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DNAmethylation is an epigenetic modification that plays a key role in gene regulation. Previous studies have investigated its

genetic basis by mapping genetic variants that are associated with DNA methylation at specific sites, but these have been

limited to microarrays that cover <2% of the genome and cannot account for allele-specific methylation (ASM). Other

studies have performed whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify

variants associated with DNA methylation. We present a novel approach in which bisulfite-treated DNA from many indi-

viduals is sequenced together in a single pool, resulting in a truly genome-wide map of DNA methylation. Compared to

methods that do not account for ASM, our approach increases statistical power to detect associations while sharply reducing

cost, effort, and experimental variability. As a proof of concept, we generated deep sequencing data from a pool of 60 hu-

man cell lines; we evaluated almost twice as many CpGs as the largest microarray studies and identified more than 2000

genetic variants associated with DNA methylation. We found that these variants are highly enriched for associations

with chromatin accessibility and CTCF binding but are less likely to be associated with traits indirectly linked to DNA,

such as gene expression and disease phenotypes. In summary, our approach allows genome-wide mapping of genetic var-

iants associated with DNAmethylation in any tissue of any species, without the need for individual-level genotype or meth-

ylation data.

[Supplemental material is available for this article.]

DNA methylation is an epigenetic mark that usually occurs at cy-
tosine bases within CG dinucleotides (CpGs) in the human
genome. CpGs often occur in dense clusters, known as CpG is-
lands, which are surrounded by regions known as CpG shores; in
nonmalignant cells, CpG islands and shores are less frequently
methylated than CpGs outside of these regions (Smith and
Meissner 2013). Methylated CpG islands and shores in promoters
may provide a “locking mechanism” that prevents repressed
genes from being reactivated, while methylation in gene bodies
is often associated with active transcription (Wolf et al. 1984;
Jones 2012). In addition, DNA methylation has been linked to
a wide range of diseases, including cancer, Alzheimer’s disease,
bipolar disorder, and type 2 diabetes (Baylin et al. 1998; Baylin
and Herman 2000; Gamazon et al. 2012; Irier and Jin 2012;
The Cancer Genome Atlas Network 2012; Dayeh et al. 2013;
Pease et al. 2013; Ambrosone et al. 2014; De Jager et al. 2014;
Lunnon et al. 2014). Interestingly, CpGs whose methylation
has been associated with gene expression and disease are found
not only in promoter regions or gene bodies but also in other
parts of the genome, such as enhancers and insulators, suggest-
ing additional roles of DNA methylation in transcriptional regu-
lation (You et al. 2011; Jones 2012; Gutierrez-Arcelus et al. 2013;
Banovich et al. 2014; Zhang et al. 2014). Although many studies
have investigated potential additional roles, general conclusions

about the role of methylation outside of promoters and gene
bodies are still lacking (Jones 2012).

Several studies have investigated the relationship between
DNA methylation and other epigenetic factors, such as histone
modifications and chromatin accessibility (Wrzodek et al. 2012;
Shi et al. 2014;Wagner et al. 2014; Zhang et al. 2014). For example,
DNAmethylation is associated with transcription factor (TF) bind-
ing (Thomson et al. 2010; Wiench et al. 2011; You et al. 2011;
Feldmann et al. 2013; Ziller et al. 2013; Heyn 2014; Shi et al.
2014; Smith et al. 2014). In associations with epigenetic variation,
the direction of causality is usually unclear; DNAmethylationmay
affect TF binding or may be affected by it, or both may be deter-
mined by another factor (or any combination of these).

In addition to epigenetic variation, DNA methylation can
also be associated with genetic variation (Gibbs et al. 2010; Bell
et al. 2011, 2012; Bibikova et al. 2011; Fraser et al. 2012; Lam
et al. 2012; Drong et al. 2013; Grundberg et al. 2013; Gutierrez-
Arcelus et al. 2013; Heyn et al. 2013; Liu et al. 2013; Moen et al.
2013; Zhi et al. 2013; Ambrosone et al. 2014; Banovich et al.
2014; De Jager et al. 2014; Lunnon et al. 2014; Shi et al. 2014;
Smith et al. 2014; Wagner et al. 2014; Zhang et al. 2014).
Associations with genetic variants such as SNPs are qualitative-
ly different from epigenetic associations with disease or gene
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expression because the causality is clear: Mendelian randomiza-
tion ensures that an individual’s genotype is a random combina-
tion of parental alleles, and thus any associations must be due to
the effects of genotype (in a study free of confounding factors)
(Mokry et al. 2014). Genetic variants showing these associations
are known as DNA methylation quantitative trait loci (mQTLs).

Nearly all published human mQTL studies have relied upon
commercially available microarrays that interrogate either approx-
imately 28,000 CpGs or approximately 480,000 CpGs, corre-
sponding to 0.1% and 1.7% of CpGs in the genome, respectively
(Gibbs et al. 2010; Bell et al. 2011, 2012; Fraser et al. 2012;
Drong et al. 2013; Grundberg et al. 2013; Gutierrez-Arcelus et al.
2013; Heyn et al. 2013; Liu et al. 2013; Moen et al. 2013; Zhi
et al. 2013; Ambrosone et al. 2014; Banovich et al. 2014; Shi
et al. 2014; Smith et al. 2014; Wagner et al. 2014; Zhang et al.
2014). Not surprisingly, the number of CpGs associated with
mQTLs is generally greater in the studies using the larger arrays.
However, the remaining 98.3% of CpG sites, including nearly all
CpGs outside of CpG islands and shores, have yet to be included
in any mQTL study, thus limiting our understanding of the roles
of DNA methylation far from CpG islands.

In addition to covering only a small subset of the genome,
DNA methylation arrays can be affected by experimental variabil-
ity between samples, such as differences between the quality of
bisulfite treatment across samples and “batch effects” that affect
groups of samples, such as the day of hybridization (Leek et al.
2010; Sun et al. 2011). Although many computational methods
have been developed tomitigate these issues, they can be impossi-
ble to correct for perfectly and thus remain important potential
sources of both false positives and false negatives (Johnson et al.
2007; Leek et al. 2010; Sun et al. 2011; Stegle et al. 2012;
Mostafavi et al. 2013; Yousefi et al. 2013).

Another property of DNAmethylation arrays is that they pro-
vide only the average methylation level for each targeted CpG in
a sample. If an individual’s two alleles have the same methylation
level, this is not an issue; however, samples heterozygous for
a cis-acting mQTL will have allele-specific methylation (ASM)
because cis-acting variants affect methylation of only the CpG al-
lele to which they are linked (Kerkel et al. 2008; Shoemaker et al.
2010). Thus, a significant source of information present in hetero-
zygotes is lost. A previous ChIP-seq study used allele-specific infor-
mation with a combined haplotype test, in which the authors
modeled the read depth for each allele from each individual and
tested whether there is a significant difference between allelic
read depths across individuals, identifying thousands of histone
modification QTLs (McVicker et al. 2013). Other ChIP-seq studies
have also identified allele-specific histone modifications (Mikkel-
sen et al. 2007; Kasowski et al. 2013; Kilpinen et al. 2013), under-
scoring the value of allele-specific information.

Deep sequencing of bisulfite-converted DNA (Frommer et al.
1992) overcomes many of the limitations of microarrays by al-
lowing genome-wide detection of DNA methylation and ASM
(Lister et al. 2009, 2013; Xie et al. 2012; Schmitz et al. 2013a,b).
Applying this technology to F1 hybrid mice (CAST × 129) re-
vealedmore than 105 sites of allele-specific DNAmethylation, sug-
gesting that cis-acting effects of genetic variation on DNA
methylation arewidespread (Xie et al. 2012). However, performing
whole-genome bisulfite sequencing—or even reduced representa-
tion bisulfite sequencing, which preferentially targets CpG-rich re-
gions (Meissner et al. 2005, 2008)—on more than a few human
individuals is prohibitively expensive. Nevertheless, because distal
noncoding variants affecting DNAmethylationmay play key roles

in some human traits (Ward and Kellis 2012; Dayeh et al. 2013;
Grundberg et al. 2013), whole-genome bisulfite sequencing of
many individuals may prove to be essential in understanding the
genetic and epigenetic bases of phenotypic variation.

In this study, we developed a novel method for identifying
mQTLs from pooled sequencing data that allows genome-wide
mQTL mapping while reducing the effort, cost, and experimental
variability associated with bisulfite sequencing and genotyping
ofmany individual samples.Our approach allows us to study thou-
sandsofmolecular traits in a single experiment, in contrast to exist-
ing pooled QTL mapping methods that are limited to individual
phenotypes (Michelmore and Paran 1991; Ehrenreich et al. 2010).
We first tested our approach in simulations and then applied it to
bisulfite sequencing data fromapool of 60human lymphoblastoid
cell lines (LCLs). We identified more than 2000 novel mQTLs, in-
cluding some that are also associated with variation in DNase
hypersensitivity, TF binding, gene expression levels, or complex
diseases (Pickrell et al. 2010; Degner et al. 2012; Lappalainen
et al. 2013; Ding et al. 2014; Welter et al. 2014). We also show
that TFbinding sites andopenchromatin regions fromLCLs are en-
riched for mQTLs. Our approach represents a powerful and cost-
effective framework for mapping mQTLs genome wide, in any
species.

Results

A pooling approach to mQTL mapping

Inmost genetic association studies of quantitative traits, each sam-
ple is genotyped at many variants (typically at least 106 for hu-
mans), and trait values (e.g., DNA methylation at specific CpGs)
are measured for each sample. Genotypes are then compared to
the trait values to detect statistically significant associations. This
approach has been widely used in many species to map loci asso-
ciated with both molecular-level traits (expression QTLs, mQTLs,
DNase hypersensitivity QTLs, etc.) and organismal-level traits
(height, blood pressure, etc.).

Our pooling approach is outlined in Figure 1. The central idea
is that, for any cis-acting mQTL-CpG pair, if both the variant and
the CpG are observed on the sameDNA sequencing read, then any
association between the two can be detected using Fisher’s exact
test (see Methods). For example, a CpG near a G/T SNP might
have a higher methylation level when linked to the G allele than
when linked to the T allele. Analysis at the level of alleles, rather
than individuals, allows samples to be pooled prior to bisulfite
treatment because the allelic identity of every informative read
can be inferred directly from the read’s sequence. In addition to
minimizing experimental variability between samples, pooling
obviates the need for individual-level genotyping and DNAmeth-
ylation profiling.

Assessing the pooling approach via simulations

We compared our pooling approach (“pooled ASM method”),
which allows us to detect allele-specific methylation (ASM), to
a more traditional approach (“traditional non-ASM method”),
which consists of bisulfite sequencing and genotyping of each
sample separately, followed by the comparison of the individual-
level genotypes and average DNA methylation levels. We focused
on genome-wide methods and therefore did not include DNA
methylation arrays in the simulations. Each simulation featured
an mQTL-CpG pair, for which we estimated the power to detect
the mQTL (at P < 0.001). Across simulations we varied five
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parameters: the effect size of the mQTL (the correlation between
allele and methylation status); the read depth at the site (across
all individuals); the minor allele frequency (MAF); the minor
DNA methylation status frequency (the frequency of the less
common methylation status); and the number of individuals.
We also ran our simulations at additional P-value cutoffs and sim-
ulated variant-CpG pairs with no association between allele and
methylation status at various P-value cutoffs to evaluate our false
positive rate.

The pooled ASM method identified substantially more
mQTLs than the traditional non-ASM method at most parameter
values—the exception being a strong mQTL covered by many
reads, in which case the methods both had close to 100% power
(Fig. 2; Supplemental Figs. 1–8). In fact, for effect sizes ≤0.83,
read depths ≤40×, and ≤100 individuals, the pooled ASMmethod
had over twice the power of the traditional non-ASMmethod. The
false positive rate for both methods was extremely low, especially
for lower P-value cutoffs (Supplemental Figs. 9–12). In addition, for
nearly all parameter settings, the pooled ASM method produced
significantly lower mQTL P-values than the traditional method
(Supplemental Fig. 13).We found similar results using two alterna-
tive statistical approaches to analyze the simulated data (Supple-
mental Figs. 3, 4).

The increased power of our approach is due primarily to the
difference in what information is extracted from heterozygotes.
For example, consider a strong mQTL (0%methylation of the ma-
jor allele, 100% for theminor allele) with a lowMAF that is present
as only either major-allele homozygotes or heterozygotes in a par-
ticular cohort. The traditional non-ASMmethod averages together

the effects of the two different alleles in each heterozygote, thus di-
luting the signal from each allele (the traditional method cannot
distinguish between when the minor allele in heterozygotes al-
ways corresponds to the minor methylation status and when the
allele in heterozygotes has no correlation with the methylation
status). As a result, the two quantities being compared—average
methylation of the CpG in homozygotes versus heterozygotes—
would be 0% versus 50%. In contrast, because the pooled ASM
method takes into account the allelic origin of each read, it is
equally informative regardless of whether a read is from a homozy-
gote or heterozygote. In our example, the two quantities in the
comparison—methylation of the CpG in one allele versus the oth-
er—would be 0% versus 100% in the pooled ASM method, which
is more easily detected with limited data. This concept applies to
any mQTL that can be found in a heterozygous state, even when
all three possible genotypes are present in a cohort. As a result,
the pooled ASM method had the greatest advantage at large
MAFs (Supplemental Figs. 5, 6, 11, 12) because these have the
most heterozygotes.

Applying our pooling approach to empirical data

As an experimental test of our pooling approach, we performed
bisulfite sequencing on pooled genomic DNA from LCLs derived
from 60 Yoruban (YRI) HapMap individuals (see Methods) (Frazer
et al. 2007). We obtained ∼860 million pairs of 101-bp reads,
of which 77.1% passed our quality control filters and mapped
uniquely, corresponding to an average per-base coverage of ∼40×.

To assess the efficiency of our bisulfite treatment and pool-
ing, we performed three quality control tests. First, to evaluate
the efficiency of bisulfite conversion of unmethylated cytosines
to thymines, we spiked unmethylated lambda phage DNA into
the pool prior to bisulfite treatment. The percentage of unconvert-
ed lambda phage cytosines ranged from 0.0% to 0.2% across
library/sequencing lane pairs, suggesting that the bisulfite treat-
ment consistently had at least 99.8% efficiency, which is com-
parable to previous bisulfite sequencing studies (Lister et al.
2009; Banovich et al. 2014). Second, we estimated the rate of spu-
rious cytosine to thymine conversion by creating two untreated

Figure 1. We use pooled bisulfite sequencing to identify mQTLs. Our
pooling method enables us to identify mQTLs directly from bisulfite se-
quencing reads. In this approach, cells or DNA samples from all individuals
are combined into a single pool, which is then subject to bisulfite sequenc-
ing. Alleles and methylation statuses are inferred from the sequence reads,
which are then used to generate a 2 × 2 contingency table (where columns
represent methylation statuses and rows represent alleles). Fisher’s exact
test is used to compute a P-value for the null hypothesis of no association.
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Figure 2. Simulations comparing our pooled ASM method to the tradi-
tional non-ASM method. Our pooled ASM method has more power to
detect mQTLs than the traditional non-ASMmethod, especially for low ef-
fect sizes. Simulated reads from 100 individuals were sampled from a neg-
ative binomial distribution, with minor allele and minor methylation
frequencies of 0.1. Power to detect an mQTL is shown for each method
as a function of mQTL effect size and total read depth. The effect size is
the correlation between allele and methylation status, and the power is
the fraction of the simulations in which we identified an mQTL (with P <
0.001). Additional simulations are shown in Supplemental Figures 1–8,
and ROC curves from the simulations are shown in Supplemental Figures
9–12.
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control libraries from our pooled human samples. In these li-
braries, only 0.4%–0.5% of bases that mapped to cytosines were
thymines, suggesting a low rate of spurious C-to-T conversion,
sequencing errors, and unannotated C/T SNPs. Finally, we esti-
mated the relative abundance of each individual sample’s DNA
in the pool and found that it was near the expected 1:60 ratio
(1.0%–2.8% abundance of each sample), confirming that our
pool was relatively homogenous (Supplemental Fig. 14). We
note that sample heterogeneity should not impact our ability to
map mQTLs so long as each allele is well represented, because
our approach does not require an equal abundance of each sample
in the pool.

Our pooled data provided sufficient coverage to test the
strength of association at 823,726 variant-CpG pairs, from which
we identified 2379mQTLs (at 2332 uniqueCpGs) at P < 0.001 (cor-
responding to a false discovery rate [FDR] of 6.0%) (see Methods;
Supplemental Table 6). Examples of two mQTLs are shown in
Figure 3A. mQTLs tended to be close to their corresponding
CpGs because our method required that they be on the same se-
quenced fragment; the average distance was 25.4 bp, with a range
of 0–377 bp (Supplemental Fig. 15).

We used pyrosequencing on individual samples to validate
our results in two ways. First, as a technical validation of the pool-
ing method, we performed pyrosequencing at two CpGs with
mQTLs in the same 60 samples that composed our pool. Both of
these were successfully validated in the unpooled samples (Fig.
3B). Second, we tested the reproducibility of ourmQTLs by pyrose-
quencing eight CpGs (spanning a wide range of P-values and in-
cluding the two with technical validation) in a separate set of 30
YRI samples, which are offspring of the 60 individuals in our
pool. In seven of eight cases, the mQTL was successfully validated
in these additional samples (Fig. 3C; Table 1; Supplemental Figs.
16–21; also described below).

We then compared our mQTLs to those in two recent studies
of YRI LCLs (Banovich et al. 2014; Zhang et al. 2014), which
both used the largest commercially available DNA methylation
array, the Illumina Infinium HumanMethylation450 BeadChip
(Bibikova et al. 2011). Comparing these studies to one another,
we found 19.1%–45.7% overlap (depending on the direction of
analysis; see Methods). The disagreement was likely caused by a
combination of false positives and false negatives (e.g., due to
low power or between-sample variability). Comparing these two
catalogs to our data, we found that <1% of our approximately
800K tested CpG sites were also tested in each of these studies.

Figure 3. Pyrosequencing validation of mQTLs. Shown are two mQTLs
involving SNPs previously identified in GWAS. (Left) The SNP is associated
with age-related macular degeneration; (right) the SNP is associated with
the ratio of visceral adipose tissue to subcutaneous adipose tissue. (A)
Pooled bisulfite sequencing for the two mQTLs, showing strong associa-
tion. (B) Pyrosequencing validation of the twomQTLs in individual samples
that were used for the pooled bisulfite sequencing confirms the bisulfite se-
quencing results. Light blue points are the methylation percentages from
individuals, and crosses are the meanmethylation percentages for individ-
uals of each genotype. (C) Pyrosequencing validation of the twomQTLs in
30 additional YRI individuals shows that the mQTLs are not limited to the
individuals in our study. Light blue points are the methylation percentages
from individuals, and crosses are themeanmethylation percentages for in-
dividuals of each genotype.

Table 1. Pyrosequencing validation of mQTLs

mQTL rsID CpG position mQTL annotation
P-value in pooled bisulfite
sequencing data

P-value in
pyrosequencing data

rs10737680 Chr 1:196679457 GWAS hit 4.3 × 10−5 3.6 × 10−32, 3.3 × 10−16

rs9517668 Chr 13:99923789 In LD with GWAS hit 7.7 × 10−4 >1
rs12905925 Chr 15:65164853 dsQTL 5.3 × 10−6 4.0 × 10−7

rs617201 Chr 17:3089145 In LD with GWAS hit 3.5 × 10−5 6.4 × 10−9

rs1113144 Chr 18:71774787 In LD with GWAS hit 1.4 × 10−5 4.4 × 10−13

rs4809456 Chr 20:61660870 In LD with GWAS hit 1.2 × 10−4 2.4 × 10−5

rs62223713 Chr 21:30158046 Exon-level eQTL 2.0 × 10−4 9.7 × 10−12

rs7705033 Chr 5:122774795 GWAS hit 4.7 × 10−5 3.8 × 10−23, 8.3 × 10−8

Seven of eight tested mQTLs were successfully validated using pyrosequencing. All mQTLs have P-values for the pyrosequencing validation on 30 YRI
individuals who were not included in our pooled bisulfite sequencing data. mQTLs with two P-values are those that were also validated using the 60
YRI individuals in our study; the P-value from pyrosequencing of the 60 individuals in our data is listed first. All pyrosequencing data P-values have
been Bonferroni corrected.
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Focusing on the small number of sites in common, we found a
similar level of overlap (40.0%–53.3%; 4/10 and 8/15, respective-
ly), which was significantly more than expected by chance (hy-
pergeometric P = 5.5 × 10−3 and 9.6 × 10−7, respectively). In sum,
our pooling-based approach agrees with microarray studies as
well as these studies agree with one another, despite the major
methodological differences between the approaches (Supplemen-
tal Figs. 22, 23).

mQTLs were associated with molecular-level and

organismal-level traits

To explore the potential effects of our mQTLs, we examined their
distribution in CpG islands and shores as well as in genomic re-
gions with different chromatin states (see Methods). Unlike DNA
methylationmicroarrays that are primarily targeted in and around
CpG islands, only 2.0% of our tested CpGs were in islands, and
only 10.8% were within 2 kb of CpG islands (Irizarry et al. 2009;
Wu et al. 2010). Instead, most (86.0%) were in repressed/inactive
genomic regions, which usually lack CpG islands. As a result, the
majority (78.1%) of the CpGs with mQTLs was also in repressed/
inactive regions, although this is less than the 86% expected by
chance, suggesting that variants in active genomic regions may
be more likely to influence methylation than those in inactive re-
gions. Chromatin states that are related to active transcription and
active enhancers were enriched for CpGs with mQTLs (Table 2;
Supplemental Fig. 24), suggesting that some of these mQTLs
may affect transcription or enhancer activity.

To understand if our mQTLs may be involved in cell-type-
specific open chromatin, we compared our mQTL catalog with
402 DNase hypersensitivity experiments from the ENCODE and
Epigenomics Roadmapprojects, whichmeasured chromatin acces-
sibility (Bernstein et al. 2010; The ENCODE Project Consortium
2012; Thurman et al. 2012). We found that our mQTLs were
more strongly enriched in regions of open chromatin in LCLs
than in open chromatin in other cell types (P = 1.4 × 10−7). A total
of 9.9% of mQTLs are in open chromatin sites in LCLs, but only

4.9% of tested variants are in open chromatin sites from LCLs
(fold enrichment = 2.0); for all other cell types, 48.8% of mQTLs
are found in open chromatin regions, and 46.7% of tested variants
are found in open chromatin regions (fold enrichment = 1.0)
(Supplemental Fig. 25). This suggests that variants may be more
likely to affect DNAmethylation in tissues where they are in acces-
sible chromatin.

To further understand the relationship between tran-
scriptional activity and mQTLs, we intersected our mQTLs with
TF binding and histone modification ChIP-seq peaks from
GM12878, an LCL studied extensively by the ENCODE Project
Consortium (The ENCODE Project Consortium 2012; Gerstein
et al. 2012). We found that mQTLs were enriched in the binding
sites for 12 TFs in GM12878; 4.6% of mQTLs are in binding sites
of at least one of these TFs, whereas only 1.6% of tested variants
are in these binding sites (total fold enrichment across 12 TFs =
2.9) (Supplemental Table 1; Supplemental Fig. 26). The strongest
of these enrichments is for binding sites of CTCF, which often
acts as an insulator by blocking the spread of chromatin states.
SNPs associated with CTCF binding were recently mapped in
LCLs (Ding et al. 2014); 18 of these are also mQTLs (P = 2.0 ×
10−3), and increased binding is usually associated with decreased
methylation (binomial P = 7.7 × 10−4), suggesting that variants af-
fecting CTCF binding can also impact DNA methylation, consis-
tent with their known relationship (Feldmann et al. 2013).

We next investigated the relationship between our mQTLs
and other molecular traits by comparing our results to expression
QTLs (eQTLs) and DNase hypersensitivity QTLs (dsQTLs) mapped
in the same YRI population (Degner et al. 2012; Lappalainen et al.
2013). We found a strong overlap with dsQTLs, 48 of which were
also mQTLs (P = 1.2 × 10−27, fold enrichment = 7.4); alleles associ-
ated with lower DNA methylation tended to be associated with
open chromatin (binomial P = 5.5 × 10−7). For eQTLs, we found
that 28 mQTLs are exon-level eQTLs and five are gene-level
eQTLs; for exon-level eQTLs, this was significantly more than ex-
pected by chance (P = 1.5 × 10−3, fold enrichment = 1.8). In addi-
tion, considering SNPs in strong LD with eQTLs and dsQTLs
revealed additional overlaps (Supplemental Tables 2, 3). We
validated one eQTL overlap and one dsQTL overlap using pyrose-
quencing in an additional 30 YRI individuals (Table 1; Supple-
mental Figs. 17, 21). These overlaps were consistent with our
expectation of a relationship between DNA methylation, tran-
scription, and chromatin structure (Gutierrez-Arcelus et al. 2013;
Jones et al. 2013).

We also tested to what extent our mQTLs may impact organ-
ismal-level traits. To investigate this, we performed a similar com-
parison of our mQTLs with variants implicated by genome-wide
association studies (GWAS) for diseases and other traits (Welter
et al. 2014). Nine mQTLs were previously identified in GWAS or
are in perfect LD with GWAS hits, and an additional 13 mQTLs
are in strong (r2≥ 0.8) LD with GWAS-implicated variants
(Supplemental Table 4;Welter et al. 2014), although this is not sig-
nificantly more overlaps than expected by chance (P = 0.67 for
GWAS hits and variants in perfect LD; P = 0.70 for GWAS hits
and variants in strong LD). We validated two of the overlaps using
pyrosequencing in the individuals in our bisulfite sequencing
study (Fig. 3B; Table 1) and six of the overlaps in 30 additional
YRI individuals; all but one test was successful (Fig. 3C; Table 1;
Supplemental Figs. 16, 18–20). All of the validatedmQTLs are asso-
ciated with CpGs that are not included on commercially available
microarrays, demonstrating that our method can identify novel
disease-associated mQTLs.

Table 2. Enrichment of CpGs with mQTLs in LCL chromatin states

Chromatin state
CpGs with mQTLs

in state (%)
Enrichment

P-value

1. Active TSS 0.90 3.0 × 10−6

2. Flanking active TSS 1.0 7.4 × 10−3

3. Strong transcription 3.8 1.6 × 10−2

4. Weak transcription 3.3 1.2 × 10−4

5. Acetylated active
enhancer

1.5 1.7 × 10−3

6. Acetylated active
enhancer (genic)

0.26 >1

7. Active enhancer 2.8 4.4 × 10−5

8. Active enhancer (genic) 0.86 7.8 × 10−2

9. Weak enhancer 3.1 4.9 × 10−1

10. Weak enhancer (genic) 0.99 6.6 × 10−1

11. Bivalent TSS 0.30 >1
12. Bivalent enhancer 1.1 >1
13. Repressed Polycomb 23 >1
14. CTCF only 1.9 7.6 × 10−2

15. Quiescent/low 55 >1

Most CpGs with mQTLs occur in regions of the genome that are in the
“Repressed Polycomb” or “Quiescent/Low” chromatin states, but this is
still no more than expected by chance. All P-values are Bonferroni cor-
rected. States with enrichment P < 0.05 are in bold. The corresponding
fold enrichments are in Supplemental Figure 24.
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Across the different types of QTLs/GWAS that we compared
to our mQTLs, we noticed an interesting trend: QTLs associated
with the earliest steps of transcription (dsQTLs associated with
chromatin accessibility) had the strongest overlap with mQTLs,
while moving progressively towards phenotype, the enrichment
decreased at each stage (Fig. 4). This suggests a buffering or dilution
of mQTL effects at transcriptional and post-transcriptional levels,
consistent with recent models for the attenuated effects of eQTLs
on protein levels (Battle et al. 2014). As such, this could allow for
plasticity in DNAmethylation, with a small subset of methylation
changes overcoming the many layers of gene expression regula-
tion to ultimately affect organismal phenotypes.

Discussion

The pooling approach introduced here represents a major advance
in our ability to map cis-acting mQTLs genome wide. Our simula-
tions demonstrated the substantial increase in power that our
approach provides as a result of accounting for ASM. In an empir-
ical test of our approach, we identified mQTLs in many function-
ally important sites that are not covered by microarrays, including
TF binding sites, dsQTLs, CTCF-binding-QTLs, eQTLs, and GWAS
hits. Thus, our approach overcomes two of the greatest weaknesses
of microarrays—inability to detect ASM and limited coverage of
CpGs—enabling us to detect thousands of novel mQTLs through-
out the genome.

An additional advantage of our approach over microarrays
and other individual-level assays is the minimization of be-
tween-sample experimental variability and batch effects, which
are known to be important sources of error (Mostafavi et al.
2013). By pooling samples prior to bisulfite treatment,most poten-
tial sources of variability are eliminated. However, because our
simulations did not account for these factors, we may have under-
estimated our increase in power over the traditional non-ASM
method.

Several important advantages of the traditional approach of
genotyping and using microarrays for DNAmethylation measure-
ment were also not captured by our simulations. For example, the

traditional approach candetectmQTLs acting at any distance away
from their CpG targets, including trans-acting mQTLs. Because
pooling requires the variant and CpG to be on the same sequenced
DNA fragment, the distance is limited by the size of these frag-
ments. (This includes the insert size in paired-end reads, so the dis-
tance can be many kilobases if large fragments are selected for
sequencing, although a large variance in insert size can lead to few-
er reads covering a given variant/CpG pair.) A previous study re-
ported that the majority of “likely causal” mQTL variants are
within 100 bp of the corresponding CpG (Banovich et al. 2014);
therefore, our approach should be able to detect most of these
causal variants, although it will have less power to detect addition-
al mQTL variants that are in LD with the causal variants, since
these can be much further away. As read lengths increase with
new sequencing technologies, this limitation may be lessened.

Another limitation of our approach is that it excludes C/T and
G/A SNPs from consideration because their genotypes cannot be
disentangled from the effects of bisulfite conversion. However,
because most SNPs (including C/T and G/A SNPs) are in strong
linkage disequilibrium with other variants, their mQTL associa-
tions may still be measured via other “tag SNPs” (that are on the
same read as the corresponding CpG), as is done in any QTL or
GWAS study.Moreover, this limitation is shared by othermethods
for inferring ASM from individual-level bisulfite sequencing data.

Our approach also cannot account for population structure or
any known covariates (e.g., gender or environmental differences)
since the individual from which each read originated is unknown.
In our study, this is probably not an issue because our individuals
lack significant population structure, and the cell lines were grown
in controlled laboratory conditions. Future applications of this
approach would ideally use cohorts in which these issues are min-
imized, such as unstructured natural populations or controlled
F2 crosses (as is ideal for any QTL study or GWAS) (Bush and
Moore 2012).

Finally, our approach relies on detecting alleles directly from
reads as well as detecting the positions of variants in the genome
directly from reads if the data are from populations for which var-
iant positions are not known. Detecting alleles from reads is
not perfect due to sequencing errors and imperfect mapping.
However, this is unlikely to have a substantial effect on our results
because only errors at the variant positions would lead to an incor-
rect allelic assignment. Detecting variants is a more challenging
problem (Nielsen et al. 2011; Li 2014), but it can be minimized
by limiting the genotype calls to known variant positions, by se-
quencing deeply, or by excluding rare variants.

Although pooling individuals enables us to overcome limi-
tations of previous approaches for mQTL mapping, we are not
the first to use pooling for QTL mapping. Previous studies have
used pooling for QTL or association mapping of individual
traits. These approaches include bulk segregant analysis (BSA)
(Michelmore and Paran 1991) and X-QTL mapping (Ehrenreich
et al. 2010). They involve phenotypingmany individuals for a spe-
cific trait followed by genotyping (via microarrays or sequencing)
pools of individuals with either high or low trait values. QTLs are
then identified as genetic variants with different allele frequencies
between the two pools. These approaches have been gaining
popularity because they, like ours, do not require individual-level
genotyping, which is often the most laborious and expensive
component of QTL mapping. In comparison to our method,
BSA and X-QTL mapping can be applied to a much wider range
of traits, including organismal-level traits. Two key advantages
of our mQTL approach are that it can be applied to millions of

Figure 4. Fold enrichments of mQTLs overlapping other QTLs and
GWAS hits. mQTLs have greater enrichment for QTLs physically associated
with DNA than they do for QTLs related to downstream traits only indirect-
ly linked to DNA.
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molecular-level traits in one pool (as opposed to a single trait for
every two pools) and that it does not require any individual-level
phenotyping.

We are also not the first to leverage allele-specific information
for QTLmapping. Previous work has also used allele-specific infor-
mation in ChIP-seq data to map QTLs associated with histone
modification levels (McVicker et al. 2013) and to identify allele-
specific histone modifications (Mikkelsen et al. 2007; Kasowski
et al. 2013; Kilpinen et al. 2013). Unlike ChIP-seq, bisulfite se-
quencing results in approximately even sampling of all DNA in
the sample, not just the DNA that is bound by a protein of interest.
Therefore, our goal is not to identify the difference in read depth
between alleles but rather the difference in the fraction of CpG
methylation between alleles. Because these problems require dis-
tinct approaches, we proposed a novel approach for use in bisulfite
sequencing studies.

Although our approach hasmany advantages overmeasuring
genotypes and DNA methylation separately for each individual,
there are ways to combine the approaches that would leverage
ASMwithout sacrificing the ability to identify trans-acting and dis-
tal cis-acting mQTLs. For example, one could alter the step at
which pooling takes place by creating a uniquely barcoded library
for each sample prior to pooling and bisulfite treatment, thereby
allowing each read to be assigned to its sample of origin.
However, this would come at the cost of the additional experimen-
tal variability, effort, and expense associated with creating a sepa-
rate library for each sample. Alternatively, even with no pooling,
the extra power gained from allele-specific information in hetero-
zygotes can be achieved by inferring both alleles andDNAmethyl-
ation statuses directly from reads.

Large mQTL mapping studies have been limited by the effort
and expense involved in data generation; our approach does not
require individual-level data for either genotypes or DNA methyl-
ation, thereby significantly decreasing the barrier to mQTL map-
ping in any tissue or species. Although the number of mQTLs we
identifiedwasmodest, this is primarily a limitation of our sequenc-
ing depth and not the method itself. As illustrated by our simula-
tions, with 40× coverage, our power to detect even strong mQTLs
is modest. As sequencing becomes less expensive, this pooling
approach may help us achieve a comprehensive understanding
of the relationship between genetic variation and DNA methyla-
tion, whichwill provide insight into traits such as evolutionary ad-
aptations in many species and human diseases in many tissues.
Moreover, with some modifications, the pooling framework we
have introduced could also be applied to mapping QTLs for other
molecular-level traits, such as TF binding and histone modifica-
tions. We anticipate that pooling will enable us to leverage se-
quencing technology to study the relationship between genetic
and epigenetic variation in a much wider range of cell types and
species than has previously been possible.

Methods

Simulations comparing the pooled and traditional

association methods

In order to compare the power of identifying mQTLs using the
pooled ASM method—sequencing on pooled samples and ac-
counting for ASM—versus the traditional non-ASM method of
associating genotypes with average methylation statuses, we
performed simulations of a single theoretical variant-cytosine
pair, varying several parameters of interest. We varied the effect

size (correlation between the variant’s allele and the cytosine’s
methylation status), read depth (number of reads across all indi-
viduals), MAF andminormethylation status frequency (theminor
methylation status is the cytosine methylation status with fewer
reads), and number of individuals. We tested effect sizes ranging
from 0.5 to 1.0; 20, 40, 80, 160, 320, 640, and 1280 reads across
individuals; minor allele and methylation status frequencies 0.1,
0.2, 0.3, 0.4, and 0.5; and 25, 50, 100, 200, and 400 individuals.
When assigning genotypes to individuals, we always assumed
that our population is in Hardy-Weinberg equilibrium. For each
parameter combination, we ran 10,000 simulations for the vari-
ant-cytosine pair.

We ran each simulation as if wewere randomly selectingDNA
fragments from a pool of cells. For the pooled data simulations, we
sampled allele-methylation status pairs with replacement for each
read. We used Fisher’s exact test, implemented in MATLAB using
Michael Boedigheimer’s fexact function (http://www.mathworks.
com/matlabcentral/fileexchange/22550-fisher-s-exact-test), to
quantify the association. For the traditional non-ASM method
simulations, we randomly assigned each read to an individual so
that each individual had approximately (but not necessarily exact-
ly) the same number of reads. For each individual, we used the ge-
notype that we had initially assigned to it and computed the
average methylation status, rounded to the nearest integer. We
used a 2 × 3 Fisher’s exact test to compute the associations between
genotype and average methylation status, which was implement-
ed in MATLAB using Giuseppe Cardillo’s myfisher23 function
(http://www.mathworks.com/matlabcentral/fileexchange/15399-
myfisher23). For comparison,we also computed P-values using the
P-value of the F-statistic for the regression that predicts methyla-
tion status as a function of allele/genotype and using the asymp-
totic P-value of the Pearson correlation between allele and
methylation status; when we ran these simulations for the “tradi-
tional non-ASMmethod,” we did not round the average methyla-
tion status for each individual. For each method, we estimated
power as the fraction of simulations in which the variant-cytosine
pair reached P < 0.001, the same P-value threshold that we used for
identifying mQTLs in our real data. We then ran additional simu-
lations as described in the Supplemental Methods.

Whole-genome bisulfite sequencing library preparation

We pooled genomic DNA derived from 60 Yoruban LCLs (parental
samples from 30 HapMap trios, purchased from Coriell). Forty-
eight micrograms of this DNA was spiked with 240 ng unmethy-
lated cl857 Sam7 Lambda DNA (Promega) to yield 0.5% W/W
lambdaDNA. The DNAwas fragmented with a Covaris instrument
(Covaris) in 50-μL volumes (duty factor 10%; peak incident power
175,200 cycles per burst; 40-sec duration; 5.5°C–6.0°C), followed
by end repair, adenylation, and adapter ligation using the TruSeq
DNA LT Sample Prep Kit (Illumina) according to the manu-
facturer’s instructions. Purification steps were performed using
Agencourt Ampure beads (Beckman Coulter). All 24 indexed
methylated adapters from TruSeq DNA LT Sample Prep Kit Sets A
and B (Illumina) were used to construct the libraries in order to in-
crease base complexity.

Adapter-ligated DNA of 400–500 bp was isolated by 2% aga-
rose gel electrophoresis using low range ultra agarose (Bio-Rad)
with SYBR Gold Nucleic acid gel stain (Invitrogen), and fractions
were purified using MinElute Gel Extraction Kit (Qiagen). Two of
the 24 libraries were reserved and not bisulfite converted for con-
trol purposes. Sodium bisulfite conversion was carried out on
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each of the 22 remaining libraries using the EpiTect Bisulfite Kit
(Qiagen #59104) according to the manufacturer’s 2006 instruc-
tions, except the reaction mix incubation cycle from the Whole-
Genome Bisulfite Sequencing for Methylation Analysis was used
(Illumina, Part # 15021861 Rev. A) and consisted of 5 min at
95°C, 25 min at 60°C, 5 min at 95°C, 85 min at 60°C, 5 min at
95°C, 175 min at 60°C, three cycles consisting of 5 min at 95°C,
and 180min at 60°C, ending with a 20°C hold. Bisulfite-converted
products were purified using the MinElute PCR Purification Kit
(Qiagen).

Adapter-ligated, bisulfite-converted libraries were enriched
using KAPA HiFi HotStart Uracil+ ReadyMix uracil-insensitive po-
lymerase (D-mark Biosciences #KK2801). Thermocycler parame-
ters for bisulfite-converted libraries consisted of 45 sec at 98°C;
four cycles of 15 sec at 98°C, 30 sec at 65°C, 30 sec at 72°C, and end-
ing with a 4°C hold. Adapter-ligated, non-bisulfite-converted con-
trol libraries were enriched using the reagents and protocol from
the TruSeq DNA LT Sample Prep Kit (Illumina). Thermocycler pa-
rameters consisted of 30 sec at 98°C; four cycles of 10 sec at 98°C,
30 sec at 60°C, 30 sec at 72°C, and ending with a 4°C hold. PCR re-
action products were purified using Agencourt Ampure beads
(Beckman Coulter). Library validation was performed using the
KAPA SYBR FAST Universal qPCR Library Quantification Kit
(D-mark Biosciences, #KK4824) to measure the concentration of
viable sequencing template molecules as well as the Agilent
Bioanalyzer High Sensitivity DNA Assay (Agilent) to determine
the size and distribution of the template molecules. Libraries
were further concentrated using the MinElute PCR Purification
Kit (Qiagen). Each noncontrol library was divided across eight se-
quencing lanes in three flowcells, and each control library was di-
vided across four of these sequencing lanes, which were in two of
the flowcells.

Data processing

To obtain high-quality allele and methylation information from
our bisulfite sequencing data, we trimmed reads, aligned reads to
the genome, identified methylation statuses for cytosines and al-
leles for SNPs, and filtered our data according to various metrics
(Towns et al. 2014). Details are described in the Supplemental
Methods.

Identifying methylation quantitative trait loci (mQTLs)

To find cytosines that are strongly associated with genetic varia-
tion, we combined variants in perfect linkage disequilibrium
(LD), tested whether each association was significant, and used
permutation tests to compute a false discovery rate (FDR).We asso-
ciated every variant (including SNPs, insertions, and deletions)
with every cytosine on the same read, creating a list of variant-cy-
tosine pairs; thus, CpGs that never occurred on a read with a vari-
ant were not analyzed. When associating variants with CpGs, we
combined cytosines on different strands of each CpG. For each
cytosine, we combined associated variants whose genotypes in
the 1000 Genomes AFR (The 1000 Genomes Project Consortium
2010) are perfectly correlated by replacing the allele of the variant
that is later on the chromosome with the associated allele for the
variant earlier on the chromosome (Supplemental Fig. 28). After
combining SNPs, we computed the significance of the associations
between variants’ alleles and cytosines’ methylation statuses for
every variant-cytosine pair using Fisher’s exact test (Fisher 1922),
which we implemented using SciPy’s Fisher exact test (Oliphant
2007). We removed all variant-cytosine pairs for which the num-

ber of reads with the minor allele or minor methylation status
was so low that, given the total number of reads, the lowest P-value
that could be achieved using Fisher’s exact test was ≥0.001. For
each cytosine, we defined methylation quantitative trait loci
(mQTLs) to be variants for which the association between the al-
lele and the cytosine’s methylation status had a Fisher’s exact
test P < 0.001; this gave us an FDR of 0.0601. We computed the
FDR by permuting the methylation statuses for each variant-cyto-
sine pair 100 times, recomputing the P-value for each pair, reiden-
tifying mQTLs, and averaging the number of mQTLs across
permutations. The FDR is the ratio of the average number of
mQTLs across permutations to the number of real mQTLs. To
check for possible position-specific biases in our mQTL mapping,
we intersected the variant-cytosine pairs for our real mQTL list
with the variant-cytosine pairs for each permuted mQTL list; no
variant-cytosine pair for a real mQTL occurred in more than two
permuted lists, as expected.

Computing mQTL enrichments

In order to test whether mQTLs associate with specific chromatin
states or transcription factor (TF)-binding sites, we intersected our
CpGs with mQTLs with chromatin states from GM12878 (Ernst
and Kellis 2012; Kasowski et al. 2013) and our mQTLs with repro-
ducible (IDR 2%) TF binding sites and histone modification re-
gions from GM12878 (The ENCODE Project Consortium 2011,
2012; Li et al. 2011; Gerstein et al. 2012; Landt et al. 2012). If mul-
tiple data sets were available for a TF or histone modification, we
used the data set with the largest number of peaks.We used the hy-
pergeometric test, with the background defined as all variants in
variant-cytosine pairs that were tested for being mQTLs. We cor-
rected P-values using the Bonferroni correction (Shaffer 1995).
For chromatin-state enrichments, we multiplied P-values by the
number of possible chromatin states. For the TF binding site and
histone modification enrichments in GM12878, we multiplied
P-values by the number of TFs and histone modifications tested.
In addition to computing P-values, we computed fold enrichments
for chromatin states, TF binding sites, and histone modification
regions.

To test whethermQTLs associatewith open chromatin in var-
ious cell types, we intersected the variants we tested for mQTLs
with Joseph Pickrell’s list of SNPs in open chromatin regions in var-
ious cell types, which were downloaded from https://github.com/
joepickrell/1000-genomes (Bernstein et al. 2010; The ENCODE
Project Consortium 2012; Thurman et al. 2012). We used a hyper-
geometric test to evaluate the enrichment for mQTLs in variants
overlapping open chromatin regions in each cell type. We then
used a one-sided Wilcoxon rank-sum test to compare the mQTL
enrichments for LCLs versus other cell types, in which our null
hypothesis was that the median hypergeometric P-value for LCLs
is not less than the median hypergeometric P-value for other
cell types.

Computing overlap between mQTLs, eQTLs, dsQTLs,

CTCF-binding-QTLs, and GWAS hits

In order to evaluate whether mQTLs may be associated with gene
expression, open chromatin, CTCF-binding, and organismal-level
traits, we computed overlap betweenmQTLs and variants from ex-
pression QTLs (eQTLs), DNase hypersensitivity QTLs (dsQTLs),
CTCF-binding-QTLs, and genome-wide association study (GWAS)
data sets. To compute the enrichment of mQTLs in another
molecular QTL study, we used a hypergeometric test, with the
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background defined as all variants tested in both our study and the
other study. In addition to computing P-values, we computed fold
enrichments. The P-values and fold enrichments reported in the
Results section are those formolecularQTLs and variants in perfect
LD with molecular QTLs.

Becausewe do not know all of the SNPs in our study that have
been tested in a GWAS, we applied a method similar to the one
used by Lappalainen et al. (2013) for finding the enrichment of
mQTLs in GWAS hits. We first created 10,000 null sets of variants
that were tested for being mQTLs in our study, in which each var-
iant i in a null set had an MAF within 0.001 of variant i in the set
of mQTLs found in our study. Then we found the number of over-
laps between the null set and GWAS hits. The P-value was defined
as the fraction of null sets with at least as many overlaps with
GWAS hits as mQTLs have with GWAS hits. We computed the
fold enrichment for GWAS in the sameway as the fold enrichment
for molecular QTLs.

Validation of mQTLs through bisulfite pyrosequencing

Bisulfite PCR-pyrosequencing assays were designedwith PyroMark
Assay Design 2.0 (Qiagen). The regions of interest were amplified
by PCR using the HotstarTaq DNA polymerase kit (Qiagen) as fol-
lows: 15 min at 95°C (to activate the Taq polymerase), 45 cycles of
30 sec at 95°C, 30 sec at 58°C, and 30 sec at 72°C, and a 72°C 5-min
extension step; primer sequences are listed in Supplemental Table
5. For pyrosequencing, a single-stranded DNA was prepared from
the PCR product with the Pyromark Vacuum Prep Workstation
(Qiagen), and the sequencing was performed using sequencing
primers on a Pyromark Q96 MD pyrosequencer (Qiagen). The
quantitative levels of methylation for each CpG dinucleotide
were calculated with Pyro Q-CpG software (Qiagen). P-values for
associations were the asymptotic P-values of the correlations be-
tween genotype and average methylation from the pyrosequenc-
ing assay. We performed pyrosequencing on the 60 individuals
in our pool as well as on 30 additional individuals who are the off-
spring of those 60.

Data access

Whole-genome bisulfite sequencing data generated in this
study have been submitted to the NCBI Sequence Read Archive
(SRA; http://www.ncbi.nlm.nih.gov/sra) under accession number
SRP045408. Bisulfite pyrosequencing data are available in the
Supplemental Material.
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