%)
Other 11 (0.9%)
Missing 39 (3.2%)
aStandard deviation.
bBody mass index.
cPatient Health Questionnaire 9.
dOverall Anxiety Severity and Impairment Scale.
eDrug Abuse Screening Test 10.
September 2020 | Volume 11 | Article 503248
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little variance was accounted for, and in one case, the prediction
was worse than just predicting the mean of the test sample
(negative variance accounted for). Supplementary Material
provides additional illustrations of machine learning analyses.
This pattern of results is most consistent with model overfitting
to the training dataset. The R2 value of the test dataset being
smaller than or near 0 (orange bars, Figure 3) indicates that the
fitted model is worse or not much better than the null hypothesis
(a model that always predicts the mean value for any input).
Models for age and BMI have similar prediction performance as
those for mental health variables (Figure 4).
Frontiers in Psychiatry | www.frontiersin.org 6
Similar to predicting continuous outcome variables, evidence for
overfitting was observed when predicting dichotomous outcomes:
smoking status and gender. Area under the curve (AUC) was used
to measure model performance for predicting smoking status and
gender. Cross-validated AUC in the training data (blue bars, Figure
5) was above 0.5 (red-dashed line) for all methods. However, the
AUC on independent test data (orange bars, Figure 5) was
consistent with 0.5 AUC, which is the null value of no
discrimination capacity to distinguish between positive and
negative classes. Our main focus was to assess the generalizability
of machine learning models that use the sensor measurements
FIGURE 2 | Statistical data analysis and machine learning pipeline.
FIGURE 3 | Model performance (R2 values) in predicting PHQ-9, OASIS, and DAST-10 using Linear Model, Random Forest (RF), and Support Vector Machine
(SVM) algorithms. Error bars represent standard deviations of R2 values.
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directly (Figures 3–5). As a secondary analysis, we also attempted
to reproduce the results from (21), which differentiated smoking
status based on the first two PCs with highest variance. In our data,
no cluster(s) were present to separate smokers from non-smokers
in the two-dimensional PC space (Figure 6).

The ICC values indicated a strong reliability of e-nose
measurements within a short period of time. The sensor value
ICCs are between 0.91 and 0.99, with the exception of Sensor 8,
which produced an ICC of 0.80. Together, these values show the
stability (54) of sensor reading between selecting the first and
second sample draws.
DISCUSSION

The current investigation employed multiple machine learning
approaches on a sizable community sample of 1,207 individuals
to further previous research linking e-nose exhalome to
Frontiers in Psychiatry | www.frontiersin.org 7
assessment of psychiatric symptom severity in less-controlled
research settings. Although our results showed that machine
learning algorithms using cross-validation were able to achieve
accuracy and account for variance above the null hypothesis in
the training sample, the models did not generalize to an
independent test sample, which is evidence for overfitting.
Thus, we found no generalizable relationship between e-nose
factors or PCA factors and the mental health symptoms of
depression, anxiety, or substance use.

The main strength of the current study over previous studies
is the larger sample size. This is the largest e-nose study ever
conducted on a psychiatric population; our current sample of
over 1,200 participants is substantially larger than published
exhalome research (typically less than 100 subjects) (36,
55). Ligor et al. (56) used solid phase microextraction-gas
chromatography combined with mass spectrometry (SPME-
GC/MS) analyses with 484 subjects for selecting potential lung
cancer biomarkers, which was the next largest sample we
FIGURE 4 | Model performance (R2 values) in predicting age and BMI using Linear Model, Random Forest (RF), and Support Vector Machine (SVM) algorithms.
Error bars represent standard deviations of R2 values.
FIGURE 5 | Model performance (AUC values) in predicting smoking status and gender using Linear Model, Random Forest (RF), and Support Vector Machine (SVM)
algorithms. Error bars represent standard deviations of AUC values.
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identified. A second strength of our study is the application of
multiple analysis pathways suggested previously by researchers
in the field. We utilized a rigorous machine learning paradigm
with an iterative nested cross-validation approach, which
involved splitting the dataset into training and testing sets on
each iteration of model building and evaluation processes. To
assess overfitting, we included an independent dataset to test
final models. Overfitting could be a main culprit in overlooking
the possible presence of false positives in prior work (57). A third
strength is our use of multiple psychiatric symptoms to attempt
to identify e-nose metrics as novel biomarkers in assessing and
predicting mental illness. Exclusive reliance on self-report and
traditional methods for diagnosis, treatment and monitoring of
psychiatric symptoms is a current challenge in the field. There is
a need for simple measures to predict the severity of these
symptoms and develop more accessible and non-invasive
biomarkers for this purpose in medicine and psychiatry.

In addition to possible overfitting in previous smaller studies,
the lack of replication in the current study could also be due to
the “winner’s curse” phenomena that has been observed in
association studies: early studies tend to report a result with
a substantial effect size, which is less likely to be seen in
subsequent replication studies i.e., GWAS and epidemiological
investigations. In the long run, regression toward the mean
would be a more achievable result expected to be observed
(58). Furthermore, the sampling method to collect breath
samples practiced in this work was different compared to
previous works: in contrast to applying sophisticated sampling
tubes, filters and special valves to breath data collection, we
employed an accessible sampling setup within a conventional
research/medical facility setting. Another factor limiting
replication could be the dimensional design of the present
study as opposed to categorical group comparisons (cases
Frontiers in Psychiatry | www.frontiersin.org 8
versus controls) reported in prior works; it is possible that
effects become larger when comparing extremes of a
phenotype (e.g., healthy control versus symptomatic patient).

A limitation of the current study is our use of e-nose hardware,
which is cheaper, more easily measured, and more easily used
biomarker, but is less accurate than gas chromatography and mass
spectrometry (GC–MS) technologies (59, 60). Unlike GC–MS,
which detects specific chemicals and molecules within the breath,
e-nose detects patterns of chemical compositions detected over
sensor arrays, performing “smell-print” recognition (20). A second
limitation is the possible presence of psychiatric comorbidities
among participants, which might have impacted detection of
particular symptom(s). Third, this study was cross-sectional, with
data collected at only one time point during a screening session;
employing similar analysis strategies on longitudinal e-nose and
symptom data may result in more effective prediction of future
illness severity.

Another possible limitation was that the breath sample was
collected from the mouth using a relatively simple procedure; it
might be the case that having stricter control or collecting
samples from alternate airways, e.g., nasal passages, may
yield different sets of smell prints and resulting outcomes
might change. Although some previous studies used more
sophisticated devices or VOC-filtered room air for breath
sample collection control (20, 21, 25), this study focused on
investigating an easy, quick, and relatively inexpensive
approach to evaluate mental health status. Another potential
limitation of the breath sampling procedures in the present
study might be when participants hold their breath. The
breath-hold process involves anatomic dead space (61), and
it has been shown that exhalation rate and breath-hold affect
the levels of exhaled VOCs detected by the Cyranose 320 (62).
Furthermore, although the effect of diurnal variations on the
FIGURE 6 | Principal component analysis plot of smoking status.
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breath sample VOCs detected by e-nose has been investigated
(63, 64), these variations were not observed in our pipeline
(Figure. S14 in Supplement).

The present study did not replicate prior studies linking e-
nose breath metrics to mental health variables within the context
of a less-controlled sampling environment than the GC–MS (21,
25). Given the limitations of this study, more work is needed to
investigate whether e-nose technologies utilizing higher
resolution sensor arrays and more sensitive materials can aid
in the development of novel biomarkers to track psychiatric
symptom severity.
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