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Abstract: This study investigates whether baseline 18F-FDG PET radiomic features can predict sur-
vival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled
83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients
were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic
features were extracted from the PET images for each patient. Least absolute shrinkage and selection
operator regression were used to reduce the dimensionality within radiomic features. Cox propor-
tional hazards model was used to determine the prognostic factors for progression-free survival (PFS)
and overall survival (OS). A prognostic stratification model was built in the training cohort and vali-
dated in the validation cohort using Kaplan–Meier survival analysis. In the training cohort, run length
non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently as-
sociated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International
Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic
stratification model was devised based on both risk factors, which allowed identification of three
risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and
p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM,
is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic
stratification model that may enable tailored therapeutic strategies for patients with DLBCL.

Keywords: 18F-FDG; PET; radiomics; prognosis; diffuse large B-cell lymphoma

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma,
accounting for approximately one-third of non-Hodgkin lymphomas [1]. DLBCL is a
heterogeneous group of lymphomas with variable survival rates. The cure rate of DLBCL
has improved substantially due to advances in disease management, and the addition
of rituximab immunotherapy to conventional cyclophosphamide, hydroxydaunorubicin
(doxorubicin or epirubicin), oncovin (vincristine), and prednisolone chemotherapy (R-
CHOP) is effective in 60–70% of patients [2]. However, approximately 30–40% of patients
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still suffer relapse or refectory disease [3]. New prognostic factors for personalized risk-
adapted treatment is currently an unmet clinical need, and may improve the outcomes of
patients with DLBCL.

The International Prognostic Index (IPI) has been the basis for determining prog-
nosis for DLBLC in clinical practice for the past 20 years [4,5]. In addition to IPI, 18F-
fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography
(PET/CT) is a standard imaging modality for patients with DLBLC. 18F-FDG PET is highly
sensitive for detecting lymphoma, and plays a crucial role in disease staging and therapy
monitoring, which has allowed personalized therapeutic decision making [6]. The total
metabolic tumor volume (MTV) derived from baseline 18F-FDG PET has been shown
to be associated with survival outcomes in patients with DLBCL [7–12], and novel PET
imaging-derived biomarkers may further individualize the treatment of lymphoma.

Tumor heterogeneity is a pivotal prognostic factor in cancer progression, recurrence,
and therapeutic resistance [13]. Moreover, tumor heterogeneity plays an important role in
patient outcomes, and is correlated with tumor aggressiveness, metastasis, and molecular
profiles [14,15]. Radiomic analysis can be used to assess tumor heterogeneity, and may
assist with clinical outcome prognostication [16]. High-throughput radiomic features are
extracted from medical images, and can reveal complex mathematical patterns in the
spatial distribution of signal intensity values that are not observed visually. Radiomic
analysis promotes diagnostic, predictive, and prognostic power to facilitate better clinical
decision making [17]. Radiomic features have been widely explored to pursue personalized
medicine in various oncology studies [18–23]; however, there is limited evidence relating
to their role as prognostic factors in DLBCL [24,25].

Therefore, this study aimed to assess the prognostic value of radiomic features derived
from baseline 18F-FDG PET in terms of survival outcomes. Moreover, we investigated
the feasibility of combining clinical variables and radiomic features for the prognostic
stratification of patients with DLBCL.

2. Materials and Methods
2.1. Patient Population

This study was conducted according to the Declaration of Helsinki guidelines, and ap-
proved by the Institutional Review Board and Research Ethics Committee of Hualien Tzu
Chi Hospital, Buddhist Tzu Chi Medical Foundation (IRB108–251-B; 10 December 2019).
The need for informed consent was waived given the retrospective nature of the study.
Between September 2004 and June 2019, 83 patients with a pathological diagnosis of DLBCL
who underwent pre-treatment 18F-FDG PET/CT were retrospectively enrolled. All pa-
tients received either R-CHOP chemotherapy or R-CVP (rituximab, cyclophosphamide,
vincristine, prednisone) chemotherapy, or rituximab monotherapy in patients with a low tu-
mor burden. Electronic charts were carefully reviewed for each patient, and data regarding
patient demographics, disease characteristics, clinical course, therapy modalities, and pa-
tient outcomes were collected. All patients underwent a complete medical history, physical
examination, laboratory tests, bone marrow aspiration, CT scan, and 18F-FDG PET/CT.
The patient’s age at disease onset, Ann Arbor stage, Eastern Cooperative Oncology Group
performance status, lactate dehydrogenase (LDH) level, and extranodal involvement were
recorded for calculation of the IPI score [5]. Bulky disease was defined as a nodal mass
larger than 10 cm in diameter.

2.2. Patient Follow-Up Evaluation

Initial treatment of rituximab-based chemotherapy with or without involved-field
radiotherapy was conducted to the patients with DLBCL under the Clinical Practice Guide-
lines of the National Comprehensive Cancer Network in Oncology. Disease status was
evaluated by CT or 18F-FDG PET/CT scan following treatment. Follow-up assessment was
performed every 3 months for the first 2 years, and 6 to 12 months thereafter. The enrolled
patients were followed up until disease progression or death, and these cases were counted
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as an event. Progression-free survival (PFS) was defined as the time from the date of
diagnosis to the date of the first relapse, progression, or death from any cause. Overall
survival (OS) was defined as the time from diagnosis until death from any cause [26].
Patients who did not suffer an event were censored at the date of the last known follow-up.

2.3. 18F-FDG PET/CT Scan

Patients fasted for at least 4 h before the examination and had blood glucose levels
less than 150 mg/dL. Patients were injected intravenously with 5 MBq/kg of 18F-FDG,
and PET/CT scans were performed 45 min after administration using a GE Discovery
ST scanner (GE Healthcare, Milwaukee, WI, USA). PET images were acquired from the
midthigh to the vertex in a static 3-dimensional mode. A CT scan without intravenous
contrast medium enhancement was performed immediately prior to the PET imaging for
attenuation correction. PET images were reconstructed with an ordered-subset expectation
maximization algorithm (2 iterations, 21 subsets, and a 2.14-mm full width at half maximum
Gaussian post-filter). The reconstructed PET image has a matrix size of 128 × 128, a pixel
size of 5.47 × 5.47 mm, and a slice thickness of 3.27 mm.

2.4. Feature Extraction and Selection
18F-FDG PET images were interpreted by an expert nuclear medicine physician.

To avoid interobserver variations, all images were analyzed by the same reviewer us-
ing OsiriX software (Pixmeo, Geneva, Switzerland) [27]. The results were confirmed by the
other experienced nuclear medicine physician. 18F-FDG-avid lesions were segmented on
PET images by applying the region-growing algorithm with a standardized uptake value
(SUV) threshold above 2.5 for target delineation [28]. The SUV-based volumes of interest
were used to compute quantitative radiomic features in PET images.

The radiomic features included 19 first-order features and 61 textural features. The first-
order parameters were calculated on the basis of SUV statistics. The textural features were
computed from a gray level co-occurrence matrix, gray level run length matrix (GLRLM),
gray level size zone matrix (GLSZM), and neighboring gray tone difference matrix using
a fixed bin width of 0.25. A total of 80 radiomic features (Supplementary Table S1) were
extracted from PET images using the Pyradiomics open-source software package version
2.2.0 (Harvard Medical School, Boston, MA, USA) [29]. Radiomic features calculated by
this package complies with the feature definitions described by the Imaging Biomarker
Standardization Initiative (IBSI) [30,31].

To reduce dimensionality within the radiomic features, reliable features were chosen
with low sensitivity to the intraclass correlation coefficient (ICC) following the literature
report [32]. Subsequently, the least absolute shrinkage and selection operator (LASSO)
regression algorithm [33] was employed for the chosen features. A five-fold cross-validation
scheme was applied to tune the parameters of Lambda. The optimal Lambda value was
identified by the minimum cross-validated criterion and the minimum criterion within
one standard error. Using this method, the regression coefficients of irrelevant features
were regularized to zero, and the remaining nonzero coefficients of the radiomic features
were selected.

2.5. Statistical Analysis

The primary endpoints of this study were PFS and OS. Clinical variables and image
features from the radiomic analysis were tested as potential prognostic factors. Two inde-
pendent datasets were needed to build and validate the model. The data of 83 patients
were randomly divided into two cohorts: 58 patients (70%) to the training dataset, and the
remaining 25 patients (30%) to the validation dataset. Chi-square tests were used to
compare the categorical variables between the training and validation cohorts. Receiver
operating characteristic (ROC) curves were used to define the optimal cut-off values of the
radiomic features by maximizing the sensitivity and specificity based on the Youden index.
Cox proportional hazards regression models were used to identify the prognostic factors of
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PFS and OS in the training dataset. The statistically significant variables in the univariate
Cox analysis were included in the stepwise multivariate Cox regression models. In both
training and validation datasets, the survival curve was plotted using the Kaplan–Meier
method, and the survival difference between the subgroups was assessed using a log-rank
test. All statistical tests were two-sided, with a significance level of 0.05. Statistical analyses
were performed using MedCalc statistical software version 19.4.1 (MedCalc Software, Ostend,
Belgium) and R open-source statistical software version 3.5.2 (R Foundation, Vienna, Austria).

3. Results
3.1. Patient Characteristics

A total of 83 patients met the criteria for enrolment in the study; among whom,
65 patients were treated with the R-CHOP chemotherapy regimen, 13 with R-CVP, and 5
with rituximab monotherapy. In addition, 18 patients received involved-field radiotherapy.
The median follow-up period was 41.7 months; at the time of the analysis, 35 patients
(42%) suffered disease relapse or progression at a median of 9.8 months after diagnosis,
and 29 patients (35%) died of the disease at a median of 10.7 months. The 5-year PFS rate
was 52.3%, and the 5-year OS rate was 60.3% in the entire study population. The clinical
characteristics of the patients are outlined in Table 1. No significant differences were found
between the training and validation datasets (p = 0.111–0.755).

Table 1. Clinical Characteristics of Patients in the Training and Validation Cohorts.

Characteristic Overall (n = 83) Training (n = 58) Validation (n = 25) p-Value

Sex
Female 32 (39%) 23 (40%) 9 (36%)

0.755Male 51 (61%) 35 (60%) 16 (64%)

Age, median (range),
years 61 (19–86) 61 (19-86) 59 (19–81) 0.550

Ann Arbor stage
Early (I–II) 33 (40%) 25 (43%) 8 (32%)

0.345Advanced (III–IV) 50 (60%) 33 (57%) 17 (68%)

ECOG performance
status
0/1 59 (71%) 41 (71%) 18 (72%)

0.9042–4 24 (29%) 17 (29%) 7 (28%)

LDH
Normal 23 (28%) 17 (29%) 6 (24%)

0.622Elevated (>271 U/L) 60 (72%) 41 (71%) 19 (76%)

Extranodal sites
No 49 (59%) 35 (60%) 14 (56%)

0.713Yes 34 (41%) 23 (40%) 11 (44%)

IPI score
Low-risk (0–2) 41 (49%) 32 (55%) 9 (36%)

0.111High-risk (3–5) 42 (51%) 26 (45%) 16 (64%)

Bulky disease
(>10 cm) 9 (11%) 7 (12%) 2 (11%) 0.587

R-CHOP 65 (78%) 47 (81%) 18 (72%) 0.362

Radiotherapy 18 (22%) 12 (21%) 6 (24%) 0.739
ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; IPI, International Prognostic Index;
R-CHOP, rituximab-cyclophosphamide, hydroxydaunorubicin, oncovin, prednisolone chemotherapy.

3.2. Feature Selection in the Training Cohort

The twelve radiomic features (Supplementary Table S2) with low sensitivity to the
ICC (<1.10) were chosen according to the literature report [32]. These reliable features were
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chosen for further LASSO analysis. Based on the LASSO results (Supplementary Figure S1),
MTV, gray level non-uniformity (GLN), and run length non-uniformity (RLN) both from
GLRLM with nonzero regression coefficients were selected as potential prognostic factors
for PFS and OS. From ROC curves, the cut-off value of MTV was 137 cm3, GLNGLRLM
was 68, and RLNGLRLM was 1449. These cut-off values were used to stratify patients into
those with good or poor survival outcomes.

3.3. Survival Analyses in the Training Cohort

The results of univariate and multivariate Cox regression analyses for the clinical
variables and PET parameters are presented in Tables 2 and 3, respectively. In the univari-
ate analysis, the disease stage, LDH, IPI score, bulky disease of clinical variables, MTV,
GLNGLRLM, and RLNGLRLM of radiomic features were associated with PFS. Meanwhile,
LDH, IPI, MTV, GLNGLRLM, and RLNGLRLM were related to OS. These variables were
entered into the multivariate Cox regression model. After multivariate analysis, RLNGLRLM
remained a prognostic factor for PFS, whereas the IPI and RLNGLRLM maintained their
prognostic significance for OS.

Table 2. Univariate and Multivariate Analyses for Prognostic Factors of Progression-free Survival.

Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Clinical variables

Age (>60 years) 2.012
(0.876–4.618) 0.098

Female vs. Male 1.178
(0.515–2.695) 0.697

Stage (I–II vs. III–IV) 2.618
(1.035–6.621) 0.042 * 0.980

ECOG (0/1 vs. 2–4) 1.931
(0.819–4.553) 0.132

LDH (≤271 vs. >271 U/L) 3.151
(1.248–7.958) 0.015 * 0.748

Extranodal sites (no vs. yes) 1.725
(0.774–3.845) 0.182

IPI score (0–2 vs. 3–5) 3.248
(1.386–7.608) 0.006 * 0.224

Bulky disease (>10 cm) 3.179
(1.147–8.812) 0.026 * 0.282

PET parameters

MTV (>137 cm3)
13.64

(1.837–101.2) 0.011 * 0.169

GLNGLRLM (>68) 15.42
(2.078–114.3) 0.007 * 0.155

RLNGLRLM (>1449) 15.66
(2.107–116.5) 0.007 * 15.66

(2.107–116.5) 0.007 *

HR, hazard ratio; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydro-
genase; IPI, International Prognostic Index; MTV, metabolic tumor volume; GLN, gray level non-uniformity;
GLRLM, gray level run length matrix; RLN, run length non-uniformity; *, statistically significant.

Kaplan–Meier survival analysis confirmed that the IPI score and RLNGLRLM were
predictive factors for both PFS and OS (Figure 1). The 5-year estimate of PFS was 35.8% in
the high-risk IPI group compared to 69.8% in the low-risk IPI group. Patients with high-risk
IPI scores had a 5-year OS of 35.5%, while patients with low-risk IPI scores had a 5-year
OS of 74.6%. The high RLNGLRLM patients had more aggressive disease, a greater risk of
relapse or progression, and a lower survival rate compared to patients with low RLNGLRLM.
Patients with a high RLNGLRLM had a 5-year PFS of 37.2%, whereas patients with a low
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RLNGLRLM had a 5-year PFS of 91.7%. Moreover, patients with a high RLNGLRLM had a
5-year OS of 41.1%, whereas patients with a low RLNGLRLM had a 5-year OS of 91.7%.

Table 3. Univariate and Multivariate Analyses for Prognostic Factors of Overall Survival.

Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Clinical variables

Age (>60 years) 2.301
(0.958–5.520) 0.062

Female vs. Male 1.286
(0.538–3.072) 0.571

Stage (I–II vs. III–IV) 2.658
(0.974–7.253) 0.056

ECOG (0/1 vs. 2–4) 2.278
(0.944–5.495) 0.066

LDH (≤271 vs. >271 U/L) 3.270
(1.205–8.875) 0.020 * 0.620

Extranodal sites (no vs. yes) 2.137
(0.921–4.957) 0.077

IPI score (0–2 vs. 3–5) 4.393
(1.714–11.26) 0.002 * 2.626

(1.001–6.885) 0.049 *

Bulky disease (>10 cm) 1.819
(0.611–5.408) 0.282

PET parameters

MTV (>137 cm3)
11.45

(1.538–85.19) 0.017 * 0.343

GLNGLRLM (>68) 13.06
(1.755–97.20) 0.012 * 0.215

RLNGLRLM (>1449) 13.19
(1.771–98.26) 0.011 * 8.636

(1.104–67.57) 0.040 *

HR, hazard ratio; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydro-
genase; IPI, International Prognostic Index; MTV, metabolic tumor volume; GLN, gray level non-uniformity;
GLRLM, gray level run length matrix; RLN, run length non-uniformity; *, statistically significant.
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3.4. Prognostic Model Development and Validation

A prognostic stratification model was built based on the independent risk factors
presented in the multivariate Cox regression analysis for OS. The risk factors included
high-risk IPI scores of the clinical variable and high RLNGLRLM of the radiomic feature.
A combination of the two factors, the presence or absence of each risk factor was given
a score of 1 or 0, resulting in scores from 0 to 2. All patients were stratified into three
risk groups: group I, with a score of 0 (none of the risk factors); group II, with a score
of 1 (one risk factors); and group III, with a score of 2 (two risk factors). In the training
dataset, Kaplan–Meier analyses of PFS and OS demonstrated the ability of the prognostic
stratification model (Figure 2a,b). Survival curves revealed that the three risk groups were
significantly different with regard to PFS and OS. The 5-year PFS of patients in groups
I to III were 90.0%, 54.2%, 30.6% (p < 0.001), respectively, and the 5-year OS were 90.0%,
64.7.0%, 30.3% (p < 0.001), respectively.
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In the validation dataset, survival curves generated through Kaplan–Meier analysis
indicated that the prognostic stratification model identified three risk groups for sur-
vival outcomes (Figure 2c,d). The patients in group I had significantly higher 5-year PFS
(100% vs. 43.3% vs. 0%, p < 0.001) and OS (100% vs. 67.5% vs. 33.3%, p = 0.020) rates than
those in groups II and III.

4. Discussion

The present study investigated the use of radiomic analysis of 18F-FDG PET for pre-
dicting survival outcomes in patients with DLBCL. Our results demonstrate that baseline
18F-FDG PET radiomics have prognostic value, and that RLNGLRLM is an independent
prognostic factor for both PFS and OS. The RLNGLRLM provides a way of featuring for
tumor heterogeneity, driven by the genomic diversity that enables the tumor to evolve and
adapt to anticancer treatments [15,34]. Therefore, it can be reasoned that the assessment
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of tumor heterogeneity allows us to anticipate patient outcomes. Moreover, a prognostic
stratification model was devised to identify the risk groups of patients based on integrating
clinical and imaging prognostic factors. The proposed model showed the complemen-
tary roles of combining clinical information with tumor heterogeneity and allowed the
stratification of three risk groups according to survival outcomes in patients with DLBCL.

Many PET radiomic features are currently under investigational use, and different
studies have reported different radiomic features for predicting the survival outcome of
lymphoma [35–39]. To keep the data dimensionally low to avoid overfitting, only 12 ra-
diomic features with low ICC sensitivity were evaluated for clinical endpoints in this study.
The cohort was split into a training dataset (70%) and an internal validation dataset (30%).
A LASSO algorithm was further used for feature selection in order to achieve the best
accuracy for PFS and OS prognostication. The radiomic feature identified in the study,
RLNGLRLM, was a valuable imaging biomarker after multivariable analyses. RLNGLRLM
estimates the similarity of run lengths throughout the image, where a lower value indi-
cates higher homogeneity. A higher RLNGLRLM was associated with a worse prognosis,
suggesting that the measurement of tumor heterogeneity of 18F-FDG PET distribution is an
essential biomarker in patients with DLBCL.

The literature on molecular imaging radiomics for DLBCL is limited. A few studies
have been conducted to investigate the usefulness of PET radiomic features in determining
the survival in DLBCL. Parvez et al. [38] found that GLNGLSZM correlated with disease-
free survival, and that kurtosis correlated with OS. Moreover, Aide et al. [35,40] found
that skewness of skeletal heterogeneity was a prognostic factor for PFS, and long-zone
high gray level emphasis from GLSZM was a prognostic parameter for 2-year event-free
survival. Recently, Cottereau et al. [41] reported that the radiomic feature characterizing
lesion dissemination was associated with PFS and OS. Our findings are in line with those
of studies indicating that the PET-derived radiomic features are useful for patient outcome
prognostication in DLBCL. Previous studies have indicated that MTV can be used to
determine the prognosis of patients with DLBCL [7–12]. Our results are not in contradiction
with those of the studies. In univariate analysis, MTV demonstrated prognostic significance;
however, in multivariate analysis, MTV did not correlate with PFS and OS, presumably due
to the small sample size. In lymphoma, few reports have indicated that the performance of
PET metabolic parameters for survival prognostication is poor compared to that of PET
radiomic features [42,43]. On the contrary, Wang et al. [39] reported that radiomics are
not superior to traditional imaging parameters. Notwithstanding, our data suggest that
features of tumor heterogeneity may serve as a complementary indicator of MTV. Further
external validation is required in a larger cohort population to validate our findings.

Tumor heterogeneity has the potential to impact the prognosis of patients with DL-
BCL [44]. Lymphoma is a system malignancy, which lacks a primary tumor in the majority
of cases. A biopsy is generally performed for a single lesion site in routine clinical practice.
Thus, it might be more relevant to explore the tumor heterogeneity across the entire tumor
volume than with a single site biopsy in DLBCL. In this study, a tumor heterogeneity feature
from the entire tumor volume was combined with the clinical IPI to construct a prognostic
stratification model. Our findings highlight the benefit of an integrated approach that in-
cludes IPI and radiomics for evaluating patients with DLBCL at initial diagnosis. Currently,
a qualitative assessment of response using 18F-FDG PET has been implemented into the
clinical management of DLBCL. However, patients with DLBCL failed to achieve signifi-
cant survival improvement after the qualitative 18F-FDG PET response directed-treatment
strategy [45]. Radiomics provides a more sophisticated quantitative measure of 18F-FDG
PET. We further combined radiomics with the clinical IPI system into a survival prediction
model. Because radiomics portrays tumor heterogeneity, which is different from the clinical
information provided by the IPI score, these two features may have complementary roles.
A combination of the two risk factors may more comprehensively depict the survival risk
of DLBCL. Future clinical trials are warranted to test the ability of our proposed model to
guide tailored treatment strategies.
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Despite the usefulness of radiomics, it does have certain limitations. First, radiomics
are extracted in terms of MTV, and the method of MTV measurement is inconsistent among
different working groups. A recent report [28] indicated that different methods predicted
prognosis, but those with a SUV ≥ 2.5 had the best interobserver agreement and were
easiest to apply in DLBCL; this was the method we selected in the current study. Moreover,
the threshold used to divide patients into high- and low-risk groups depends on the
method of MTV measurement. Thus, setting of common criteria for standardization of
the MTV calculation is warranted [46]. Second, the SUV discretization step in computing
textural features can influence repeatability [47]. In our work, a reliable discretization
using a fixed size of bins was adopted, which was shown to be more appropriate in
clinical cases [48]. However, the optimal bin size value could not be identified (i.e., the
extraction of reliable radiomic features has not been thoroughly investigated). Further
investigation of the optimal size of bins for survival prognostication should be considered.
Third, the reliability of radiomic features and their ability to predict clinical outcomes
is highly dependent on the choice of feature extraction platform [49]. Future radiomic
studies should still ensure platforms are IBSI-compliant, as was the platform that we
adopted in the current study. Finally, radiomic features can be sensitive to the imaging
acquisition and reconstruction settings [50]. Therefore, a radiomic-based model might
not be directly applied to different imaging centers, which limits its usefulness in clinical
practice. Further research is necessary to validate our findings using a post-reconstruction
harmonization [51] approach in multicenter trials.

We acknowledge that our research is exploratory and that there are several limitations.
Like most radiomic studies, selection bias could not be avoided due to the retrospective
nature of the study. Furthermore, since our analysis was based on a small number of
patients, the lack of statistically significant differences should be interpreted with caution,
as a statistical difference may be evident with a larger population. Besides, the interobserver
variability could be affected by different image readers. In addition, current molecular
genetic studies have identified DLBCL subtypes with less favorable survival outcomes,
such as the activated B-cell subtype or MYC oncogene rearrangement [11,52]. However,
only 12 patients in our cohort underwent subtyping. Whether the radiomic features
derived from 18F-FDG PET are associated with the different subtypes of DLBCL requires
further investigation. Finally, the rituximab-based regimens and the radiotherapy doses
varied throughout the study. This study demonstrated that the identified radiomic feature
has prognostic value in DLBCL, but the underlying biological meaning remains to be
further explored in larger, multi-institutional cohorts before they can be applied to clinical
decision making.

5. Conclusions

Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM,
serves as an independent prognostic factor for survival outcomes. Furthermore, a prognos-
tic stratification model combining the IPI and RLNGLRLM can be useful for risk stratification
of patients with DLBCL. Our findings may be clinically helpful in guiding personalized
therapeutic strategies.
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