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Abstract: Heat shock proteins (HSP) are induced after different stress situations. Some of these
proteins, particularly HSP-27, function as markers to indicate cellular stress or damage and protect
the heart during addictive processes. Morphine withdrawal induces an enhancement of sympathetic
activity in parallel with an increased HSP-27 expression and phosphorylation, indicating a severe
situation of stress. HSP-27 can interact with different intracellular signaling pathways. Propranolol and
SL-327 were able to antagonize the activation of hypothalamic-pituitary adrenal (HPA) axis and the
phosphorylation of HSP-27 observed during morphine withdrawal. Therefore, β-adrenergic receptors
and the extracellular signal-regulated kinase (ERK) pathway would be involved in HPA axis activity,
and consequently, in HSP-27 activation. Finally, selective blockade of corticotrophin releasing factor
(CRF)-1 receptor and the genetic deletion of CRF1 receptors antagonize cardiac adaptive changes.
These changes are increased noradrenaline (NA) turnover, HPA axis activation and decreased HSP-27
expression and phosphorylation. This suggests a link between the HPA axis and HSP-27. On the
other hand, morphine withdrawal increases µ-calpain expression, which in turn degrades cardiac
troponin T (cTnT). This fact, together with a co-localization between cTnT and HSP-27, suggests that
this chaperone avoids the degradation of cTnT by µ-calpain, correcting the cardiac contractility
abnormalities observed during addictive processes. The aim of our research is to review the possible
role of HSP-27 in the cardiac changes observed during morphine withdrawal and to understand the
mechanisms implicated in its cardiac protective functions.
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1. Introduction

Stress proteins are classified into five families based on their amino acid sequence and molecular
weight: 1) low molecular weight (15–30 kDa), 2) 60 kDa, 3) 70 kDa, 4) 90 kDa, and 5) high molecular
weight (100–110 kDa) [1]. As in the case of other heat shock proteins (HSP), low molecular weight
thermal shock proteins provide thermotolerance to cells and participate in other processes, such as
cytoskeleton stabilization and apoptosis regulation [2]. The synthesis of HSP, which is expressed in
different tissues, arises as a consequence of a sudden increase in temperature. Several studies have
revealed an increased HSP expression not only after hyperthermia but also as a defense mechanism
against various physical and chemical agents that induce cellular stress. Therefore, HSP are also known
as stress proteins.

Stress proteins expression is regulated at the transcriptional level [1,3]. The increase in transcription
requires the binding of a heat shock transcription factor to a sequence located in the promoter region
of all heat-inducible genes [4]. Under normal conditions, heat shock transcription factor is located
in the cell cytoplasm in a monomeric form remaining dormant without the ability to bind to DNA.
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However, after a stimulus, like an increase in temperature or exposure to a stressful agent, heat shock
transcription factor is phosphorylated by action of the mitogen activated protein kinase, which forms
trimers. This trimerization is essential for its function, providing the necessary affinity to translocate
to the nucleus and joining to the promoter zone of the gene that encodes the different HSP [5,6].
Consequently, HSP genes transcription can be carried out, increasing the synthesis of HSP proteins to
high levels, which allow the repairment of the damaged proteins. Once their mission is accomplished,
these chaperones are again associated with the heat shock transcription factor, restoring its inactive
state (Figure 1).
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Figure 1. Under non-stress conditions, heat shock transcription factor (HSF) is located in the cell
cytoplasm as a monomer and lacks the ability to bind to heat shock elements (HSE) situated in the
promoters of heat shock protein (HSP) genes. However, under a stimulus such as an increase in
temperature or exposure to a stressor, HSF is phosphorylated by mitogen-activated protein kinase
and converted into a DNA-binding trimer. This allows the transcription of HSP genes that directly
increases the synthesis of HSP proteins to sufficiently high levels, repairing damaged proteins. Finally,
these chaperones are re-associated again with HSF, recovering their inactive state.

Most of stress proteins are found constitutively in different tissues, participating in various cellular
processes, while the rest are normally located at low concentrations or at almost undetectable levels,
being rapidly induced by stress [6]. Almost all HSP are capable of transiently bind to a wide variety of
cellular proteins. HSP can act as molecular chaperones and to intervene in the repairment of denatured
proteins after damage and in the balance between synthesis, assembly, and degradation [7].

It is known that HSP participate in a series of biological processes, from the cell cycle to the cell
differentiation, from adaptation to stressful conditions, in apoptosis and even in the transformation
of a cell into a malignant state. Moreover, HSP malfunction has been implicated in different cardiac
alteration and in the development of neurological diseases. However, its protective role in stress
situations associated to addiction processes is not well known. Therefore, in this review, we summarize
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the latest news and views, including our own studies, that describe and discuss the cardiac protective
role of HSP-27 in the stress induced by drugs of abuse.

2. Heat Shock Protein 27 (HSP-27) and Stress

In humans, HSP-27 is one of the most important low molecular weight HSP. It is constitutively
located in almost all cell types and tissues, but mainly expressed in cardiac tissue [8]. HSP-27 post-
translational modification is carried out by phosphorylation at three serine residues (Ser 15, Ser 78,
and Ser 82). This phosphorylation is mainly carried out by mitogen activated extracellular signals,
although other protein kinases such as protein kinase D, in cell lines and pancreas, and protein kinase
C, can also phosphorylate HSP-27, primarily in the residue Ser 82 [3].

The essential proteins involved in the mechanism of cardiac contraction are actin, myosin,
and troponins (Tn). In 1954, Huxley and Hanson [9] proposed the “sliding filament theory”, which states
that muscle contraction is the result of the relative slippage of myosin filaments (thick filaments)
and actin filaments (thin filaments). Tn is activated in the presence of Ca2+ to expose the actin and
myosin binding site. Troponin is a complex formed by three proteins (TnT, TnI, and TnC), each one
with a specific function: TnC, which is capable of binding Ca2+; TnT, which binds to tropomyosin
in muscle fibers maintaining the bond between actin and myosin; and TnI, which binds to actin in
thin myofilaments in order to hold the Tn/tropomyosin complex together, inhibiting the binding of
actin and myosin filaments [10–12]. The N-terminal region of cardiac TnT and the COOH-terminal
region of TnI can undergo a proteolysis by µ-calpain [13,14]. An increase in calpain activity has
been observed to cause alterations in myocardial contractility in certain cardiac diseases, while the
administration of calpain inhibitors improved cardiac function [15,16]. HSP-27 is somehow involved
in cardiac contraction, because ischemia and thermal shock induce a translocation of HSP-27 to the
bands Z in cardiac tissue [17–19]. The stabilization of actin filaments occurs thanks to the different
phosphorylation/dephosphorylation processes, which prevent the degradation and depolymerization
induced by oxidative damage or thermal shock [20]. This stabilization seems to be an action caused by
the non-phosphorylated form, which is responsible for the HSP activity as a molecular chaperone [21,22],
and also participates in the solubilization of the aggregates of denatured proteins after stress [23].

Other functions for HSP-27 would be the modulation of the redox state and the inhibition of
apoptotic cell death [24,25] which it is suggested to be mediated by the phosphorylated form [25].
The inhibition of cell death occurs through the direct interaction of HSP-27 with members of the
apoptotic machinery that lead to the suppression of the activity of the enzyme caspase, one of the main
actors responsible for cell death. A wide range of human diseases and the administration of some
drugs have been associated with endoplasmic reticulum stress, which can lead to oxidative stress and
therefore, can create an increase in reactive oxygen species (ROS). Endoplasmic reticulum damage
induces an increased HSP-27 expression, preventing the generation of ROS and caspase-3 activity
and avoiding cell death [26]. In addition, HSP-27 overexpression inhibits cytochrome C release and,
consequently, the translocation of pro-death molecules to mitochondria [27].

It is important to highlight that HSP-27 is expressed in both constitutive and inducible form in the
cardiac tissue, which gives it an important cardioprotective role. This cardioprotective effect has been
extensively studied in animal models. In those studies, it was observed an increase in cell survival
against lethal damage caused by cardiac ischemia in mice that overexpress HSP, compared to those that
do not overexpress the protein [28]. It has been suggested that HSP-27 contributes to the maintenance
of membrane integrity in different types of stress [29], protecting the heart through its functions as
chaperone, facilitating the reconstitution of the cytoskeleton after stress. HSP-27 also works as an
inducer of antioxidant mechanisms, since the production of free radicals is involved in the generation
of myocardial lesions [30–32]. Thus, HSP-27 is considered as a potential target for the treatment of
myocardial ischemia [12].
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In conclusion, HSP-27 increased levels in different tissues suggest a protective role against different
type of stress that cause cellular damage. HSP-27 could be considered as adaptive response proteins
which enhance survival.

3. Stress/Addiction and Heart

It has been evidenced that there is a close relationship between stress and addiction. Exposure to
both psychological and physiological stress at any stage of the addiction cycle seems to worsen this
disease, increasing drug-seeking, drug-taking, and the number of relapses [33]. Stress is a common risk
factor for development of both addiction and cardiovascular disease. Like stress, drugs of abuse lead
to the activation of two systems: the catecholaminergic system and the hypothalamic-pituitary-adrenal
(HPA) axis. They are considered anti-reward systems and play a fundamental role in the aversive
effects, which are responsible for drug relapse, the main problem of addictive processes. Activation of
both elements results in enhanced circulating catecholamine levels, which were shown to induce
microfocal fibrosis that can damage the heart [34]. Numerous areas of the central nervous system (CNS)
are involved in the integration between behavioral changes and the cardiovascular response associated
with drugs of abuse. The presence of opioid and opioid receptors in the autonomic nuclei of the
hypothalamus, which regulate the autonomous nervous system through projections to brain stem and
spinal cord, is important for the regulation of cardiovascular function. Thus, the extrahypothalamic
and hypothalamic stress systems contain corticotrophin releasing factor (CRF) neurons and receive
noradrenergic innervation, which has been regarded to be critical for stress and addiction [35–37].
HPA axis regulates CRF transcription, adrenocorticotrophin hormone (ACTH), and corticosterone
secretion. This axis activates noradrenergic neurons in the nucleus of the tractus solitarius and the
ventrolateral medulla, which are implicated in cardiac function [38,39]. These connections between the
CNS and the heart support the idea that brain adaptive changes induced by drugs also affect to cardiac
pathways, neurotransmitters, and different receptors (adrenergic, opioid of CRF) expressed in the
heart. However, there is an intrinsic cardiac plexus, capable of functioning independently, that receives
inferences from the sympathetic nervous system and parasympathetic nervous system. This intrinsic
cardiac plexus regulates the response of intracardiac neurons and can send projections to different areas
of the CNS mainly related to emotions. The fact that the heart receives projections from CNS and sends
projections to the brain has made this organ regain great importance as an independent motor and
driver of brain changes in certain pathologies [40]. The adaptive cardiac changes that occur after drug
administration could be due to the activation of brain neuronal circuits and/or adaptive changes in
intrinsic cardiac neurons, independent of the CNS. Supporting this hypothesis, previous studies [41,42]
have shown that morphine withdrawal syndrome induced by naloxone methyl methiodide (quaternary
derivative of naloxone that does not cross the blood–brain barrier) produces cardiac noradrenergic
hyperactivity and increased c-Fos expression in different cardiac tissues, similarly to the cardiac
changes observed after naloxone administration. These data suggest that some of the adaptive changes
that occur during morphine withdrawal syndrome are due to peripheral mechanisms, independent of
the CNS.

Nevertheless, it has been accepted that drugs of abuse induce considerable stress response, which
brings the heart to adaptive changes that can lead to different types of cardiac arrhythmias consequence of
an increased sympathetic activity. Thus, naloxone-induced withdrawal causes an increase in myocardial
normetanephrine (extraneuronal noradrenaline metabolite) and noradrenaline (NA) turnover, with an
increased activation of tyrosine hydroxylase (TH). The treatment with a CRF1 antagonist blocks these
changes and demonstrates that CRF/CRF1 receptor activation is involved in the cardiac sympathetic
activation seen after morphine withdrawal [43]. Heroin and other opioids can cause arrhythmias and
non-cardiac pulmonary edema and may reduce cardiac output [44]. In addition, it has been postulated
that heroin affects the sinus node and the surrounding nerves, ganglia, and atria myocardium, replacing
their tissues with amounts of fatty and/or fibrous tissues. These changes may result in a dysfunction of
the previously mentioned structures and, probably, to be the origin of different types of arrhythmias,
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which are partly responsible for the sudden cardiac death observed in heroin addicts [45]. Supporting this,
ethanol and 3,4-methylenedioxymethamphetamine co-administration and methamphetamine increased
NA turnover and TH expression and phosphorylation in the heart [46,47]. Not only chronic
methamphetamine administration, but also withdrawal activates the brain CRF system associated
with the heart sympathetic control and points towards a methamphetamine withdrawal-induced
activation of sympathetic pathways in the heart [48]. Together with the enhancement of sympathetic
activity, drugs of abuse and withdrawal induce an increased HSP-27 expression and phosphorylation.
This enhancement suggests that this chaperone protects the heart against the cardiac changes observed
after binge ethanol associated to methylenedioxymethamphetamine, methamphetamine and their
withdrawals. Probably, an action that is made possible through HSP-27 antiapoptotic and oxidative
stress-attenuating properties [46–48]. These investigations provide further insight into the specific
biological mechanisms underlying the devastating cardiovascular consequences of drugs of abuse.
Besides, they supply information about potential targets for the development of novel and effective
pharmacotherapies to reduce cardiovascular- and stress-related complications associated with drugs
of abuse.

4. Morphine Addiction and HSP-27

It is postulated that activation of µ-opioid receptor induces negative inotropic effects, together with
an increase in the action potential duration. Both effects contribute to decrease myocardial infarction
frequency [49–52]. However, there are very few studies about the effects of chronic activation of these
receptors. It has been determined that chronic morphine exposure induces cardioprotective effects [53]
and numerous neuroadaptive changes in cardiac noradrenergic systems. Thus, previous studies
have detected that chronic activation of the µ-opioid receptor modifies sympathetic activity in the
heart [54,55] and NA plasma levels [56,57]. In accordance with these studies, it has been demonstrated
that chronic morphine treatment produces a decrease in baseline mean arterial blood pressure and
heart rate. However, blocking the opioid receptor by naloxone in morphine addicted patients or in
morphine-dependent animals unmasks the effects of chronic morphine administration resulting in
increased sympathetic activity together with enhanced NA plasma concentrations [56], NA turnover [57]
and TH expression [58]. Morphine withdrawal increases mean arterial blood pressure (MAP) and
heart rate, but decreases NA levels in cardiac tissue, while normetanephrine and NA turnover
are increased. This increase in the extraneuronal NA metabolite, generated by catechol-O-methyl
transferase (COMT), occurs through an increase in the two isoforms of COMT: membrane (MB)-COMT
and soluble (S)-COMT, suggesting that both isoforms of COMT are implicated in the degradation
of NA [59]. Recently, it has been postulated that COMT has an important role inducing reward [60]
and the activity of this enzyme has been linked to the vulnerability to develop addiction [61,62].
In addition, morphine withdrawal causes increased phosphorylation (activation) of TH at Ser40 and
Ser31 suggesting that phosphorylation of TH may be an important modulator of TH activity during
naloxone induced morphine withdrawal and it might be directly involved in regulating NA turnover
in morphine withdrawn rats [43].

The toxic effects induced by opioids in vitro cause a severe stress situation that can trigger a
neuronal degeneration accompanied by an increased metabolism of dopamine. This increase would
be responsible for the production of oxygen free radicals, capable of causing oxidative stress [63].
Cells respond to this stress by increasing the synthesis of various cell defense proteins, HSP among
them [64]. Similarly, it is widely known that opioid withdrawal causes a severe stress situation
in the heart revealed by the increased metabolism of NA. This enhancement could induce oxygen
free radicals that inhibit the mitochondrial respiratory chain activity in the cardiomyocites and
subsequently, cell death. Despite all the damage inflicted to the cardiomyocites during morphine
withdrawal, they still can increase HSP-27 expression and phosphorylation, which could protect the
heart. Thus, morphine withdrawal syndrome increases HSP-27 expression and phosphorylation at Ser
15 and 82 [31,65]. The increase in the non-phosphorylated form of HSP-27 has a function as chaperone;
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therefore, the increase in HSP-27 expression would aim to repair proteins with a poor conformation and
to prevent oxidative stress [2] that would have been generated during the drug-induced stress situation.
Otherwise, HSP-27 phosphorylation leads to greater stability of the cytoskeleton, by inhibiting actin
polymerization [66], which has anti-apoptotic properties, preventing cell death [67]. The activation
(phosphorylation) of HSP-27 observed during withdrawal syndrome would enhance the protective
function initiated by HSP during chronic morphine administration. HSP-27 is phosphorylated by the
extracellular signal-regulated kinase at its residues of Ser 15, 78, and 82 [68,69]. Administration of
[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL-327), a selective
inhibitor of mitogen-activated extracellular protein kinase, decreases the HSP-27 phosphorylation
at Ser 15 and 82 and the HPA axis activation observed during morphine withdrawal [59,65].
In addition, administration of propranolol, which reduces ACTH plasma levels, also inhibits HSP-27
phosphorylation during the morphine withdrawal syndrome, suggesting that β-adrenergic cardiac
receptors blockade attenuates the cardioprotective role of HSP-27 [59]. In line with these results,
the administration of alprenolol, another β-adrenergic blocker, has been shown to attenuate the
cardioprotection induced during the ischemic preconditioning phase [31]. These results suggest that
blocking β-adrenergic receptors in stressful situations can abolish the endogenous cardioprotective
mechanisms that appear when baseline physiological conditions are altered. Besides, together with the
increased ACTH plasma concentrations mentioned, during morphine withdrawal there is an increase
in NA circulating levels [70] and in NA turnover in the heart [58]. This enhancement could support
the hypothesis that peripheral catecholamines augmented levels would be an important mechanism
involved in the excitatory effects produced by the precipitation of withdrawal syndrome on the HPA
axis. The reduction in ACTH plasma levels, additionally with the decrease in HSP-27 phosphorylation,
suggests that HSP-27 activation (phosphorylation) could be mediated by ACTH. In this sense, it has
been shown that stress induces an increase in HSP-70 expression in adrenal capsules [64,71], which was
abolished in hypophysectomized rats [71,72]. Furthermore, it has been observed a decrease in HSP-27
and HSP-70 expression in adrenocortical tumors with high levels of plasma cortisol, which lead to
ACTH inhibition [73], suggesting a possible link between ACTH and HSP-27.

Alternatively, morphine withdrawal induces an important stressful situation, which in turn
produces a destabilization of actin myofilament contributing to its degradation. HSP-27 stabilizes actin
filaments producing a translocation of HSP-27 to the Z bands [18,74]. This translocation seems to be
crucial for the stabilization of actin myofilaments, protecting its degradation [19]. During the morphine
withdrawal syndrome, there is an increase in cardiac troponin T (cTnT) expression together with a
decrease in cardiac troponin I (cTnI) expression, and a co-localization between cTnT and HSP-27 which
has been described by immunofluorescence [75]. These results indicate that HSP-27 could protect
cTnT from protease degradation and specifically from proteolysis by µ-calpain, whose expression is
increased during withdrawal symptoms. It is known that µ-calpain produces a proteolysis of troponins
to adjust muscle contractility to different stress conditions [76] (Figure 2). Troponins are responsible
for the interaction of actin with myosin and, therefore, for cardiac contraction. If troponins are
degraded by the increase in µ-calpain observed during morphine withdrawal, there will be a significant
alteration of the contraction-relaxation mechanisms. Although the mechanism by which HSP-27
interacts with cTnT is not well established, all the results commented above support the hypothesis
that HSP-27 avoided the degradation of cTnT by µ-calpain. HSP-27 also improved cardiac contractility
during morphine withdrawal. Moreover, it has been demonstrated that activation of calpain increases
cardiac injury during ischemia and reperfusion by sensitizing mitochondrial permeability transition
pore. This sensitization results in opening and impairing mitochondrial metabolism through damage
of complex I, while calpain inhibition decreases cardiac injury and improves heart function [77,78].
In addition, a recent study shows that post-treatment with the HSP-inducing compound geranylgeranyl
acetone increases HSP-27 expression and enhances recovery from tachypacing-induced contractile
dysfunction in cardiomyocytes [79].
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Figure 2. During stress situations, like drug addiction, HSP-27 functions as an excellent cardioprotective
protein due to its properties as a chaperone and also in the stabilization of actin filaments. In these
situations, HSP-27 is translocated to the Z bands in order to stabilize the actin myofilaments, protecting
its degradation. During morphine withdrawal, HSP-27 could protect cardiac troponin T (cTnT) from
µ-calpain degradation, whose expression is increased during withdrawal symptoms.

Several studies have postulated an important role for CRF/CRF1 receptors in anxiety and in somatic,
molecular and endocrine alterations evidenced during morphine withdrawal [80,81]. Despite the
extensive research supporting the role of CRF in drug addiction, it is undetermined in drug-induced
cardiac alterations. Provided that stress is a common risk factor for both addition and cardiovascular
disorders, investigating the neuronal pathways or substrates that mediate the stress response may
provide clues to understand the shared pathophysiology that links addiction and cardiac disorders.
Although under normal physiological conditions, CRF1 receptors have only a scant presence in the
heart [82–84], their levels are upregulated under cardiac disease [85].

Beyond CRF function as primary activators of the HSP system, CRF and its analogues also
have effects on the heart and vasculature by increasing the secretion of NA and adrenaline from the
sympathetic nervous system and adrenal medulla, respectively, and play a role within the heart as local
mediators [86]. CRF1 receptor is necessary for the functioning of the chromaffin cells of the adrenal
medulla. It has been shown that the destruction of this receptor leads to alterations in adrenaline
biosynthesis [74]. In addition, administration of CRF1 receptor antagonists decreases the enhancement
in plasma ACTH concentrations observed in rats with heart failure [87].

Regarding the role that CRF/CRF1 receptor pathway plays in the cardiac adaptive changes
observed during naloxone-precipitated morphine withdrawal, several studies have shown that
administration of CP-154,526 (CRF1 receptor antagonist) inhibited the increase of NA turnover
and the phosphorylation of TH in cardiac tissue. CP-154,526 also attenuated the higher activity of
hypothalamic-pituitary-adrenocortical axis (HPA), which is revealed by an enhancement of ACTH
and corticosterone plasma levels [43]. Moreover, the increase in ACTH plasma and corticosterone
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levels, MB-COMT, S-COMT, NA turnover, and HSP-27 expression and phosphorylation observed
after naloxone administration to morphine treated rats were significantly blocked in CRF1 receptor
TR mice. Altogether, these data demonstrate that CRF/CRF1 receptor activation may contribute to
stress-induced cardiovascular dysfunction after naloxone-precipitated morphine withdrawal. Finally,
these results suggest that CRF/CRF1 receptor pathways could contribute to cardiovascular disease
associated with opioid addiction, offering insight into potential therapy to treat this condition [88].

5. Conclusions and Future Perspective

In this review, we have focused mainly on the role of HSP-27 in the stressful situations that
surround the addictive processes and, more specifically, in opioid addiction. Addiction is a complex
process, where different intracellular messengers converge forming networks and interactions at
multiple levels. Cardiac adaptive changes observed in addicted subjects would be the result of the
coordinated actions of multiple cellular messengers that intervene, in turn, in multiple molecular
pathways. Thus, current studies show an increased HPA axis and sympathetic pathways activity
in cardiac tissues from morphine withdrawn mice. Nevertheless, addiction processes were able to
increase HSP-27 expression and phosphorylation, which has cardiac protective effects. These proteins
protect the heart, probably preventing cTnT degradation via reducing mu-calpain with cTnT interaction.
In conclusion, HSP-27 represents a potential therapeutic target to address the adverse consequences of
drug withdrawal, and further detailed studies on the HSP-27 may help to identify new targets to treat
opioid addiction.
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Abbreviations

ACTH adrenocorticotrophin hormone
CNS central nervous system
COMT catechol-O-methyl transferase
CRF corticotrophin releasing factor
cTnI cardiac troponin I
cTnT cardiac troponin T
ERK extracellular signal-regulated kinase
HPA hypothalamic-pituitary adrenal
HSP heat shock proteins
PKC protein kinase C
ROS reactive oxygen species
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