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A generalized model for combining 
dependent sNp-level summary 
statistics and its extensions to 
statistics of other levels
Gulnara R. svishcheva1,2

Here I propose a fundamentally new flexible model to reveal the association between a trait and a set 
of genetic variants in a genomic region/gene. this model was developed for the situation when original 
individual-level phenotype and genotype data are not available, but the researcher possesses the 
results of statistical analyses conducted on these data (namely, SNP-level summary Z score statistics 
and sNp-by-sNp correlations). the new model was analytically derived from the classical multiple 
linear regression model applied for the region-based association analysis of individual-level phenotype 
and genotype data by using the linear compression of data, where the SNP-by-SNP correlations are 
among the explanatory variables, and the summary Z score statistics are categorized as the response 
variables. I analytically show that the regional association analysis methods developed within the 
framework of the classical multiple linear regression model with additive effects of genetic variants can 
be reformulated in terms of the new model without the loss of information. the results obtained from 
the regional association analysis utilizing the classical model and those derived using the proposed 
model are identical when sNp-by-sNp correlations and sNp-level statistics are estimated from the 
same genetic data.

Over the past ten years, significant progress has been made in understanding human genetic variation and 
developing DNA reading technologies. Genome-wide association studies (GWAS) have emerged as a powerful 
tool for investigating the genetic architecture of complex traits. With the GWAS approach, a number of loci 
involved in the control of various complex traits, including diseases, have been identified. It turned out that most 
of the genetic variants associated with complex traits are located in noncoding regions of the genome, and their 
potential effects are associated with changes in the regulatory functions of the genome1. Unfortunately, the pol-
ymorphism of the loci identified to date can explain only a small fraction of the genetic variability of traits. This 
situation is typical of almost all complex traits2 and therefore the ‘missing heritability problem’ formulated several 
years ago3–5 remains the central issue of genetics.

One approach to finding missing heritability is by identifying rare genetic variants. Rare genetic variants with rel-
atively large and therefore potentially recognizable effects are expected to contribute to almost all complex traits4,6–8. 
It is likely that these variants are located in the protein-coding regions and change the structure and function of the 
corresponding proteins. Recently, thanks to two scientific advances, it has become possible to identify rare genetic 
variants. One is large-scale exome sequencing, which allowed imputing a large number of missing genotypes using 
the reference data from ‘HapMap’9, ‘1000 Genomes’10, ‘HRC’11 and other projects. The other is а series of powerful 
statistical methods developed for regional association analysis (RAA) (for example8,12–16). The general principle of 
these methods is to simultaneously analyze all the rare genetic variants in a gene or a genome region (e.g. these 
belonging to a certain metabolic pathway). The family methods for RAA address a number of problems related to 
the low frequency of individual variants, multiple testing and interpretation of the results obtained, and increase the 
power of analysis17.

For analysis of regional associations, several model-based methods that use different regression models of trait 
inheritance have been developed. The main difference between these models is the assumption concerning the 
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type of genotypic effects (fixed or random effects). In fixed-effects models, the immediate parameters of interest 
are genetic effect sizes. Models as these are used in the classical method of complete multiple linear regression 
analysis and its variants, when the genetic effect sizes or their specific linear combinations are estimated. Examples 
are as follows: collapsing methods12,18–20, principal component analysis methods21 and functional data analysis 
methods22–26. The random-effects models are based on the principle of decomposition of a total trait variance into 
components. These methods compare the genotypic and phenotypic similarities of individuals, and the parame-
ter of interest is the component of trait’s variance that is explained by the genomic region. Under random-effects 
models, the kernel smoothing technique has proved to be successful27–30. This technique is based on the forma-
tion of a kernel matrix using the kernel smoothing density functions to measure the genetic similarity between 
individuals in the region. Methods exist that combine collapsing and variance components approaches31. In these 
methods, the parameters of interest are both the variance and the mean of the effect sizes. All the above RAA 
methods work with genotypic and phenotypic data measured for each individual (i.e. individual-level data).

To improve the accuracy of the analysis of specific traits, the results obtained from different samples can 
be combined using meta-analysis methods applied by various consortiums (for example, the International 
Consortium for Blood Pressure Genome-Wide Association Studies32. The Global Lipids Genetics Consortium 
genome-wide association studies33 and Genetics of Personality Consortium34). This makes it possible to increase 
the number of individuals involved in the analysis by up to several hundreds of thousands (see, for example35). 
Many effective approaches have been reported for gene-level meta-analysis of rare variants. The most popu-
lar ones are those based on burden12,19, SKAT and SKAT-O36,37 and also FLM tests38–40. It has been shown that 
meta-analysis significantly increases the power of GWAS41,42.

Recently, due to an increased emphasis on reproducibility and data sharing promoted by some journals and 
funding agencies, the SNP-level summary statistics obtained from GWAS have become increasingly available. 
Meta-analysis results, which are freely accessible, are usually presented with the size and significance of the effect 
of each genetic variant. Several methods have been developed to perform the RAA using summary statistics. 
These methods manipulate the p-values calculated for genetic variants within the region (Fisher method, p-value 
minimum method and others43,44). They have low power because the size and direction of the effect of each 
genetic variant are not taken into account. More powerful RAA methods using summary statistics have been 
developed that reproduce complete multiple linear regression (MLR) method41, collapsing (Burden) and variance 
components methods (SKAT and SKAT-O)36. For these methods, region-based statistics have been reformulated 
to use SNP-by-SNP correlations and SNP-level Z score statistics as input data instead original genotype and phe-
notype data.

However, for the inheritance of traits, regression models using summary statistics have not been developed, 
although such models can allow us to define dependencies between SNP-by-SNP correlations and SNP-level Z 
score statistics, to see how more adequately our theoretical assumptions can be implemented and give impetus to 
the development of new more powerful RAA methods. Moreover, it has not been shown that methods based on 
the principal components analysis (PCA) and functional linear models (FLM) can be reformatted for summary 
statistics.

Here I derive a common generalized model for combining dependent SNP-level summary statistics to per-
form a region-based association analysis between a single trait and a set of genetic variants of a genomic region. 
As data, the model utilises not only the summary SNP-level GWAS results for the trait of interest but also the 
SNP-by-SNP correlations estimated from the original genotype data or reference sample data. I analytically show 
that RAA methods developed for the classical linear regression model with additive effects of genetic variants can 
be reformulated within the new model without loss of information. The results (the p-values) of regional associ-
ation analysis obtained using individual-level data and the proposed models are completely identical, when cor-
relations between genetic variants and summary statistics are calculated from the same genetic data. Moreover, 
I analytically show that the proposed model can be extended to combine summary statistics obtained for other 
objects (genomic regions or traits) but using the same non-object-related data.

Methods
A single-trait model for individual phenotypic and genotypic data. On real data. For simplic-
ity, suppose I have a sample of n unrelated individuals. For each individual, the phenotype and genotypes of m 
genetic variants (SNPs) in a genomic region are measured.

Consider the classical multiple linear regression model with additive effects, where the genotypes of the 
genetic variants are explanatory variables, and the phenotype is a response variable. This model can be written in 
a generalized form for the most popular model-based RAA methods as

βμ ξ= + + .y e GWC (1)n n

Here y is the (n × 1) known vector of continuous trait values; G is the (n × m) known matrix of SNP genotypes; en 
is the (n × 1) vector of n units; μ is the scalar intercept; W is the (m × m) diagonal matrix of weights assigned to 
SNPs (see Box 1); С is the (m × k) method-dependent matrix operator of the linear transformation of the 
weighted genotypes (see Box 2); ξn is the (n × 1) vector of random regression residuals, ξn is caused by an environ-
mental factor and is supposed to be multi-normally distributed with a zero mean vector and the covariance 
matrix σ Iy n

2 , where σy
2 is the trait variance, and In is the identity matrix of order n; finally, β is the (k × 1) vector of 

regression coefficients measuring the effects of the WС-transformed genotypes on the trait.
It is standardly assumed that the trait y in Model (1) follows a multi-normal distribution with a mean vector 

E(y) and a covariance matrix Cov(y) determined in accordance with the type of genotype effects (fixed or random 
effects). For the fixed-effects (FE) models, βμ= +E y e GWC( ) n  and σ=Cov y I( ) ,y n

2  where β is the vector of 
parameters of interest, concerning which the null and alternative hypotheses are formulated (H0: β = 0 against 
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H1: β ≠ 0). For the random-effects (RE) models, E(y) = enμ and τ σ= +Cov y GWCC WG I( ) ( ) ,2 T T
y n
2  where τ2 is 

the parameter of interest known as the trait variance component explained by the genomic region (H0: τ2 = 0 
against H1: τ2 > 0).

Box 1. Weights for SNPs. There are several weighting techniques. Since it is considered that rarer SNPs are more 
likely as causal variants with larger effect sizes, the SNP weights can be assigned inversely to their minor allelic fre-
quency. One of such weighting techniques is simple thresholding, which filters genetic variants using the c threshold:

=





>
≤

w MAF
if MAF c
if MAF c

( )
1, ,
0, ,i

i

i

where w() is the weight function and MAFi is the minor allelic frequency of the ith genetic variant.
Later, a continuous weighting technique was developed for kernel methods and it has become successful not 

only for the RE-model-based methods, but also for the FE-model-based methods. To calculate weights, the flexi-
ble beta density function has been proposed29,30:

=
− −

w MAF MAF MAF
B a b

( )
( , )

,i
i
a

i
b1 1

where B(a, b) is the beta function with the pre-specified parameters a and b.
There is one more weighting technique using biologically functional information about genetic variants27,28,37. 

Using tools (for example, as PolyPhen2, SIFT, or RegulomeDB) the user can attempt to make a computational 
prediction of the functional impact of genetic variants and assign weights as the a priori probabilities of the func-
tionality of the genetic variants.

Box 2. Linear transformation of genotypes. The linearly transforming operator C can be defined in vari-
ous ways depending on the RAA method used. In general, C has some constraints. For the FE-model, to avoid 
over-parameterization and multicollinearity, C must be a full rank matrix with a limited size (m × k) under con-
dition that n ≥ m ≥ k. Moreover, to improve the model’s performance, it is advisable that the columns of C be 
orthogonal vectors (i.e. СTC = Ik). For the RE-model, C must be such that СTC is able to be interpreted as a corre-
lation matrix for effects β.

Here I consider several examples for the most popular RAA methods. In the Burden method, C is an (m × 1) 
vector of units. It provides summation across the (weighted) genotypes of all the genetic variants into one vector. 
In FLM-based methods, C is an (m × k) matrix of values of k pre-specified basis functions (belonging to, for 
example, the Fourier basis or the B-spline basis) at m relative SNP positions and serves for functional (continu-
ous) smoothing of the weighted genotypes. In PCA-based methods, C is given as an (m × k) incomplete (trun-
cated) matrix of eigenvectors obtained from the spectral decomposition of the covariance matrix of the weighted 
genotypes. C serves to control the number of first principal components (k) involved in the analysis to cover 
80–90% of total variance observed in the genomic region. In SKAT with a linear kernel, C is an identity matrix 
(k = m), and in SKAT-O with a linear kernel, C is a square root matrix of the matrix of correlations between 
genetic effects. It was introduced by Lee et al.37 as ρ ρ= + −CC e e I(1 ) ,T

m m
T

m  where ρ is a pairwise correlation 
among the genetic effect coefficients, em is the vector of units and Im is the identity matrix of the m-th order.

On standardized data. For further notational convenience, I rewrite Model (1) into the standardized data format 
in accordance with H0, since GWAS SNP-level Z score statistics are calculated via the standardized (centered and 
scaled) y and G. Centering can be achieved through pre-multiplying all the terms of Model (1) by an (n × n) pro-
jection matrix, −In

e e
n

n n
T

, while scaling can be performed by introducing a diagonal matrix S with diagonal ele-
ments =

σ

σ
s ,ii

y

gi

 where σgi is the genotypic standard deviation of the ith variant (see Box 3). In this way, I obtain a 

new regression equation

β ξ= + .−y GS WC (2)n
1

Here y , G  and ξn correspond to the standardized y, G and ξn in Model (1).
Note that the reformatting of Model (1) has no effect on W, С, β and, as will be shown below, on the 

region-based test statistic, since centering the data is reflected only in the intercept μ (μ = 0), and scaling the data 
leads to only the formation of the matrix S.

According to Model (2), the parameters of the distribution of y  become β= −E y GS WC( ) 1  and =Cov y I( ) n 
for fixed effects β, and =E y( ) 0n and τ= +− −Cov y GS WCC WS G I( ) ( )T T

n
2 1 1  for random effects β.

Box 3. The matrix S represents an (m × m) matrix obtained by diagonalization of the vector of genotypic 
standard deviations divided by the standard deviation of the trait. The matrix S is caused by the scaling of pheno-
types and genotypes and allows the regression coefficients to remain the same as in Model (1). Diagonal elements 
of S can be expressed via GWAS SNP-level beta standard errors, se (βGWAS):

σ

σ
β= = ( )s nse ,ii

y

g
GWAS

i

i

where the index i indicates the ith variant.
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single-trait tests using individual-level phenotype and genotype data. In the FE-model-based 
methods, tests based on the F distribution test statistics are often used:

=
− −

−
.F n r

r
R

R
1

1 (3)

2

2

Statistic (3) depends on the sample size (n), the maximum number of independent columns of the predictor 
matrix =− −GS WC r rank GS WC( ( ))1 1  and the coefficient of determination (R2) calculated as

β βξ ξ= − = − − −− −R
n

y y
n n

y GS WC y GS WC1 1 1 1 ( ) ( ), (4)
T T T2 1 1

where the least square estimate of β maximizing R2 is .− − − −C WS G GS WC C WS G y( )T T T T1 1 1 1

The substitution of the estimate of β into (4) gives:

= .− − − − −R
n

y GS WC C WS G GS WC C WS G y1 ( ) (5)
T T T T T2 1 1 1 1 1

It followed that to avoid model over-parameterization and matrix non-invertibility problems in the FE-model, 
the condition k ≤ m ≤ n must be fulfilled, and the matrix product − −C WS G GS WCT T1 1  in Exp. (5) should be a full 
rank matrix. However, if this is not the case, then additional regularizing procedures, which will not be consid-
ered here, are needed to achieve the invertibility of the matrix.

In the RE-model-based methods, tests based on a score test statistic, Q, are commonly applied:

=Q
n

y Ky1 , (6)
T

where K is an (n × n) linear kernel matrix determined as − −GS WCC WS G
n

T T1 1 1 . The matrix K expresses the 
between-individual genetic similarity caused by the genomic region. Under the null hypothesis of no association, 
the distribution of Q is approximated by the weighted sum of χ1

2 distributions, where weights can be determined 
as eigenvalues of K denoted by eigen()45. Using the spectral decomposition property that the nonzero eigenvalues 
of XTX are the same as the nonzero eigenvalues of XXT, I have:

=






.− −eigen K eigen

n
C WS G GS WC( ) 1

(7)
T T1 1

Thus, Model (2) is a linear regression model generalized for the popular RAA methods (Table 1) that assume 
the additive effects of genetic variants on the trait.

A single-trait model for summary statistics. In this section, I am developing a new model for regional 
association analysis, where SNP-level summary statistics and SNP-by-SNP correlations are used as input data. 

Initial data

Individual phenotypes and genotypes GWAS Z scores and SNP-by-SNP correlations

Methods under 
FE-model The coefficient of determination The number of 

regression coefficients The coefficient of determination The number of 
regression coefficients

MLR −
   ( )y G G G G yn

T T T1

0

1
rank G( ) −z U zn

T1

0
1 rank U( )

PCA/FLM    

−y GWC C WG GWC C WG y( )n
T T T T T1

0
1

rank GWC( ) − − − − −
   z S WC C WS US WC C WS z( )n

T T T1

0

1 1 1 1 1 − −
 rank C WS US WC( )T 1 1

Methods under 
RA-model Q test statistic Eigenvalues of kernel Q test statistic Eigenvalues of kernel

Burden e WG y( )n m
T T1

0
2

 e WG GWen m
T T

m
1

0

−
e WS z( )m

T 1 2 − −
 e WS US Wem

T
m

1 1

SKAT-O  y GWRWG yn
T T1

0
 ( )eigen RWG GWn

T1

0

− −


~z S WRWS zT 1 1 − −
 eigen WS US WR( )

1 1

SKAT  y GWWG yn
T T1

0
 ( )eigen WG GWn

T1

0

− −
 z S WWS zT 1 1 − −

 eigen WS US W( )
1 1

Table 1. Combined test statistic and parameters of its distribution using different types of initial data. 
Notations. n0: sample size minus one; m: number of SNPs in the region; y : (n × 1) vector of standardized 
phenotypes; G: (n × m) matrix of centered genotypes; W: (m × m) diagonal matrix of SNP weights; for PCA 
method, C: (m × k) eigenvectors matrix obtained from the spectral decomposition of  WG GWT

 or 
− −
 WS US W1 1

 
and truncated to k columns; for FLM method, C: (m × k) matrix of values of k basis functions at the relative SNP 
positions; em: (m × 1) vector of units; U: (m × m) SNP-by-SNP correlation matrix; R: (m × m) matrix of 
correlations among genetic effects, ρ ρ= + −R e e I(1 ) ,m m

T
m  where ρ is an estimable parameter37; eigen(X): 

vector of eigenvalues of matrix X; z: vector of summary Z score statistics; S : (m × m) diagonal matrix with 
diagonal elements being equal as GWAS beta standard errors.
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The new model follows from Model (2), for which the linear compression of data is applied. As a result of this 
compression, the individual-level phenotypic and genotypic data are converted to the corresponding summary Z 
score statistics and correlations between the genetic variants.

I pre-multiply all the terms of Model (2) by an (m × n) compression matrix introduced here as =A G
n

T1 :

β ξ= + .−Ay AGS WC A (8)n
1

Two key points should be noted. First, the rank of the predictor matrix in Model (8) is the same as in Model (2), 
which means that the use of matrix A does not reduce the dimensional space of genotype data and, therefore, does 
not lead to loss of information. Secondly, =AA G GT

n
T1  is an (m × m) SNP-by-SNP correlation matrix, therefore, 

ξA n represents a new random residual vector ξm with the distribution N(0, U), where = .U G G
n

T1

Thus, I obtain a new linear regression model from Model (8):

β ξ= + .
−
z US WC (9)m

1

Here z is an (m × 1) vector of summary Z scores calculated in GWAS as =z G y ,
n

T1  and =S S
n

1  is a diag-
onal matrix, whose diagonal elements are beta standard errors calculated in GWAS as =

σ

σ
sii n

y

gi

 (see Box 3). In 

fact, the matrices 
−
S 1

 and W serve for weighting the SNP genotypes to control their impact on a trait of interest 
(for example, to increase the impact of rare variants), while the matrix C is method-dependent. C is set by the 
researcher in accordance with the selected gene-based method and serves for linear smoothing/compressing the 
SNP genotypes.

For better readability, Exp. (9) can be rewritten as

β ξ= +z UX , (10)m

where =
−
X S WC1

 is the (m × k) matrix that provides weighting and smoothing/compressing of the genetic data.
Thus, within the framework of Model (10), under the null hypothesis of no association, the vector z follows 

approximately a multivariate normal distribution as N(0, U), which was also shown in a work by Pasaniuc  
et al.46,47 and under the alternative hypothesis, z is distributed as βN UX U( , ) for the FE-model and as 

τ +N UXX U U(0, ( ) )T2  for the RE-model.
Like Model (2), Model (10) is based on the same standard assumptions as any linear regression with addi-

tive effects, namely: linearity and additivity of the relationship between dependent and independent variables, 
homoscedasticity and normality of the distribution of the regression residuals.

single-trait model-based tests using summary statistics. For RAA methods based on Model (10) 
with fixed effects, the F test statistic depends on the same parameters that describe the F test statistic (3) obtained 
from the original individual-level data: the sample size (n), the maximum number of independent columns of the 
predictor matrix = =r rank UX rank GX( ( ) ( )) and R2 reformulated from (5) as

= .−R
n

z X X UX X z1 ( ) (11)
T T T2 1

It is obvious that by analogy with − −C WS G GS WCT T1 1  in Exp. (5), the full rank requirement should be gener-
ated only the matrix product X UXT .

In RAA methods based on Model (10) with random effects, Q is calculated as

= − −Q z U K U z, (12)T
s

1/2 1/2

where Ks is an (m × m) linear kernel matrix determined as U XX UT1/2 1/2. Here Ks expresses genetic similarity 
between −U z1/2  statistics, which is based on the genetic correlations between individuals explained by the 
genomic region. The null distribution of Q from (12) is approximated by a weighted sum of χ1

2 distributions, 
where the weights are eigenvalues of Ks:

=eigen K eigen X UX( ) ( ) (13)s
T

Note that the region-based test statistics Q (12) and (6) formulated in dissimilar terms are identical. Obviously, 
the new model (10) appears as a generalized model for the RAA model-based methods (Table 1), suggesting the 
additive effects of genetic variants on the trait.

So, Model (10) using summary statistics is based on the same standard assumptions as any linear regression 
with additive effects. However, when introducing Model (2), I also assumed that the sample consists of unrelated 
individuals, and the trait analysed is continuous. These restricting assumptions were made only for the sake of 
simplicity. They can be dropped within the framework of the new model, since for combining the computed Z 
scores, it does not matter what type of the trait is analyzed and what the structure of the sample is. This informa-
tion is already taken into account when estimating the Z scores. For Model (10), it is primarily important that 
each Z score follows asymptotically a standard normal distribution, and correlations between these Z scores were 
known under H0.
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expanding the model. To be able to exclude predictors from the model by shrinking their beta coefficients 
to zero, Model (10) can be expanded by using the lasso procedure, which is usually included for such purposes in 
the regression analysis (see, for example48). Since the estimates β and R2 in the new model are equivalent to those 
in the classical model using individual-level data, the regularization term, β∑ =i

m
i1 , added to the residual sum of 

squares (RSS) is the same in both models, because RSS=1 − nR2. Then the objective function to be minimized 
with respect to β is:

∑ ∑β βλ β λ β+ = − − +
=

−

=
RSS z UX U z UX( ) ( )

(14)i

m

i
T

i

m

i
1

1

1

where λ is the tuning parameter. Without regularizing, the beta-coefficients are estimated as β = .−X UX X z( )T T1  
However, the lasso regularization (14) has no analytical solution, and the numerical solution can be found by 
quadratic programming techniques from convex optimization and will not be considered here.

Thus, Model (10) is intended to combine a set of correlated SNP-level Z score statistics into a region/gene-level 
statistic. It covers all linear-regression methods with additive SNP effects treated both as fixed and as random. The 
required input data for Model (10) are, first, the Z score statistics measuring the associations of the same single 
trait with various SNPs, and, secondly, the correlations between the genotypes of these SNPs. GWAS SNP-level 
beta standard errors are optional input data for Model (10) because they are only required for the SNP weighting 
procedure.

It has been shown that the SNP-by-SNP correlations are asymptotically equal to the correlations between the 
Z scores at these SNPs under null data46,47, i.e. when =E y y I[ ] ,T

n

=
















= = =cor z z E
g y

n
y g

n n
g E y y g

g g
n

cor g g( , ) 1 [ ] ( , ),
(15)

T T
T T

T

1 2
1 2

1 2
1 2

1 2

where zi is the Z score calculated as g y

n
i
T

 on the ith SNP with the standardized genotype gi for the standardized trait 
y . This makes it possible to turn from the specific to the general, i.e. to focus on any genetic objects, abstracting 
from SNPs. Then Model (10) can be interpreted in a new way:

β ξ= + .z UC (16)m

Here z denotes the vector of Z scores calculated at genetic objects, each of which is a genomic region (including a 
SNP and a gene), and U is the correlation matrix between these Z scores; the remaining variables are the same as 
in (10). In Model (16), the matrix of weights was removed, since it is unlikely that the researcher can formulate a 
hypothesis on the contributions of region-level Z score statistics to their combination. Such an interpretation (16) 
allows one to aggregate the region-level statistics, which were calculated for the same phenotype data (a trait or a 
set of traits), using the same RAA method, and then transformed into Z score statistics.

Moreover, since under null hypothesis the phenotypic correlations between traits are asymptotically equal to 
the correlations between Z scores calculated for these traits on the same genotype data49, namely
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it can be argued that Model (16) can be used to combine the trait-level statistics, which were obtained for various 
traits, using the same genotype data and the same method, and then transformed into Z score statistics. One 
confirmation of this is the score-based method, metaUSAT50, developed to find an association between a single 
genetic variant with multiple traits when using summary statistics. This method can be rewritten in terms of the 
new model with random effects. Then the C matrix in Exp. (16) can be formed by analogy with the SKAT-O 
method (Box 2) as ρ ρ= + −CC U I(1 )T

m, where ρ is a pairwise correlation among the genetic effect 
coefficients.

Note that to determine the association between a gene and a single trait, metaUSAT can be applied using the 
new model with non-unit weights for genetic variants. Obviously, the new regression model (16) includes a sub-
model that underlies the metaUSAT method.

Finally, I claim that Model (16) is suitable for aggregating test statistics calculated by various methods (for 
example, SKAT, SKAT-O, MLR, PCA and FLM) provided that the same original individual-level genotype and 
phenotype data were used and then, as usual, transformed into Z scores. Thus, Model (16) is universal because it 
is suitable for addressing tasks requiring that Z score statistics of any level be combined.

Results and Conclusion
By using the technique that allows the linear compression of phenotype and genotype data to the level of statistics 
(namely, summary statistics and correlations among genetic variants) without the loss of statistical power, I have 
derived a new model for finding associations between traits and genomic regions. This model represents a linear 
regression model of fixed or random effects, where the vector-columns of the SNP-by-SNP correlation matrix 
serves as explanatory variables, and the vector of the SNP-level summary Z score statistics serves as a response 
variable.

Table 1 presents the exact formulas of the single-trait test statistic and the parameters of its distribution cal-
culated by six popular RAA methods (MLR, PCA, FLM, Burden, SKAT and SKAT-O) based on the new model.
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The methods built on the new model have a number of important advantages. First, these methods do not 
require access to individual-level phenotypes and genotypes, and use the SNP-level summary statistics obtained 
from the GWAS meta-analysis and deposited in public databases as input data. Secondly, these methods are fast, 
because most of the calculations have already been performed. Finally, these methods are universal, because they 
can combine dependent Z scores without requiring information on the population structure of the sample or the 
trait type. This information has been taken into account when calculating the summary Z scores.

In this work, I considered only the RAA methods that suggest an additive allele action in a genetic variant. 
For these methods, only the values of the SNP-level summary statistics and the correlations between genetic 
variants are required. Other methods that assume the dominant allele action can also be implemented under the 
new model using summary statistics. However, for such methods, higher-order SNP-by-SNP correlation matri-
ces should be calculated. Noteworthy, the new model can serve as a basis for the development of new methods 
for conducting regional association analyses using SNP-level summary statistics and SNP-by-SNP correlations 
instead of individual measurements. Moreover, as has been shown in this work, the proposed model can be 
extended to combine Z score statistics derived from the test statistics with any level. In other words, the latter can 
be calculated for various genomic regions using the same individual phenotype data, for various traits using the 
same individual genotype data or by various methods using the same individual phenotype and genotype data.
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