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Abstract

Historically, serum therapy was previously 
used to combat infectious pathogens. However, 
serum sickness and anaphylaxis limited its 
broad application. The advancement of anti-
body engineering technologies has made it 
feasible to generate monoclonal antibodies. 
There are divergent methods for antibody 
engineering and optimization. In this chapter, 
we summarized the latest developments in 
engineering antibodies for infectious diseases.
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10.1	 �Introduction

The discovery of antibiotics has saved countless 
patients from pathogens. Thus, widespread avail-
ability, high efficacy and low costs make antibiotics 
a cornerstone of modern medicine. However, after 
many decades of empiric broad-spectrum antibiot-
ics use and misuse, multiple antibiotic-resistant 
pathogens are emerging. These pathogens include, 
but not limited to, methicillin-resistant staphylococ-
cus aureus, extreme drug-resistant Mycobacterium 
tuberculosis and plasmodium falciparum [17]. 
Antibiotic-resistant pathogens pose a threat to 
global health. Additionally, broad-spectrum antibi-
otics bring the risk of perturbing normal and benefi-
cial microbiome in vivo [36]. The perturbations or 
dysbioses of normal or beneficial microbiome has 
been linked to a range of diseases including 
Clostridium difficile associated diarrhea, diabetes, 
obesity and immune defects [10]. These threats on 
public health worldwide are detrimental.

Clearly, there is a need to explore new weap-
ons to combat infectious diseases. Among many 
alternatives, antibody-based therapy represents a 
major interest with the success in other diseases 
such as tumors (Opdivo and Keytruda), autoim-
mune diseases and inflammatory conditions 
(Remicade, Humira) [58]. With the advancement 
in antibody engineering, production and optimi-
zation, antibodies may hold great promise in 
combating infectious diseases. If successful, anti-
body-based therapy will provide precision weap-
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ons to destroy pathogens without comprising 
normal or beneficial microbiome.

Antibody-based therapy for infectious dis-
eases is not new. As far as in the 1890s, serum 
immunoglobulin was used to neutralize bacterial 
virulence [7]. Later, serum therapy was applied to 
a wide range of other infectious diseases such as 
meningococcal meningitis, pneumococcal pneu-
monia, streptococcal scarlet fever, varicella, 
measles, the pandemic Spanish influenza [15] 
and Ebola virus disease as well as cytomegalovi-
rus [14, 31]. However, adverse reactions such as 
serum sickness and anaphylaxis harmed the effi-
cacy of serum therapy [9]. With the discovery of 
antibiotics, serum therapy in infectious patho-
gens quickly declined. Antibiotics therapy soon 
became a mainstay of bacterial infections treat-
ment. However, the success did not last long with 
the emergence of antibiotic-resistant pathogens. 
The failure to develop new antibiotics with dif-
ferent mechanisms of actions again trapped 
patients by the super drug-resistant bacteria. 
Besides, for individuals with compromised 
immunity, antimicrobial chemotherapy provides 
a less effective treatment [28]. Obviously, antibi-
otics are ineffective at eliminating viruses. The 
emergence of antibiotics resistance calls for 
renewed efforts. Among the many options, mono-
clonal antibody (mAb) may be an alternative, 
reminiscent of the successful application of anti-
toxin in fighting against meningococcal meningi-
tis in pre-antibiotic era. Indeed, Nebacumab, the 
first human therapeutic mAb reviewed by a regu-
latory agency, was engineered for the treatment 
of sepsis and gram-negative bacteremia [61]. 
However, the CHESS (Centocor: HA-1A Efficacy 
in Septic Shock) trial conducted in the USA 
which found non-statistically significant increase 
in mortality between the monoclonal anti-
endotoxin antibody Nebacumab and placebo 
groups in patients with gram-negative bacteremia 
lead to the withdrawal of Nebacumab [20].
Currently, only two humanized antibodies 
Palivizumab and Raxibacumab are approved for 
infectious diseases. Many other engineering anti-
bodies against infectious pathogens are under 
development [2, 5, 16, 45, 67]. In this chapter, we 
summarize existing technologies for antibody 
engineering and optimization.

10.2	 �Serum Therapy in the Pre-
antibiotics Era

Before the discovery of antibiotics, convalescent 
serum was the first effective strategy to combat 
infectious pathogens such as diphtheria, tetanus, 
hepatitis B, varicella, and cytomegalovirus et  al. 
[13, 14]. It was later discovered that the mecha-
nisms behind it were predominantly due to neutral-
izing activity and effector functions of 
immunoglobulins in serum. Antibodies derived 
from immune sera are polyclonal in nature. 
However, problems such as lot-to-lot variation and 
the immune response against animal-derived anti-
bodies contributed to the reduced efficacy of serum 
therapy. Besides, the preparation of these serum 
products were expensive and labor-intensive. These 
complications together with the discovery of anti-
biotics limited the application of serum therapy in 
infectious pathogens after 1935. Nevertheless, this 
early attempt opened up the possibility of antibody-
based therapies in infectious diseases.

10.3	 �Hybridoma Technology

The year 1975 witnessed the development of 
monoclonal antibody by mouse hybridoma 
technology [40]. This innovation makes it pos-
sible to produce large quantities of antibodies 
with a defined specificity in  vitro, paving the 
way to use therapeutic monoclonal antibodies 
to treat different diseases. For example, E5 
(XOMA Corp, Berkeley, Calif), an IgM anti-
body produced by hybridoma technology, was 
designed to neutralize endotoxin, the lipopoly-
saccharide component of the outer membrane 
of the J5 mutant of Echerichia coli [29]. The 
inconclusive results generated by clinical trials 
of E5 led to the withdrawal of this anti-endo-
toxin mAbs [29, p. 5].

Mouse monoclonal antibodies are limited by 
short-half life in circulation, inability to trigger 
human effector functions and the generation of 
human anti-mouse antibodies (the HAMA 
response). In an attempt to reduce the immunoge-
nicity of therapeutic antibodies, efforts were 
directed to produce antibodies by using antibody 
engineering technology. Teng et  al. generated a 
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human monoclonal IgM antibody HA-1A by 
fusing human immunized B lymphocytes with 
heteromyeloma cells [61]. HA-1A was designed 
to fight against gram-negative bacteremia and 
shock by binding specifically to the lipid A domain 
of endotoxin. Clinical trials showed no overall 
benefit of HA-1A, but significant improvement in 
the survival rate in a subgroup of patients [76]. 
The common adverse events (hypersensitivity or 
allergic reactions) in children with meningococcal 
septic shock who were treated by HA-1A occurred 
at low rates (<2%) [26].

10.4	 �Approaches to Generate 
Humanized Antibodies

Traditional hybridoma technology generates 
antibodies with high immunogenicity. Such ther-
apeutic antibodies in  vivo invoke HAMA 
response. To attenuate the immunogenicity, sev-
eral approaches are present to reduce non-human 
fragments in antibodies (Fig. 10.1).

10.4.1	 �“CDR Grafting” Method

Many other strategies such as recombinant DNA 
methods are used to attenuate the human immune 
response, by reducing levels of non-human frag-
ments in mAbs. Chimeric antibodies are pro-
duced by replacing mouse constant region with 
the human constant region. The generated anti-

bodies with mouse variable regions and human 
constant regions were perceived as less immuno-
genic than mouse monoclonal antibodies. 
Nonetheless, human anti-mouse response still 
exists with the use of chimeric antibodies.

To further minimize the mouse component in 
the antibodies, murine-derived CDR loops 
responsible for antigen binding were grafted into 
the human variable-domain framework. Caution 
should be noted that such replacements often 
change the structural relationship between CDRs 
and framework regions (FRs). Additionally, the 
change of CDR loops may influence binding 
properties of humanized Abs [3]. Thus, addi-
tional molecule engineering is needed to restore 
the binding capacity of humanized antibody [53].

“CDR grafting” method are successfully used  
to generate “humanized” antibodies which are 
able to evoke immune effector functions such as 
ADCC and phagocytosis more effectively. 
However, the murine-derived CDR loops can still 
evoke the immune response in patients. To mini-
mize the anti-idiotypic response in vivo, several 
strategies were exploited.

10.4.2	 �Specificity-Determining 
Residue (SDR) Grafting

In most cases, only part of the entire CDR residues 
are involved in antibody-antigen complexes. These 
residues located in the region of high variability are 
designated as specificity-determining residues 

Fig. 10.1  Chimeric antibodies and humanized antibodies
The orange segments originates from murine, the green segments are from human.
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(SDRs) [38]. Grafting the murine-derived SDRs 
onto the frameworks of human antibody generates 
humanized antibody with minimized immunoge-
nicity. However, this strategy needs the identifica-
tion of SDRs. Besides, the structure features of 
the target antibody should be preserved. Residues 
which are involved in VL-VH contact should also 
be preserved. Considerations should be taken that 
SDR grafting strategy usually generates antibod-
ies with a reduced antigen-binding capacity. Thus, 
additional in vitro molecule engineering is needed 
to enhance antigen-binding affinity [23].

10.4.3	 �Framework Shuffling

“Framework shuffling” is another humanization 
approach by synthesizing a combinatorial library 
comprising CDRs of the non-human antibody 
fused in frame to pools of synthetic human germ-
line frameworks. The corresponding libraries are 
then screened for antibodies with specific bind-
ing properties. This approach is simple, without 
requiring prior antibody structural knowledge, 
CDRs analysis or framework design [21, 22].

10.4.4	 �Human String Content 
Optimization (HSC)

Lazar et al. came up with a new paradigm termed 
“human string content” (HSC) for reducing 
immunogenic potential [43]. This approach is 
based on a metric of antibody humanness by 
comparing the non-human sequence with the 
human germline gene repertoire. The diversity of 
substitutions in a given variable heavy or light 
chain are scored as HSC. The targeted sequence 
is then humanized by maximizing its HSC.

10.4.5	 �Superhumanization

Superhumanization can be used to humanize 
mouse antibody. This method relies on compari-
son of CDRs. First, hypervariable loops of mice 

are compared with those of human. Variable 
sequences of human which are similar or identi-
cal to mice are then selected. Then, within the 
selected genes, those who share the highest 
homology to the mice sequence are used to con-
struct a humanized antibody. Using this approach, 
antibodies with designed antigen-binding speci-
ficity and neutralizing activity can be generated 
[59].

10.5	 �Engineering Fully Human 
Monoclonal Antibodies

Although several humanized antibodies are 
approved for marketing, to some extent, human-
ized antibody still elicits human anti-human anti-
bodies (HAHAs) response. For example, a patient 
after receiving adalimumab treatment (an effec-
tive treatment for rheumatoid arthritis) over a 
period of time, lost his initial response to adalim-
umab due to the formation of HAHAs [4].
Besides, humanization of antibodies can be labor 
intensive, comprising complex procedures 
including sequence analysis, developing engi-
neering technology, assessing binding properties, 
and evaluating HAHAs response. Therefore, 
developing fully human antibodies is a long 
pursuit. Several technologies including display 
technologies, transgenic animals, immortalized 
B cells and transchromosomal calves are avail-
able to generate fully human antibody.

10.5.1	 �Display Technologies

In vitro display technologies are among of the 
most commonly used methods for fully human 
antibody generation. Advantages of in vitro dis-
play technologies are overcoming immunologi-
cal tolerance and generating antibodies against 
defined antigens. Specifically, phage and yeast 
display systems are best exemplified. Other dis-
play systems such as ribosomes, bacteria and 
virus display are also used to display repertoires 
of single-chain variable antibody fragments 
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(scFvs), antigen-binding fragments (Fabs) or 
domain antibodies (Dabs) on their surface.

These techniques mainly contained three 
steps:

	1.	� Antibody Library Construction

Amplify human immunoglobulin variable 
regions derived from human B cells.

	2.	� Surface Display Vector Construction

The antibody library is cloned into the plas-
mid and transformed (transfected) in the host cell 
to construct surface display vector.

	3.	� Desired Antibody Screening

Desired antibodies are isolated by panning the 
library against the target antigen/epitope. 
Antibodies that don’t bind to the antigen are 
washed away and the binders are retained. The 
corresponding genes of variable regions are 
cloned into whole human IgG expression vectors 
and expressed in orthologous mammalian system 
to generate human mAbs.

Huse et  al. first introduced a lambda phage-
based system which expressed a collection of 
functional antibody fragments in Escherichia 
coli [32]. However, it was laborious to distribute 
the libraries on agar plates. Besides, this method 
only assessed repertoires of roughly 1 × 107, less 
than the natural antibody repertoire of 1 × 108 in 
each individual [58]. Later, progress was achieved 
in the area of display technologies by extending 
the library size and quantity. Theodore et al. pro-
duced mAbs against the West Nile virus (WNV) 
E protein by yeast surface display [47]. In vitro 
studies showed that one mAb could neutralize 10 
different strains of WNV [47]. The animal exper-
iment demonstrated the efficacy of the mAb 
against WNV by administering the mAb in a 
mouse model of WNV infection [47].

Different display systems may differ in anti-
body folding efficiency, post-translational modi-
fication and epitope accessibility which may 

generate antibodies with different binding prop-
erties [46]. For example, Bowley et al. compared 
yeast display and phage display by using the 
same HIV-1 immune scFv cDNA library and the 
same selecting antigen (HIV-1 gp120) [11]. Their 
results showed that yeast display system gener-
ated more full scFvs than phage display system 
[11]. Besides, yeast display system produced 
many more novel antibodies [11].

There are many display platforms, including 
phage display, ribosome display, yeast display 
et  al. Among these display systems, phage 
display-based selections are most often preferred 
for the generation of fully human antibodies. 
Other display methods can be used as comple-
mentary methods. Display technologies have 
become a standard method to generate antibodies 
with high affinity. However, a drawback is that 
the antigen must be known prior, in order to 
select for antibodies with high affinity.

10.5.2	 �Transgenic Mice

Another strategy to generate human mAbs is by 
using human immunoglobulin transgenic mice 
[12]. With the development of embryonic stem 
cell and gene transfer methods, transgenic mice 
are generated to carry human immunoglobulin 
gene. These transgenic mice have a normal 
humoral immune response [34]. B cells that pro-
duce human antibodies are harvested from immu-
nized transgenic mice, and then cloned either as 
hybridomas or in  vitro combinatorial library. 
Antibodies obtained via transgenic mice are of 
good antigen-binding properties with low immu-
nogenicity. There are three main transgenic mice 
platforms including XenoMouse, HuMab mouse 
and VelociMouse [8, 24].

However, flaws may exist when using trans-
genic mice method. Immune tolerance may arise 
when using immune antigens that are highly 
homologous to mouse. Thus, more immuniza-
tions or antibody screens are needed.

Transgenic mice are used to generate human 
antibodies against infectious pathogens including 
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bacteria and virus. For example, Coughlin et al. 
generated a human monoclonal antibody against 
severe acute respiratory syndrome coronavirus 
(SARS-CoV) using XenoMouse [18]. Paul et al. 
generated a Human mAb (V2L2-MD) by  
immunizing humanized VelocImmune mice.  
The generated mAb is specific for P. aeruginosa 
PcrV, and can protect murine infection models 
from P. aeruginosa challenge [66].

10.5.3	 �Immortalized B Cells

Memory B cells are produced after infection or 
vaccination, and these antigen specific B cells 
could persist for a lifetime. Thus, memory B cells 
can be used as a source of human mAbs. After 
immortalization by Epstein Barr Virus (EBV), 
the antigen-specific B cells can be cultured to 
secrete a large amounts of antibodies. The sur-
face immunoglobulins of EBV-immortalized B 
cells can be used to select antigen-specific B cells 
by fluorescence-activated cell sorting (FACS). 
Traggiai E et al. used this method to isolate 35 
human monoclonal antibodies against SARS-
CoV, and found one antibody exerted effective 
protection in  vivo [64]. Selection of antibodies 
against H5N1, HCV, HIV and CMV by EBV-
immortalized B cells were also reported [55, 57, 
62, 68].

Producing human antibodies by EBV-
immortalized B cells was limited by the low effi-
ciency of EBV-immortalization. This limitation 
is overcome with the discovery that a TLR ago-
nist can increase the efficiency of EBV B-cell 
immortalization and promote cloning of immor-
talized B cells [64]. Now, EBV-immortalized B 
cells has become an interesting shortcut to gener-
ate human monoclonal antibodies by isolating 
memory B cells from a donor who is infected or 
vaccinated by infectious pathogens.

10.5.4	 �Transchromosomal Calves

Transchromosomal calves are recently used to 
produce large-amounts of human mAbs by trans-
ferring mammalian artificial chromosome vectors 

carrying human Ig loci to bovine primary fetal 
fibroblasts to produce cloned transchromosomic 
(Tc) calves [42]. The cloned Tc calves will con-
tain a high rate of artificial chromosome positive 
cells. The Ig loci transferred in the cells undergoes 
rearrangement, diversification and expression. 
Secreted immunoglobulins in circulation will 
then be detected [42]. Production of Tc cattle is 
limited by the mitotic instability of human micro-
chromosomes and the difference in immunophys-
iology between cattle and humans [42].

10.5.5	 �Immunospot Array Assay 
on a Chip (ISAAC)

Immunospot array assay on a chip (ISAAC) is a 
rapid and efficient method to generate antibodies 
from single cells [37]. This method uses a micro-
array chip whose surface is coated with antibod-
ies against immunoglobulins to trap 
antibody-secreting cells (ACSs) [37]. ACSs are 
cultured on a chip for several hours. The antibod-
ies secreted by ACSs bind to labeled antigens to 
form circular spots which are easily identified 
[37]. Then, the antigen-specific ASCs are 
retrieved to obtain antibody cDNA. The obtained 
antibody cDNA is inserted into expression vec-
tors, and is transfected into cells for expression. 
The secreted antibodies can be detected by 
ELISA assay [37]. Jin et al. applied this system to 
produce human mAbs against viruses within a 
week, demonstrating ISAAC to be an alternative 
strategy for human mAbs generation [37].

10.5.6	 �New Technologies 
for Monoclonal Screening 
and Discovery

	1.	 Next-generation sequencing technologies

Traditional in  vitro monoclonal antibodies 
engineering technologies are laborious which 
depends on high-throughput screening of immor-
talized B cells. Reddy et  al. developed a new 
method for antibody isolation bypassing anti-
body screening [50]. They used next generation 
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sequencing and bioinformatics analysis to anal-
yse the variable-gene repertoires from bone mar-
row plasma cells. They found that the variable 
region of immunoglobulin derived from immu-
nized mice became highly polarized. The high-
throughput DNA sequencing enabled them to 
identify several abundant VL and VH gene 
sequences rapidly [50]. VL and VH genes with 
relative frequencies within the repertoire were 
paired and synthesized by oligonucleotide and 
PCR assembly. Single-chain variable fragments 
and full-length IgG were expressed in expression 
systems. Most of the antibodies produced by this 
method were antigen specific [50].

Next-generation sequencing is also applied to 
sequence single antibody-secreting B cells. 
DeKosky et  al. used next-generation sequencing 
technologies to identify large numbers of VH and 
VL in a single B cell repertoire [25]. They first iso-
lated single B cells from tetanus toxoid immunized 
human by depositing B cells in a high-density 
microwell plate. mRNA was then captured and 
reverse transcribed by RT-PCR.  The sequence 
information of the transcripts was analyzed by 
next-generation sequencing technology [25].

	2.	 Mass spectrometry

Wine et  al. combined next-generation 
sequencing technology with mass spectrometry 
to deconvolute the polyclonal serum response 
after immunization [69]. They sequenced cDNA 
derived from desired B lymphocyte to generate a 
database of unique V genes by Roche 454 
sequencing. Serum IgGs were pepsin-digested to 
obtain F(ab)2. Antigen specific F(ab)2 fragments 
were purified by standard antigen-affinity chro-
matography and were analyzed by bottom-up, 
liquid chromatography-high-resolution tandem 
mass spectrometry. By mapping peptides mark-
ing unique VH CDRH3 sequences, this method 
can be used to identify a set of V-genes constitut-
ing the serum polyclonal responses [69].

	3.	 Fluorescence-activated cell sorting (FACS)

Single B cells from defined subpopulations 
can be isolated by FACS [63]. The full-length 

variable region gene transcripts were obtained 
and amplified by RT-PCR. In vitro antibody were 
subsequently generated by eukaryotic expression 
system [63].

10.6	 �Prolong Half-Life

Once the engineered antibodies enter into the cir-
culation, they would be eliminated by proteoly-
sis, renal elimination and hepatic elimination, as 
well as neonatal Fc receptor-mediated endocyto-
sis. To prolong serum circulation of engineered 
antibodies, several strategies are proposed. 
Extending serum half-life of therapeutic antibod-
ies could reduce of the number of applications 
and the doses.

10.6.1	 �PEGylation

Attaching highly flexible hydrophilic molecules 
such as polyethylene glycol (PEG) could increase 
the hydrodynamic volume of engineered antibod-
ies [27]. The increased volume thus improves the 
serum half-life. Careful attention should be paid 
that the number and size of PEG labeled may 
decrease the activation or binding affinity of the 
engineered antibodies [41]. Different coupling 
methods including random and site-directed 
approaches exist. Site-directed approach may be 
a better method to conjugate a single PEG chain 
to the antibody.

10.6.2	 �Fusion to Human Serum 
Albumin

Fusing human serum albumin to engineered anti-
bodies provides an alternative way to extend 
serum half-life of antibodies. The binding site of 
albumin on FcRn does not alter the affinity for 
antigen or the affinity for FcRn. Covalent linkage 
of albumin can be achieved either by chemical 
coupling or genetic engineering methods. 
Albumin and IgG taken up by cells through mac-
ropinocytosis will bind to the FcRn of the early 
endosome. This binding will protect IgG from 
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degradation in the lysosomal compartment. 
Antibodies are then redirected to the plasma 
membrane and released back into the blood.

10.7	 �Affinity Optimization

Humanization may hamper the affinity of anti-
bodies. Sometimes, the affinity of engineered 
antibodies may not satisfy actual needs. Affinity 
optimization is, therefore, desired. Most affinity 
optimization methods depend on optimizing the 
CDR residues [71]. Targeted or random mutagen-
esis is used to generate libraries of variants. 
Normally, libraries of individual CDRs are 
cloned and screened for improved binding to 
antigens. Yang et al. successfully generated high 
affinity human antibodies against human enve-
lope glycoprotein gp120 of HIV-1 by saturation 
mutagenesis of CDRs [71]. The Fab fragments 
were displayed and selected for improved bind-
ing to the immobilized gp120 [71]. Among the 
CDR residues, residues in CDR3 are often con-
centrated for affinity optimization [52]. It is spec-
ulated that key variants in CDR3 regions play a 
major role in antigen affinity mainly for the 
reason that CDR3 regions are located in the 
center of the antibody combining site [52].

10.8	 �Fc Engineering

The therapeutic efficacy of the antibody is 
directly influenced by the affinity of antibodies to 
pathogens. However, effector functions mediated 
by the Fc domain also modulates the efficacy of  
these antibodies. Fc domain plays an important 
role in opsonophagocytic killing activity, toxin 
neutralization efficiency [1, 72]. Additionally, Fc 
domain is involved in mediating effector func-
tion, namely complement-dependent cytotoxicity 
(CDC), antibody-dependent cell-mediated cyto-
toxicity (ADCC) and antibody-dependent cell 
phagocytosis (ADCP).

Optimizing the affinity of the Fc domain for Fc 
receptors is an alternative to increase the efficacy 

of therapeutic antibodies [56]. Several approaches 
including alanine scanning, site-directed muta-
genesis, computational structure-based design 
and selection-based method are available to 
improve the affinity for Fc receptor [49].

Besides, the N-linked glycans in the Fc region 
of IgG also influence the interaction of the Fc 
region with its receptors. IgG1 antibodies that are 
deficient in fucose attached to the Asn297-linked 
carbohydrate show improved binding affinities 
with FcγRIIIA receptor [54]. Several different 
methods can be used to modulate the fucose con-
tent on the IgGs. Different expression platforms 
may generate antibodies with different fucose 
content. For example, IgG produced by rat 
hybridomas technologies often has low fucose 
content [33]. Yeast-and plant-based systems pro-
duce antibodies with quite different glycosyl-
ation patterns [19, 44].

Antibodies of IgG isotype have a prolonged cir-
culation through FcRn-mediated recycling. 
Research showed that some mutations in Fc 
domain may increase the affinity of Fc to its recep-
tor at acidic pH instead of neutral pH. Incorporating 
such mutations in the Fc domain of IgG will 
extend the half-life of antibodies [75].

10.9	 �Immunoglobulin Isotype 
Selection

There are five major classes of immunoglobulin: 
IgG, IgA, IgD, IgE and IgM. Among these, the 
IgG class is the most preferred to develop thera-
peutic antibodies.

IgG contains four isotypes: IgG1, IgG2, IgG3 
and IgG4. The main differences between IgG iso-
types are located in the Fc domain. To date, most 
approved human mAbs are mainly of IgG1. 
Palivizumab (Synagis; MedImmune Inc) approved 
against RSV infections is a humanized IgG1 
monoclonal antibody [30]. IgG1 is preferred for 
the reason that IgG1 can induce robust cell killing 
activities by activating various effector cells.

IgG2 is chosen as a therapeutic backbone when 
weak effector function is needed. Now, several 
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therapeutic IgG2 antibodies are either on market 
or in clinical development [51]. However, IgG2 
dimers occur in vivo naturally. A more in-depth 
analysis by cleaving recombinant IgG2 suggested 
that Cys residues in the hinge are involved in the 
formation of covalent dimers. Besides, the 
reduced environments in vivo facilitate the forma-
tion of IgG2 dimers [74]. The mechanism of 
dimerization and the exact structure of IgG2 
dimers have yet to be investigated. The report of 
IgG2 disulfide linkages interconverting in  vivo 
may shed some light on IgG2 dimer formation 
[74]. One consequence of IgG2 dimerization is to 
enhance antibody avidity, which may play a better 
protective role [51]. IgG2 dimers exist at low lev-
els (<1%) in  vivo, and their speculative roles 
should not be magnified [73].

IgG3 is less chosen as a backbone of thera-
peutic antibodies for several reasons. First of all, 
IgG3 accounts for a minor component of all 
IgGs in humans (~10%) [51]. Secondly, IgG3 is 
susceptibility to proteolysis and has a short half-
life of ~7  days in  vivo. Finally, IgG3 displays 
extensive polymorphism, within the constant 
domains [35].

IgG4 can’t activate the classical complement 
pathway effectively and has reduced effector 
function [65]. Besides, IgG4 antibodies exchange 
half-molecules in vivo to form undesired cross-
link [70]. To abrogate half-molecule exchange of 
IgG4 and to eliminate the possible unseen adverse 
effects, Ser 228 to Pro (S228P) mutation is intro-
duced by antibody engineers to optimize IgG4-
based therapeutic antibodies. This mutation not 
only reduces half-molecule change to a large 
extent, but also extends serum half-life.

10.10	 �Bispecific Antibodies

Bispecific antibodies (BsAbs) have two different 
binding specificities, which enables them to 
simultaneously recognize two different media-
tors/pathways that exert important roles in patho-
genesis [27]. This dual binding capacity will 
increase targeting specificity or redirect specific 

immune cells to pathogens or infected cells, thus 
enhancing pathogen elimination. Recently, bispe-
cific antibodies BiS4αPa against Pseudomonas 
aeruginosa was generated [39]. BiS4αPa was 
designed to bind to PsI and PcrV. PsI is an extra-
cellular polysaccharide which involves in 
immune evasion and biofilm formation. PcrV 
takes part in the secretion of virulence factors. 
Animal studies showed that binding to PsI and 
PcrV led to superior protective activity of 
BiS4αPa [39]. Now BiS4αPa is in clinical candi-
date for the treatment of P. aeruginosa [39]. Berg 
et al. constructed a bispecific antibody by linking 
one heavy/light chain pair from an antibody 
against CD3 on cytotoxic T cells to a heavy chain 
whose variable region was replaced by sequence 
from CD4 [6]. The constructed antibody has dual 
binding specificity with one arm binding to CD3 
on cytotoxic T cells and the other arm which con-
tained sequences from CD4 binding to viral 
envelope protein gp120 of HIV [6]. Thus, the 
bispecific antibody redirected cytotoxic T cells to 
HIV-infected cells whose surface express integral 
viral proteins to eliminate pathogens. Bispecific 
antibodies hold great promise in the elimination 
of HBV, bacteriophages and other pathogens  
[48, 60].

The formats of bispecific antibodies can be 
roughly divided into two categories: IgG-like 
molecules and non-IgG-like molecules 
(Fig.  10.2). Divergent approaches are used to 
engineer bispecific antibodies (Table  10.1). For 
details, please refer to Fan et al. [27].

10.11	 �Conclusion

In the era of antibiotic resistance, antibody-based 
therapy holds great promise in treating infectious 
pathogens. It is a holy grail to produce human 
antibodies with high therapeutic efficacy. The 
therapeutic potential of antibodies is derived 
from less immunogenicity, proper serum circu-
lating time, high antigen-binding affinity, exqui-
site specificity and robust effector function. 
Advancement in antibody engineering technolo-
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gies makes it possible to produce antibodies tai-
lored to different infection pathogens. Over the 
past decades, the “magic bullet” has obtained 
fruitful success in a wide range of diseases 
including tumors, autoimmune diseases and 
inflammatory conditions. However, in the field of 
infections, there is a gap between preclinical 
researches and clinical applications. Many engi-
neered antibodies are still making their way 

through preclinical/clinical tests, only few are 
approved for market. Here, we provided a review 
of technologies for antibody engineering and 
optimization. We are optimistic about the appli-
cation of engineered antibodies to treat infectious 
pathogens. With the emergence of new infectious 
pathogens and multidrug resistant bacterial, engi-
neered antibodies may offer another choice to 
combat these threats.

Fig. 10.2  Formats of bispecific antibodies

G. Fan and J. Li
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