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Abstract: The complex Rayleigh waves play an important role in the energy conversion efficiency of
magneto-electro-elastic devices, so it is necessary to explore the wave propagation characteristics for
the better applications in engineering. This paper modifies the Laguerre orthogonal polynomial to
investigate the complex Rayleigh waves propagating in nonhomogeneous magneto-electro-elastic
half-spaces. The improved method simplifies the calculation process by incorporating boundary
conditions into the constitutive relations, shortens the solving time by transforming the solution of
wave equation to an eigenvalue problem, and obtains all wave modes, including real and imaginary
and complex wavenumbers. The three-dimensional curves of full frequency spectrum and phase
velocities are presented for the better description of the conversion from complex Rayleigh wave
modes to real wave ones; besides, the displacement distributions, electric and magnetic potential
curves are obtained in thickness and propagation directions, respectively. Numerical results are
analyzed and discussed elaborately in three cases: variation of nonhomogeneous coefficients, absence
of magnetism, and absence of electricity. The results can be used to optimize and fabricate the
acoustic surface wave devices of the nonhomogeneous magneto-electro-elastic materials.

Keywords: complex rayleigh waves; laguerre orthogonal polynomial; nonhomogeneous; magneto-
electro-elastic; half-space

1. Introduction

The past few decades have seen considerable time and effort invested in studying
the mechanics of magneto-electro-elastic composites. With their particular properties,
such as the mutual conversion of magneto-electro-elastic energy [1], these materials are
widely applied in sensors, ultrasonic nondestructive evaluation, and vibration control
devices [2–5]. They are so promising for many applications that they have become the
next generation multi-functional materials [6]. To improve their thermal and corrosive
resistance, the research has gradually expanded to the field of nonhomogeneous material;
thereafter, the study of the waves propagating in nonhomogeneous magneto-electro-elastic
composites has received more and more attention [7,8], and some researchers have success-
fully fabricated an actuator with small mechanical damping and heat generation by using
functionally graded piezoelectric material [9].

The study on the propagation behaviors in these materials is so important and urgent
that many researchers have been working in this field. Pang et al. [10] investigated Rayleigh-
type surface waves in a piezoelectric-piezomagnetic layered half-space. Wei et al. [11]
explored the propagation characteristics of shear horizontal surface waves propagating in
a layered piezoelectric-piezomagnetic half-space and discussed the sources that effect on
the dispersion curves and phase velocities. For investigating the Love waves propagation
in layered magneto-electro-elastic half-space, Bou Matar et al. [12] combined the Legendre
and Laguerre polynomial technique to obtain their solutions. Du [13] not only investigated
the Love waves propagating in layered magneto-electro-elastic half-space with initial stress
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and viscous liquid, respectively [14,15], but also studied the propagation of the Rayleigh
waves in a piezoelectric-piezomagnetic layered half-space affected by a biasing electric
field [16] and a biasing magnetic field [17], respectively. Their results show that mechanical
displacement and phase velocity are greatly effected by the biasing electric and magnetic
fields. In 2016, Ezzin et al. [18] discussed the influence of material properties on phase
velocity and analyzed the dispersion characteristic, through examining the Love waves
propagating in a piezoelectric material layer on a piezomagnetic half-space.

The efforts mentioned above are limited in the magneto-electro-elastic half-space
without involving the nonhomogeneous materials, in fact, the unprecedented progress has
been achieved in nonhomogeneous magneto-electro-elastic half-space. Zhang et al. [19],
using the Wentzel-Kramers-Brillouin approximate method, investigated the Love wave
propagation in layered inhomogeneous magneto-electro-elastic half-spaces with initial
stress. Singh and Bokne [20] analyzed the propagation of shear horizontal waves in
a functionally graded magnetoelectric half-space and obtained the dispersion relations.
Ezzin et al., using the ordinary differential equation and stiffness matrix methods, studied
the propagation of the Rayleigh [21] and Love [22] waves on a piezomagnetic half-space
covered with a functionally graded piezoelectric half-space. In terms of pure half-space
(without overlay) with electro-magneto-elastic materials, Feng et al. [23] studied the
conditions that effect on phase velocities of Rayleigh wave. Yang et al. investigated the
Rayleigh waves propagating in a magneto-electric half-space rotating at a constant angular
rate about a fixed axis. In 2014, Zhang [24] studied the Rayleigh wave’s characteristics in a
magneto-electro-elastic half-space with initial stress by using the quasistatic approximation
and linearity assumption. Through assuming the material properties are space dependent,
the Love wave propagation in non-homogeneous electro-magneto-elastic half-space was
explored by employing the mathematical approach [25]. Later on, it was found that in
different cross sections the surface wave velocity can have significant change due to the
rotary symmetry of crystal [26].

Recently, the study of complex wave propagation has received considerable attention
because it is found that some complex wave modes can be converted or degenerated to
propagating waves [27,28], and they are very suitable to fabricate the high-performance
surface acoustic wave devices operating in the GHz range of frequencies [29]. Moreover,
the complex waves are full of promise in the field of non-destructive testing [30,31] and
can be used to develop high sensitive sensors [32]. For propagating waves, obtaining
their solution remains simple because the wavenumbers are real. But, when the wave
equations are solved in complex space, it will give the solution containing purely real,
purely imaginary and complex values with respect to wavenumbers. It is well known
that the purely real solutions represent propagating waves. For the purely imaginary and
complex solutions, they represent evanescent wave modes. The former are exponentially
damped with propagating distance, and the latter’s decay follows a damped sinusoidal
distribution. Some theoretical and experimental researches in terms of the propagation
of complex waves have been carried out [33]. A recent study on the complex waves was
conducted by Giurgiutiu et al. [34], who investigated the propagating, evanescent, and
complex wavenumber guided waves in high-performance composites. Although some
articles have explored the complex waves [35,36], they are very rarely used to discuss the
complex waves in nonhomogeneous magneto-electro-elastic half-space, especially in the
terms of complex Rayleigh waves.

In this paper, an improved polynomial expansion approach is given for the solutions
of the complex Rayleigh waves propagating in nonhomogeneous magneto-electro-elastic
half-spaces. The Laguerre polynomial has many advantages, e.g., 1© its orthogonality
can be used to reduce the time-consuming in calculation; 2© it is simple to program; and
3© its solution is noniterative. So, it has been employed to obtain the solution of surface

waves propagating in half-spaces for decades [37]. However, the conventional method
can only get the real solutions. This paper will transform the conventional Laguerre or-
thogonal polynomial to the eigenvalue problem of wavenumbers and define the boundary
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conditions using the Heaviside step function; by solving the characteristic matrix, the eigen-
values give the solution of propagating, evanescent, and complex wavenumber waves
in nonhomogeneous magneto-electro-elastic half-spaces; moreover, the eigenvectors are
obtained to present the mechanical displacement, electric, and magnetic potentials. For
examining the effect of different material constants on the complex Rayleigh waves, three
cases are taken account of: nonhomogeneous magneto-electro-elastic half-space, nonho-
mogeneous piezoelectric half-space, and nonhomogeneous piezomagnetic half-space, and
their results are compared and discussed in detail. This paper also investigated the effect of
the nonhomogeneous variation on the complex Rayleigh wave propagation characteristics.
Furthermore, the 3D dispersion curves are obtained for discussing the cut-off frequencies,
and the phase velocity curves are given for exploring the wave conversion.

2. Theoretical Formulation and Solution
2.1. Basic Equations

Consider an orthotropic nonhomogeneous magneto-electro-elastic half-space, where
the material coefficients vary continuously along the z direction. The Cartesian coordinate
system (as shown in Figure 1) is designated as follows: the upper surface of the half-space
is set as the horizontal coordinate plane x− y; the z axis is downward and perpendicular
to the x− y plane; the half-space occupies the region [0, ∞) in the z direction. Rayleigh
surface waves propagate in the x-axis direction.

magnetoelectroelastic

Figure 1. A nonhomogeneous magneto-electro-elastic half-space showing in the coordinate system.

Let ui represent the components of particle displacement in the ith direction, and ρ
be the mass density. When the electric and magnetic sources are absent, the governing
equations in the half-space are

σij,j = ρüi

Di,i = 0 (i, j = x, y, z)

Bi,i = 0

, (1)

in which .j denotes differentiation with xj, the üi represents the second derivative of ui over
time, B is the magnetic induction, D is the electric displacement, and σ denotes the stress.
The Einstein summation notation is applied here. For a linear, anisotropic and coupled
mechanical-electric-magnetic material medium, the constitutive equations [38,39] are

σij = cijklεkl − ekijEk − qkijHk

Di = eiklεkl + εikEk + dik Hk (i, j, k, l = x, y, z)

Bi = qiklεkl + dikEk + µik Hk

, (2)

where Ek, Hk, and εkl are the electric field, magnetic field, and strain, respectively; εik, dik,
and µik are, respectively, the dielectric, magnetoelectric, and permeability coefficients; and
ekij, qkij, and cijkl are the piezoelectric, piezomagnetic, and elastic coefficients, respectively.

Based on the elasticity theory and the quasi-static Maxwell equation, the strain, electric,
and magnetic field are related to the mechanical displacement ui, the electric potential φ,
and magnetic potential ϕ, as follows:



Materials 2021, 14, 1011 4 of 18

εij =
1
2
(ui,j + uj,i)

Ei = −φ,i (i, j = x, y, z)

Hi = −ϕ,i

. (3)

We just consider the waves propagating in the nonhomogeneous magneto-electro-
elastic half-space polarized along the z-axis direction. The upper surface are magnetically
short and electrically open [24] in the present paper. Therefore, the mechanical and electric-
magnetic boundary conditions at the upper surface are

σzz = 0, σxz = 0, Dz = 0, Bz = 0 (at z = 0). (4)

So, combining Equations (1) and (4) will obtained the solution of the Rayleigh waves
propagating in the magneto-electro-elastic nonhomogeneous half-space.

2.2. Solution of the Problem

In this study, the variables of field are independent of y because the Rayleigh waves
propagate along x-axis; therefore, Equation (1) can be written:

∂σxx

∂x
+

∂σxz

∂z
=ρ

∂2ux

∂t2

∂σxz

∂x
+

∂σzz

∂z
=ρ

∂2uz

∂t2

∂Dx

∂x
+

∂Dz

∂z
=0

∂Bx

∂x
+

∂Bz

∂z
=0

. (5)

By introducing the unit step function h(z):

h(z) =

{
1, z ≥ 0;
0, elsewhere

. (6)

The above boundary conditions described in Equation (4) can be automatically incor-
porated into Equation (2), which leads to

σxx = c11εxx + c13εzz − e31Ez − q31Hz

σzz = (c13εxx + c33εzz − e33Ez − q33Hz)h(z)

σxz = (c44εzx + c44εxz − e15Ex − q15Hx)h(z)

Dx = e15εzx + e15εxz + ε11Ex + d11Hx

Dz = (e31εxx + e33εzz + ε33Ez + d33Hz)h(z)

Bx = q15εzx + q15εxz + d11Ex + µ11Hx

Bz = (q31εxx + q33εzz + d33Ez + µ33Hz)h(z)

. (7)

Assuming that the material properties are functions of depth, then the mechanical
and electric-magnetic coefficients become the functions related to f (z) (it is assumed
that they all are controlled by a same function for the convenience of expression). In
practice, every material coefficient can be applied distinct continuous function, such as
c(z) = c · f1(z), e(z) = e · f2(z) · · · ), and they can be defined as

c(z) = c · f (z) e(z) = e · f (z) q(z) = q · f (z)
ε(z) = ε · f (z) d(z) = d · f (z) µ(z) = µ · f (z)
ρ(z) = ρ · f (z)

, (8)

where e, q, ε, d, µ, and c are, respectively, the piezoelectric, piezomagnetic, dielectric, mag-
netoelectric permeability, and elastic constants in the homogenous material.
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Assuming a Rayleigh surface wave propagating along x-axis, then the fields of me-
chanical displacement, electric, and magnetic potential can be written in the following
form:

ux(x, z, t) = ei(kx−ωt)U(z) (9a)

uz(x, z, t) = ei(kx−ωt)W(z) (9b)

φ(x, z, t) = ei(kx−ωt)X(z) (9c)

ϕ(x, z, t) = ei(kx−ωt)Y(z). (9d)

Firstly, substituting Equations (7)–(9a–d) into Equation (5), and then reorganizing all
these equations according to the orders of wavenumbers and categorizing them by the
terms of k2, k1, and k0, therefore, Equation (5) can be expressed as:

− c11 f (z)Uk2|term
k2

+ [((c44W + e15X + q15Y)h(z) f (z))′ + (c13W + e31X + q31Y)′ f (z)]ik|term
k1

+ c44(U′ f (z)h(z))′|term
k0 = −ρω2U f (z),

− (c44W + e15X + q15Y) f (z)h(z)k2|term
k2

+ [(c13Uh(z))′ + c44U′ f (z)h(z)]ik|term
k1

+ [(c33W + e33X + q33Y)′ f (z)h(z)]′|term
k0 = −ρω2W f (z),

(−e15W + ε11 + d11Y) f (z)k2|term
k2

+ [(e31Uh(z) f (z))′ + e15U′ f (z)]ik|term
k1

+ [(e33W − ε33X− d33Y)′ f (z)h(z)]′|term
k0 = 0,

(−q15W + d11X + µ11Y) f (z)k2|term
k2

+ [(q31Uh(z) f (z))′ + q15U′ f (z)]ik|term
k1

+ [(q33W − d33X− µ33Y)′ f (z)h(z)]′|term
k0 = 0

(10)

where the prime mark (′) represents a derivative, and using it twice denotes the second
derivative. When the Laguerre orthogonal polynomial series are introduced, U, W, X, and
Y can be written as:

U(z) =
∞

∑
m=0

p1
mQm(z) W(z) =

∞

∑
m=0

p2
mQm(z),

X(z) =
∞

∑
m=0

r1
mQm(z) Y(z) =

∞

∑
m=0

r2
mQm(z),

(11)

in which, pi
m and ri

m (i = 1, 2) represent expansion coefficients and

Qm(z) = Exp(− z
2
)

Lm(z)
m!

, (12)

where Lm(z) is the mth order Laguerre polynomial, and functions Qm(z) are orthonormal
and complete from 0 to ∞, so appropriate for calculating in semi-infinite interval. Even
though m can be any non-negative integer (0, 1, 2, 3, . . . ), practically, the summation of
Equation (11) has halted at some value m = M because the solutions have converged well
within a finite number of terms.

To begin with, substituting Equation (11) into Equation (10), and then using the
complex conjugate Q∗j (z) to multiply the obtained equations (j are integers from 0 to
infinity), will lead to 4× (M + 1) equations because any equation in Equation (10) will give
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(M + 1) equations. Thirdly, integrate the product over z in the range [0, ∞), and rearrange
them according to k2, k1, and k0. Last, their matrix representation is achieved, as follows:

k2AP + kBP + CP = ω2MP, (13)

in which the vector and the square matrices can be expressed as the following Equation (14),
and their elements can be obtained from Equation (10).

A =


Aj,m

11 Aj,m
12 Aj,m

13 Aj,m
14

Aj,m
21 Aj,m

22 Aj,m
23 Aj,m

24
Aj,m

31 Aj,m
32 Aj,m

33 Aj,m
34

Aj,m
41 Aj,m

42 Aj,m
43 Aj,m

44

 B =


Bj,m

11 Bj,m
12 Bj,m

13 Bj,m
14

Bj,m
21 Bj,m

22 Bj,m
23 Bj,m

24
Bj,m

31 Bj,m
32 Bj,m

33 Bj,m
34

Bj,m
41 Bj,m

42 Bj,m
43 Bj,m

44



C =


Cj,m

11 Cj,m
12 Cj,m

13 Cj,m
14

Cj,m
21 Cj,m

22 Cj,m
23 Cj,m

24
Cj,m

31 Cj,m
32 Cj,m

33 Cj,m
34

Cj,m
41 Cj,m

42 Cj,m
43 Cj,m

44

 M =


Mj,m

11 0 0 0
0 Mj,m

22 0 0
0 0 0 0
0 0 0 0

 (14)

P = [p1
0, p1

1, . . . , p1
M, p2

0, p2
1, . . . , p2

M, r1
0, r1

1, . . . , r1
M, r2

0, r2
1, . . . , r2

M]T .

To find the solution of wave number k in Equation (13), here, we introduce a new
column vector N:

N =


n1
n2
n3
n4

 = k


p1

p2

r1

r2

 = kP. (15)

After inserting Equation (15) into Equation (13), the resulting equations can be rewrit-
ten as:

kAN + BN + CP = ω2MP. (16)

Separating k and P in Equation (16), the result becomes:

A−1(ω2M− C)P−A−1BN = kN. (17)

Considering N = kP in Equation (15) and introducing an identity matrix I, thus,
Equation (17) becomes: [

0 I
A−1(ω2M− C) −A−1B

][
P
N

]
= k

[
P
N

]
, (18)

where I has the same dimension as A. Letting

R =

[
P
N

]
,

finally, Equation (18) can be further simplified to:[
0 I

A−1(ω2M− C) −A−1B

]
R = kR. (19)

Equation (19) indicates that the wave number k is an eigenvalue, and R is an eigenvec-
tor corresponding to the k in this equation. So, giving a series of angular frequency values
ω, a series of corresponding wave numbers k will be generated in the form of eigenvalues,
which also can give the phase velocity with ease. The field distributions can be calculated
by the eigenvectors R. As can be seen, this equation considers the angular frequency ω as



Materials 2021, 14, 1011 7 of 18

independent variables, and k as the eigenvalues. The wavenumber of the equation exists
in three forms, namely k2, k1, and k0. As a result, the equation can present all kinds of
solutions, including the propagating and non-propagating wave numbers.

3. Numerical Results and Discussion

In this section, the propagation behaviors of complex Rayleigh waves in the non-
homogeneous magneto-electro-elastic half-space are studied numerically based on the
formulations derived from the previous section. The material properties (at z = 0) can be
seen in Table 1, which vary gradually in the thickness direction, and the nonhomogeneous
function f (z) = (1 + z)n in Equation (8), where n is the nonhomogeneous coefficient. The
mass density ρ is 7500 kg/m3 at z = 0. The material constants in Table 1 are used for
all examples, except for the section of approach validation, which used the material lead
zirconate titanate (PZT-4).

Table 1. Material properties of the nonhomogeneous magneto-electro-elastic half-space [40] at z = 0.

Item (Unit) Symbol & Value

Elastic constants (GPa) c11 c33 c44 c12 c13
139 115 25.6 77.8 74.3

Piezoelectric constants (C/m2)
e31 e33 e15
−5.2 15.1 12.7

Dielectric constants (×10−9 F/m)
ε11 ε33
6.46 5.62

Piezomagnetic constants (N/Am) q31 q33 q15
580.3 699.7 550

Magnetic constants (×10−6 Ns2/C2)
µ11 µ33
5 10

Electromagnetic constants (×10−11 Ns/VC)
d11 d33
−3612.68 −2.4735

3.1. Approach Validation

The verification for the present approach is carried out in two parts: comparing the
mechanical displacement with earlier works and validating the boundary conditions. To the
authors’ knowledge, so far, the complex waves in nonhomogeneous magneto-electro-elastic
half space have not been studied, so, here, we only present the displacement amplitude
distribution in homogeneous PZT-4 half-space to make comparison with the available
numerical results. The used material properties are taken from the literature [41]. The
mechanical displacement amplitude distributions for the purely real solutions are given in
Figure 2 for the order truncation M = 10. The curves in this figure represent normalized
mechanical displacement (u/w0 and w/w0). The solid curves are obtained from the present
paper when the wavenumber k = 2, and the dotted lines are taken from the literature [42].
Obviously, the excellent agreement between them solidly validates the accuracy of the
present method.

Similarly, the normalized electrical displacement distributions are illustrated in Figure 3,
in which its curves are normalized using the electric displacement on the upper surface. The
figure gives the electric displacements of M at different values. As can be seen, although
different M will generate different curves, their electric displacements all are zeros at z = 0.
This is consistent with the description of Equation (4). All these show that the boundary
conditions are met well. On the other hand, the curves converge with M increases, and the
result when M is 9 is exactly the same as when M is 10, which shows that the solutions
have converged well.
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Figure 2. Normalized mechanical displacement amplitude distribution: solid curves are our results,
and dotted lines are from literature.
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Figure 3. Normalized mechanical displacement amplitude distribution with different M.

3.2. Full Frequency Spectra

By examining Equation (19), one can see that, if a series of angular frequency values are
given, a series of corresponding wave numbers will be generated in the form of eigenvalues.
As is well known, ω/2π will always give the real frequency f . The wave numbers obtained
in the present paper can be categorized into three kinds of different roots: the purely
real, the pure imaginary, and the complex. Taking the real wavenumbers as the x-axis,
imaginary wavenumbers as the y-axis, and f as the z-axis, the full frequency spectra for a
nonhomogeneous magneto-electro-elastic half-space will be constructed just like Figure 4.
ξ = k × 102 in this figure is available everywhere in the present paper and will not be
explained anymore.

Figure 4a presents the full frequency spectra with the nonhomogeneous coefficient
n = 1 in the function f (z) = (1 + z)n, the material constants used to calculate in the figure
is listed in Table 1. Which shows that the wavenumber roots occur in pairs of opposite signs,
i.e., if a + bi (a, b ∈ R) is a solution of Equation (19), then ±a± bi all will be the solutions
of it, and they are all distributed symmetrically in the top four quadrants as illustrated
in the figure. For b/a = 0, the branches represent real waves (with blue dotted curves);
For a/b = 0, the branches represent non-propagating waves (with red dotted curves in
the figure), in which amplitudes decay exponentially; for ab 6= 0, the branches represent
complex waves (with green dotted curves in the figure) traveling in the exponentially
damped trigonometric wave forms with propagating distance. In 3D complex space, the
purely real branches generally show the trajectories of first decline and then rise, while the
purely imaginary and complex branches are very complicated. They do not show obvious
regularity, and some of them are converted into propagating modes.
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Figure 4. Full dispersion spectra of complex Rayleigh waves for a nonhomogeneous magneto-electro-
elastic half-space: (a) 3D full frequency spectra; (b) one quarter of the 3D full frequency spectra.
Nonhomogeneous coefficient n = 1, ξ = k× 102; blue branches for real solutions, red for imaginary,
green for complex.

Considering the symmetry of the wave’s solution, here, we only present one quarter
of its curves as shown in Figure 4b, then project all the curves onto the imaginary and real
planes, respectively, as shown in Figure 5. It can be found that in this figure: For the purely
imaginary branches, the first three branches I1, I2, and I3 are joined to purely real branches
smoothly where the wavenumbers become zero; the purely imaginary branches become
more complicated with the increase of frequency and the decrease of wavenumber. For the
complex branches, some branches convert to purely real modes and continue propagating
just as C1 branch; some branches convert to purely imaginary modes with the increase
of frequency just as C2 branch. The real branches corresponding to propagating waves
have been studied very deeply, so they do not necessitate the time to be discussed here.
In a word, Figure 5 not only presents the values of wavenumbers and frequencies of the
wave’s solution in the nonhomogeneous magneto-electro-elastic half-space, but it also
clearly illustrates the relationship between the three kinds of solutions.
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70

80
f �Hz�

Im�Ξ� Re �Ξ�
�15

Figure 5. Two-dimensional full frequency spectra (n = 1).
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Figures 6–8 present the 2D frequency spectra for the nonhomogeneous magneto-
electro-elastic half-space with different cases. Their material constants all come from
Table 1, but there exist differences in the nonhomogeneous, electric and magnetic coeffi-
cients. The material constants in Figure 6 are the same as that in Figure 5, except for the
nonhomogeneous coefficient n = 2; Figure 7 shows the frequency spectra without the
magnetic field, and the material used in Figure 8 without the electric field. All waves
propagate in the x-axis and their thickness directions are all along z-axis in these figures.
The same as in the 3D figures, the point curves in blue correspond to real solutions, those
in red correspond to imaginary solutions, and green to complex.
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Figure 6. Two-dimensional full frequency spectra (n = 2).
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Figure 7. Two-dimensional full frequency spectra without considering magnetic field (n = 1).
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Figure 8. Two-dimensional full frequency spectra without considering electric field (n = 1).

Comparing Figures 5–8 demonstrates that: nonhomogeneous coefficients have great
influence not only on the cut-off frequencies of propagating waves, but, also on those of the
complex and imaginary waves, the cut-off frequencies increase as the nonhomogeneous
coefficients increase, e.g., the cut-off frequency of R1 branch is 24 when nonhomogeneous
coefficient is 1, but it becomes 29 when the nonhomogeneous coefficient increases to 2;
the cut-off frequency difference between the two branches R2 and R3 becomes larger with
the increasing of nonhomogeneous coefficients, so that R3 crosses with the fourth branch.
However, the electric or magnetic coefficients have little effect on the cut-off frequencies,
which is verified in Figures 7 and 8. All these show that the influence of nonhomogeneous
coefficients on cut-off frequencies is more significant than that of magnetic or electric
coefficient.

Another finding is: there are more branches of green curves appeared in the right
half field of Figure 7, while the quantity of this color curves has barely changed in the left
half field compared with other three figures. This means that the ratio Im(ξ)/Re(ξ) of
the complex solution becomes larger in this case. This indirectly shows that the magnetic
coefficients have notable effect on the ratio. However, the ratio almost does not change
in Figures 6 and 8. Therefore, the ratio Im(ξ)/Re(ξ) of the complex wave number can be
changed by changing the volume fraction of the magnetic part in a composite material.
The numbers of the imaginary branches of the complex solution (green curves in the left
half field of figure) are basically the same in Figures 5–8, which shows that the magnetic,
electric and nonhomogeneous coefficients have little effect on their imaginary part of the
complex solutions in the magneto-electro-elastic nonhomogeneous half-space.

3.3. The Analysis of Displacement and Field Distributions

To explore the complex wave structures in the nonhomogeneous magneto-electro-
elastic half-spaces, this section will present their displacement, magnetic, and electric
potential field distributions, at the same time compare them with those of the propagating
waves. Here, we examine the points in the close vicinity f = 24 Hz, where is the transition
area from complex waves to propagating waves, which can be seen in Figures 4 and 5. The
exact solution can be obtained by the following steps: firstly, deriving the eigenvector R and
wavenumber k from Equation (19), and immediately getting the numerical representation
of vector P in Equation (14); and further getting the displacement, magnetic, and electric
potential field distributions by Equations (9) and (11).
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Next, two specific cases will be given to investigate the complex wave structures,
their material coefficients are given in Table 1 and their nonhomogeneous coefficient
n = 1. One is ξ = 2.2152, when f = 24.10 Hz, and another is ξ = 2.1365 + 0.1694i, when
f = 24.07 Hz, which can be obtained through the method mentioned in the previous
paragraph. Figures 9 and 10 show the displacement distributions along z and x in Figure 1,
Their subfigure (a) are obtained at x is zero and (b) at z is zero, when f = 24.10 Hz,
ξ = 2.2152 and f = 24.07 Hz, ξ = 2.1365 + 0.1694i, repectively. Figures 11 and 12 present
the electric potential distributions, Figures 13 and 14 the magnetic potential distributions.
The result, by comparing Figures 9a and 10a, this illustrates that there is barely change of
the mechanical displacement field distributions in the thickness direction when the complex
wave approaches to the propagating wave, and the similar phenomenon is also found
in electric and magnetic potential distributions in the thickness direction. Figures 9a–14a
demonstrate that the displacement, electric, and magnetic potential all decay to their
final zero points at about z = 75, even though the attenuation trajectories of mechanical
displacement are obviously different from that of the electric and magnetic potential.
Figures 9b–14b show that: for complex waves, the electric and magnetic potential, same
as in displacement, decay in the propagation direction x following a damped sinusoidal
distribution rather than only exponential decay; the complex waves are able to travel
farther and farther with their approaching purely real solution.
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Figure 9. Displacement distributions for thickness direction in (a) and propagation direction in (b)
when f = 24.10 Hz, ξ = 2.2152.
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Figure 10. Displacement distributions for thickness direction in (a) and propagation direction in (b)
when f = 24.07 Hz, ξ = 2.1365 + 0.1694i.
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Figure 11. Electric potential distributions for thickness direction in (a) and propagation direction in
(b) when f = 24.10 Hz, ξ = 2.2152.
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Figure 12. Electric potential distributions for thickness direction in (a) and propagation direction in
(b) when f = 24.07 Hz, ξ = 2.1365 + 0.1694i.
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Figure 13. Magnetic potential distributions for thickness direction in (a) and propagation direction in
(b) when f = 24.10 Hz, ξ = 2.2152.
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Figure 14. Magnetic potential distributions for thickness direction in (a) and propagation direction in
(b) when f = 24.07 Hz, ξ = 2.1365 + 0.1694i.

3.4. Effects of Nonhomogeneous and Magnetoelectric Properties on Phase Velocity

This section presents the phase velocities of complex waves for different cases, further
discusses the effects of nonhomogeneous, magnetic, and electric coefficients on phase
velocity. The phase velocity is defined as cp = ω/Re(ξ) in the present paper. Figure 15
presents the 3D phase velocity curves for a nonhomogeneous magneto-electro-elastic half-
space. In this figure, the real ξ is set to x-axis, the imaginary ξ is set to y-axis, and the
phase velocity cp is set to z-axis; then, the purely real modes and the complex modes can
be plotted in a three-dimensional coordinate system with ease, but the purely imaginary
modes are not drawn here because their corresponding waves cannot propagate. The 3D
phase velocity curves not only clearly present the purely and complex wave modes but
also describe the process that the complex waves degenerate to purely real wave modes,
e.g., the marked C point in Figure 15 illustrates where the complex wave mode converts
to purely real mode. To express the phase velocity of converting point more clearly and
facilitate the subsequent comparisons with different cases, here, we project all the curves in
Figure 15 to Re(ξ)− cp plane, as shown in Figure 16. As a result, the phase velocity Cx and
the converting point C can be easily marked and are suitable to compare.
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Figure 15. Three-dimensional phase velocity curves of the complex waves, blue branches for purely
real solutions, and green for complex.
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Figure 16. The projection of 3D phase velocity curves, blue branches for purely real solutions, and
green for complex.

Figure 17 shows the 2D phase velocity curves for the nonhomogeneous magneto-
electro-elastic half-space, the result obtained at the nonhomogeneous coefficient n = 1 with
the applied material constants taken from Table 1, which illustrates that the phase velocity
of the converting point is 7.1 km/s. Figures 18–20 present the phase velocity curves with
different cases. Figure 18 describes the phase velocity curves same as Figure 17, but, for
nonhomogeneous coefficient n = 2, Figure 19 gives the phase velocity curves same to
as Figure 17, but excluding the magnetic constants, and Figure 20 excluding the electric
constants. It can be seen that the phase velocity of converting point soars to 12.7 km/s
when the nonhomogeneous coefficient n = 2, which illustrates that nonhomogeneous
coefficient has significant effect on converting point. Figure 19 presents the frequency
spectra in the nonhomogeneous piezoelectric half-space, in which the phase velocity of
converting point is 6.75 km/s near to 7.1 km/s, so magnetic coefficients have little effect
on the converting point. The case in Figure 20 has similar characteristics to the previous
case with respect to the converting point, but the value of converting point goes down
slightly instead of increasing. Therefore, changing nonhomogeneous coefficient is the most
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straightforward method of changing the phase velocity of converting point, compared with
changing electric or magnetic coefficients.
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Figure 17. Phase velocity spectra (n = 1).

Figure 18. Phase velocity spectra (n = 2).
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Figure 19. Phase velocity spectra without magnetic field (n = 1).
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Figure 20. Phase velocity spectra without electric field (n = 1).

4. Conclusions

The Laguerre orthogonal polynomial expansion approach was improved to investigate
the complex Rayleigh waves propagating in the nonhomogeneous magneto-electro-elastic
half-spaces. The proposed method can present not only the solution of propagation waves
but also that of complex or evanescent waves. The following conclusions can be drawn
according to the numerical examples:

1. The developed method takes angular frequency as independent variable and con-
structs characteristic equation, furthermore transforms the problem of finding the
solution of acoustic waves into an eigenvalue problem, and successfully obtains the
real, imaginary and complex wave modes.

2. In this configuration and material, although electric and magnetic properties have
less effect on the cut-off frequencies of complex solutions than nonhomogeneous
coefficient, magnetic properties have more effect on the ratio of the real part to the
imaginary part of complex solutions than other material properties.

3. The energies of mechanical, electric and magnetic fields will decay to zero after
traveling to the same point in the thickness direction, but the attenuation trajectories
of mechanical displacement are obviously different from those of electric and magnetic
potential. In the propagation direction, displacement, electric, and magnetic potential
have similar attenuation tendencies and converting process.

4. Nonhomogeneous coefficient has significant effect on the phase velocity of complex
converting point, but the electric and magnetic properties do not, which, on the
contrary, make the velocity slightly smaller.

The proposed method can be extended to other more complicated nonhomogeneous
conditions with ease, even though here employed only one nonhomogeneous function for
the convenience of expression. In practice, the function can be any derivative continuous
function, so giving distinct nonhomogeneous function, respectively, to different material
coefficient at the same time will make the present method more universe. Moreover, the
propagation characteristics and behaviors of Rayleigh waves in layered half-space play
an important role in nondestructive evaluation, ocean acoustics, seismic prospecting, etc.,
so further attention will be paid on the complex surface waves propagating in a layered
half-space.
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