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Qualitative speed‑accuracy 
tradeoff effects that cannot be 
explained by the diffusion model 
under the selective influence 
assumption
Farshad Rafiei* & Dobromir Rahnev

It is often thought that the diffusion model explains all effects related to the speed-accuracy tradeoff 
(SAT) but this has previously been examined with only a few SAT conditions or only a few subjects. 
Here we collected data from 20 subjects who performed a perceptual discrimination task with five 
different difficulty levels and five different SAT conditions (5000 trials/subject). We found that the five 
SAT conditions produced robustly U-shaped curves for (i) the difference between error and correct 
response times (RTs), (ii) the ratio of the standard deviation and mean of the RT distributions, and (iii) 
the skewness of the RT distributions. Critically, the diffusion model where only drift rate varies with 
contrast and only boundary varies with SAT could not account for any of the three U-shaped curves. 
Further, allowing all parameters to vary across conditions revealed that both the SAT and difficulty 
manipulations resulted in substantial modulations in every model parameter, while still providing 
imperfect fits to the data. These findings demonstrate that the diffusion model cannot fully explain 
the effects of SAT and establishes three robust but challenging effects that models of SAT should 
account for.

Humans have the ability to shorten the time it takes to decide at the expense of the decision’s accuracy, a phe-
nomenon known as "speed-accuracy tradeoff " (SAT)1. SAT is a ubiquitous phenomenon that occurs in humans2, 
monkeys3, rodents4, and even insects5. Further, SAT is observed for virtually all types of decisions from pollina-
tors choosing between flower species to simple perceptual judgments6. Understanding the mechanisms behind 
SAT has thus been a central goal of computational models for decades7.

The dominant way of conceptualizing of SAT is within the context of sequential sampling models8, and espe-
cially their most prominent member—the diffusion model9,10. The diffusion model conceptualizes the decision 
process as a noisy accumulation to a boundary. The boundary can be adjusted at will by the subject such that 
a low boundary would produce fast but inaccurate decisions, whereas a high boundary would produce slow 
but accurate decisions (Fig. 1). This mechanism provides a simple and intuitive way of accounting for SAT. In 
addition to the boundary (denoted by the parameter a ), the diffusion model has parameters for drift rate ( v ), 
non-decision time ( Ter ), starting point of the accumulation ( z ), as well as variability parameters for the drift rate 
( η ), the non-decision time ( st ), and the starting point of the accumulation ( sz).

Beyond simply accounting for the basic SAT effect of mean response time (RT) trading off against mean 
accuracy, the diffusion can reproduce many behavioral findings related to RT8. The model is thought to explain 
(i) the difference between the mean RT for error and correct trials, (ii) the relationship between the mean and 
standard deviation of RT distributions, and (iii) the shape of the RT distributions. We briefly review the research 
on each of these three areas below.

Explaining the difference between the mean RT for error and correct trials has been a driving force in the 
development of the diffusion model. Early models from the sequential sampling framework did not contain any 
variability parameters11–13. These models predicted that error and correct trials should produce the same mean 
RTs. However, depending on the condition, error RTs are either faster or slower than correct RTs14. To allow 
the model to explain these effects, two variability parameters were added. Specifically, drift rate variability was 
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introduced to account for slow error trials10 and subsequently starting point variability was added to account for 
fast error trials15. (A third variability parameter—non-decision time variability—was later introduced to account 
for very fast RTs16). Therefore, given that two of its seven parameters can be directly traced to attempts to explain 
differences between mean RTs for error and correct trials, the full diffusion model should be expected to fit very 
well the pattern of RT differences between error and correct trials as a function of SAT.

The diffusion model has also been praised for explaining the relationship between the mean and stand-
ard deviation (SD) of the RT distribution. RT distributions with a low mean tend to have small SDs, whereas 
RT distributions with a high mean tend to have large SDs17. The diffusion model has been shown to make a 
strong prediction about the exact relationship between these two quantities: there should be a linear relationship 
between the mean and SD of the RT distributions18. In an influential paper, Wagenmakers and Brown19 examined 
a number of different experimental manipulations and concluded that the relationship between mean and SD 
of the RT distributions is indeed linear (we return to these results in the Discussion). However, Wagenmakers 
and Brown did not specifically examine the effects of SAT manipulations. Indeed, they examined ten different 
datasets but only one of them featured a SAT manipulation and that manipulation only included two levels of 
SAT (fast vs. accurate). Therefore, it remains unclear whether the same linear relationship between RT mean 
and SD would be observed if a wider range of SAT levels is examined.

Finally, the diffusion model is thought to explain the shape of the RT distributions. In general, RT distri-
butions tend to have a characteristic shape: they extend further to the right than to the left17. Mathematically, 
this characteristic of a distribution is quantified using the distribution’s skewness, which is a measure of the 
asymmetry of the distribution about its mean (distributions with heavy right tails have positive skewness). The 
diffusion model is thought to fit precisely the shape of individual RT distributions10. For example, one paper 
examined true and certain fake RT distributions and showed that the diffusion model can account for the true 
ones but not for the fake ones20 (though, it should be noted that only one parameter was allowed to vary in those 
fits). Nevertheless, the skewness of RT distributions as a function of SAT has not been described and it is unclear 
whether the diffusion model can account for the change of skewness with SAT.

In the current study, we empirically tested how SAT affects the RT difference between error and correct trials, 
the relationship between the mean and SD of RT distributions, and the skewness of the RT distributions. We 
conducted a large study in which 20 subjects completed 5000 trials each. Each subject experienced five different 
SAT settings spanning from extreme speed pressure (designed to produce performance close to chance) to no 
speed pressure at all. In addition, we used five different levels of contrast that allowed us to examine whether 
the patterns of results depend on task difficulty. To anticipate, we found that SAT led to U-shaped functions for 
the mean RT difference between error and correct trials, the ratio of mean to SD of the RT distribution, and the 
skewness of the RT distribution. Critically, the diffusion model where only drift rate varies with contrast and 
only boundary varies with SAT could not account for any of these results. Further, allowing all parameters to 
vary across conditions showed violations of the “selective influence” assumption21—the notion that SAT and 
stimulus contrast should only affect the boundary and drift rate, respectively—for every single model parameter. 
These results demonstrate that the current version of the diffusion model cannot fully account for the effects of 
SAT on behavior.

Figure 1.   Schematic of the diffusion model. According to the diffusion model, perceptual decisions are the 
result of a noisy accumulation-to-bound process. An example trial of such a process is depicted. The standard 
diffusion model has seven free parameters: boundary ( a ), drift rate ( v ), non-decision time ( Ter ), starting point 
of the accumulation ( z ), as well as variability parameters for the drift rate ( η ), the non-decision time ( st ), and 
the starting point of the accumulation ( sz ). The drift rate is assumed to have Gaussian variability across trials, 
whereas the starting point and non-decision time come from uniform distributions. Under a selective influence 
assumption in the diffusion model framework, SAT manipulations result in a change in the boundary parameter 
a and difficulty manipulations result in a change in the drift rate parameter v.
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Results
We collected a large sample of 20 subjects each completing 5000 trials over five different sessions. Subjects 
performed a simple perceptual task that required discriminating between clockwise and counterclockwise ori-
entations of a briefly presented (33 ms) Gabor patch (Fig. 2). Each subject experienced five SAT levels and five 
Gabor contrasts creating 25 independent conditions.

Behavioral results.  Five subjects were unable to provide sufficiently fast decisions in the “extremely fast” 
SAT condition (individual data are plotted in Supplementary Fig. 1). These five subjects had the five highest 
average RTs in the “extremely fast” condition (mean across the five contrast levels = 378 ms), as well as the five 
highest d’ values (mean d’ across the five contrast values = 1.04). These values were considerably higher than 
the rest of the subjects (mean RT across contrasts = 277 ms; mean d′ across contrasts = 0.15). In fact, these five 
subjects exhibited performance in the “extremely fast” condition that was in line with the “fast” condition for the 
rest of the subjects (mean RT across contrasts = 384 ms, mean d′ across contrasts = 0.93). Therefore, in order to 
keep the conditions as different as possible between subjects, we excluded these five subjects from further analy-
ses. However, we repeated all analyses from the rest of the paper without any exclusions and found very similar 
results (Supplementary Fig. 2).

Several of the qualitative results discussed below are driven by the “extremely fast” condition. One potential 
concern is that subjects may treat that condition as a purely detection task and thus perform in a qualitatively 
different fashion. However, even after the exclusions, the remaining subjects performed consistently above chance 
in the “extremely fast” condition (t(14) = 3.80, p = 0.002, Cohen’s d = 0.98), thus demonstrating that they did not 
treat this condition as a pure detection task. Moreover, if the “extremely fast” condition is indeed qualitatively 
different, one would expect the (d’,RT) pairs on that condition to form a separate cluster, while the same pairs 
for the rest of the conditions should lie on a single continuum. However, plots of each individual’s (d′, RT) pairs 
demonstrated the existence of a single continuum along all conditions (Supplementary Fig. 3). Therefore, it does 
not appear that the “extremely fast” condition is qualitatively different from the remaining conditions. Conse-
quently, we analyze all SAT conditions together but, for completeness, we also examine diffusion model fits that 
ignore the “extremely fast” condition.

d′‑RT curves.  To examine the effects of SAT on performance, we first plotted the mean RT against d’ for each 
contrast and SAT condition (Fig. 3) and performed repeated measures ANOVAs with factors SAT and contrast. 
We found that, not surprisingly, higher contrasts resulted in lower RT (F(4,56) = 100.7, p = 6.8 × 10–25) and higher 
d′ (F(4,56) = 415.4, p = 6.6  ×  10–41), whereas higher speed stress resulted in both lower RT (F(4,56) = 206.03, 
p = 8.7 × 10–33) and lower d′ (F(4,56) = 233.97, p = 3.1 × 10–34). Thus, our SAT manipulation and contrast levels 
were effective in altering subjects’ speed focus and the difficulty of the task, respectively.

As can be appreciated from Fig. 3A, the “extremely fast” condition produced performance very close to chance 
level with mean RT between 250 and 300 ms. Further, the increase in d’ for SAT conditions with a progressively 
higher emphasis on accuracy was roughly linear with mean RT. We tested for linearity by fitting a quadratic model 

Figure 2.   Trial sequence. (A) An example trial. Subjects indicated whether a Gabor patch was oriented 
counterclockwise (“left”) or clockwise (“right”) from vertical. The Gabor patch was presented for 33 ms and was 
preceded by a fixation period of 1000 ms. After indicating their response, subjects received detailed feedback on 
their performance. (B) The experiment included five different speed-accuracy tradeoff conditions—“extremely 
fast,” “fast,” “medium,” “slow,” and “extremely slow.” Each condition was blocked and featured a different penalty 
on response time (RT) computed in seconds. Acc, accuracy on the current trial (1 for correct responses, 0 for 
wrong responses).
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y = ax2 + bx + c to the data from each contrast of each subject and found that the average quadratic parameter 
a across the five contrasts was not significantly different from zero (t(14) = − 1.18, p = 0.26). Further, the same 
parameter was not significantly different from zero for any of the five contrasts individually (all p’s > 0.05). These 
results suggest that, at least in our specific task, SAT induces a roughly linear relationship between d′ and mean 
RT within the range of tested SAT conditions. (Note that it is possible to add SAT conditions that force subjects 
to be extra slow thus “extending” the d′-RT curve to the right. Such conditions will likely produce minimal 
gains in d’ but substantial increases in mean RT, thus breaking the linear relationship between d′ and mean RT).

RT difference between error and correct trials.  Having established the success of our manipulations, we turned 
to quantifying how SAT influences the difference in mean RT between error and correct trials, which has been a 
driving force in the development of the diffusion model. We first examined whether the RT difference between 
error and correct mean RTs is sensitive to SAT and contrast. Indeed, a repeated measures ANOVA revealed both 
a main effect of SAT (F(4,56) = 28.2, p = 7.4 × 10–13) and a main effect of contrast (F(4,56) = 5.74, p = 0.0006), as 
well as a significant interaction between the two (F(14,48.9) = 1.86, p = 0.0004) (Fig. 3B). Critically, the RT dif-
ference appeared to show a robustly concave shape as a function of SAT. We quantified this effect by fitting a 
quadratic function to the data from each subject and each contrast level. We found that the quadratic coefficient 
averaged across contrasts was significantly positive (t(14) = 5.46, p = 0.00008), which indicates the presence of 
robustly U-shaped curves. When each contrast was examined separately, only contrast 1 did not produce a sig-
nificantly U-shaped function (t(14) = 1.55, p = 0.14), whereas contrasts 2 through 5 each produced significantly 
U-shaped curves (p = 0.00001, 0.00001, 0.0001 and 0.026, respectively).
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Figure 3.   Effects of SAT. (A) The effect of SAT and contrast manipulations on d’ and mean RT. Higher contrasts 
resulted in higher d′ and lower RT, whereas stronger accuracy stress led to higher d′ and higher RT. All d′-RT 
curves are approximately linear. (B) RT difference between error and correct trials. The RT difference formed 
a robustly U-shaped curve as a function of SAT such that the minimum value (where error RTs are faster than 
correct RTs) occurred for the “fast” condition. On the other hand, the lack of any speed stress in the “extremely 
slow” condition resulted in error RTs being slower than correct RTs. (C) Ratio between the SD and mean of RT 

distributions as a function of SAT. The SD(RT)
mean(RT)

 ratio exhibited a U-shaped curve as a function of SAT for all 

contrasts. In addition, the ratio monotonically decreased with higher contrasts. (D) RT distribution skewness. 
The skewness of the RT distribution formed robustly U-shaped curves for all contrasts with the minimum 
skewness occurring for the “fast” condition. In all subplots, lines represent different contrast levels, symbols 
represent different SAT conditions (circle: “extremely fast” condition; triangle pointing down: “fast” condition; 
triangle pointing up: “medium” condition; square: “slow” condition; star: “extremely slow” condition), and error 
bars represent S.E.M.
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The overall U-shaped curve for the RT difference between error and correct trials appears to be the result of 
three different effects. First, the difference between error and correct RTs starts close to zero for the “extremely 
fast” condition (SAT condition 1 in Fig. 3B). There is a simple explanation for this effect: Performance in the 
“extremely fast” condition is close to chance and in such a regime there cannot be any differences between error 
and correct trials. Indeed, even though the average difference in RT for the “extremely fast” condition (− 12.9 ms) 
was significantly negative (t(14) = − 3.2, p = 0.006), this effect was driven by subjects who had above-chance 
performance as revealed by a strongly negative correlation between d′ and RT difference for the “extremely fast” 
condition (r = − 0.83, p = 0.0001). Second, the difference between error and correct RTs decreases as speed stress 
relaxes and performance becomes higher than chance in the “fast” condition (see Fig. 3A). Indeed, in our data-
set the RT difference reaches its minimum for the “fast” condition (average difference = − 38 ms, t(14) = − 8.85, 
p = 4.2 × 10–7). Third, as the speed stress is further relaxed, there is a monotonic increase in the difference 
between error and correct RTs until it becomes significantly positive for the extremely slow condition (average 
difference = 51 ms, t(14) = 4.34, p = 0.0007). We speculate about the reasons for these effects in the “Discussion”.

Ratio between the standard deviation and mean of RT distributions.  Beyond its ability to explain the difference 
between error and correct RTs, the diffusion model has been praised for its ability to predict a linear relationship 
between the mean and SD of RT distributions8. However, no previous paper has examined how SAT affects the 
SD-mean relationship. If the relationship between SD and mean of RT distributions is indeed linear such that 
SD(RT) = a+ b×mean(RT) , then the ratio between the SD and mean of the RT distribution, SD(RT)

mean(RT) , would 

equal b+ a
mean(RT) . Therefore, this ratio should be either a monotonically increasing or a monotonically decreas-

ing function of mean RT depending on the sign of the parameter a (positive/negative values of a would make the 
function monotonically decreasing/increasing).

Here we tested whether such monotonic function is observed when SAT is varied. We first performed a 
repeated measures ANOVA on the SD(RT)

mean(RT) ratio with factors SAT and contrast. We found a main effect of SAT 
(F(4,56) = 7.6, p = 5.7 × 10–5), a main effect of contrast (F(4,56) = 16.89, p = 3.9 × 10–9), and an interaction between 
SAT and contrast (F(14,56.8) = 4.75, p = 6.7 × 10–5) (Fig. 3C). Generally, the SD(RT)

mean(RT) ratio increased as contrast 

decreased with the lowest contrast giving rise to significantly higher SD(RT)
mean(RT) ratio values compared to the high-

est contrast (t(14) = 5.93, p = 3.7 × 10–5).
Critically, the SD(RT)

mean(RT) curve was U-shaped as a function of SAT. Indeed, a quadratic fit to the data from 
each contrast showed a positive quadratic coefficient when averaged across the five contrasts (t(14) = 4.96, 
p = 0.0002). In addition, the quadratic coefficient was significantly positive for all five individual contrasts (con-
trast 1: t(14) = 5.83, p = 4.3 × 10–5; contrast 2: t(14) = 3.14, p = 0.007; contrast 3: t(14) = 5.9, p = 3.9 × 10–5; con-
trast 4: t(14) = 3.48, p = 0.004; contrast 5: t(14) = 2.83, p = 0.01). The SD(RT)

mean(RT) curve reached its minimum in the 
“medium” SAT condition: the SD(RT)

mean(RT) value for that condition was lower than both the “extremely fast” condi-
tion (t(14) = 4.2, p = 0.0009) and the “extremely slow” condition (t(14) = 6.56, p = 1.3 × 10–5). All results above 
remained virtually unchanged when RT mean and SD were computed using only trials with correct responses. 
Further, because the standard deviation of RT distributions is very sensitive to outliers, we repeated all analyses 
using alternative cutoff values of RT and again found very similar results (Supplementary Fig. 4). Finally, the 
same U-shaped curve was obtained if SD(RT)

mean(RT) was considered a function not of SAT level but of the mean RT 
in each SAT condition (Supplementary Fig. 5), and the same relationship can be appreciated when RT standard 
deviation is plotted directly against RT (Supplementary Fig. 6). These results demonstrate that, contrary to claims 
regarding a fully linear relationship between mean and SD of RT19, varying SAT reveals that the mean and SD 
of RT distributions have a relationship that systematically deviates from linearity.

Skewness of RT distributions.  Finally, we explored how SAT modulated the skewness of the RT distributions. 
A repeated measures ANOVA with factors SAT and contrast revealed a main effect of SAT on skewness values 
(F(4,56) = 12.9, p = 1.6 × 10–7) but no main effect of contrast (F(4,56) = 2.39, p = 0.06) or interaction between SAT 
and contrast (F(14,48.7) = 2.37, p = 0.79) (Fig. 3D). As before, we tested for the presence of a U-shaped relation-
ship by fitting a quadratic equation to the data for each contrast and found that the quadratic coefficient averaged 
across the five contrasts was significantly positive (t(14) = 4.89, p = 0.0002), indicating a U-shaped curve. Fur-
ther, the quadratic coefficient was significantly positive for all five individual contrasts (contrast 1: t(14) = 3.63, 
p = 0.003; contrast 2: t(14) = 3.25, p = 0.006; contrast 3: t(14) = 2.83, p = 0.01; contrast 4: t(14) = 3.06, p = 0.008; 
contrast 5: t(14) = 2.74, p = 0.016). The minimum skewness was achieved for the “fast” condition, which had 
significantly lower skewness compared to both the “extremely fast” (t(14) = 5.74, p = 5.1 × 10–5) and “extremely 
slow” (t(14) = 5.99, p = 3.3 × 10–5) conditions. Virtually the same effects were obtained when skewness was com-
puted using only correct trials. Further, because the skewness of RT distributions is very sensitive to outliers, we 
repeated all analyses using alternative cutoff values of RT and again found very similar results (Supplementary 
Fig. 7). Thus, just as the RT difference between error and correct trials and the SD(RT)

mean(RT) ratio, the RT distribution 
skewness also exhibited a robustly U-shaped curve as a function of SAT.

The diffusion model with selective influence assumption cannot fit the data.  We observed that 
varying SAT produces three different U-shaped curves—in the RT difference between error and correct trials, 



6

Vol:.(1234567890)

Scientific Reports |           (2021) 11:45  | https://doi.org/10.1038/s41598-020-79765-2

www.nature.com/scientificreports/

in the ratio of SD and mean of RT, and in the skewness of the RT distribution. These U-shaped curves can be 
used as strong tests of any theory of RT. Therefore, we examined whether the diffusion model with the selective 
influence assumption can reproduce these three effects by fitting the model to our data. To do so, we allowed 
the drift parameter to vary with contrast and the boundary parameter to vary with SAT condition. On the other 
hand, the non-decision time and three variability parameters were fixed between the different conditions. This 
parameterization resulted in 14 free parameters. Note that the starting point of the accumulation was always set 
to halfway between the two boundaries as we did not observe strong response biases.

HDDM fits.  We first fit the diffusion model to the data using what is currently the most popular software 
package for fitting the diffusion model: the Hierarchical Drift Diffusion Model (HDDM22). We did not use the 
hierarchical feature of the software and instead fit the data for each subject independently keeping all default 
settings. We found that, perhaps surprisingly, the HDDM fits did not show any of the three U-shaped curves 
discussed above (Fig. 4).

The HDDM model fits were most successful in reproducing the d′-RT curves from Fig. 3A even though the 
fits were clearly imperfect, especially for the “extremely fast” condition where the model predicted much higher 
RT and d′ values that empirically observed. Furthermore, the HDDM fits were not able to capture the pattern 
of results related to the RT difference between error and correct trials. In fact, the HDDM fits did not show 
any substantial difference in RT between error and correct trials: except for the “extremely slow” condition for 
contrast 4 (RT difference = 28 ms) and contrast 5 (RT difference = − 20 ms), all other differences had absolute 
values smaller than 10 ms indicating HDDM predicts that error and correct trials should have very similar RTs. 
Similarly, the HDDM fits were not able to reproduce the U-shaped curves for the SD(RT)

mean(RT) ratio as a function 
of SAT level and instead exhibited monotonically increasing functions for all contrasts. Finally, the HDDM fits 

Figure 4.   HDDM diffusion model fits. We fit the diffusion model to the data using the software package 
HDDM by allowing only the boundary parameter to vary with SAT levels and the drift parameter to vary 
with contrast. The results showed good fits for the d′-RT curves except for the “extremely fast” condition 
(upper left panel), mostly flat curves for the RT difference between error and correct trials (upper right panel), 
monotonically increasing SD(RT)

mean(RT)
 curves (lower left panel), and inverted-U RT skewness curves (lower right 

panel). None of the empirically observed U-shaped curves were reproduced even qualitatively. In all subplots, 
lines represent the empirical data and are identical to what is plotted in Fig. 3. The shaded areas represent 
models fits and the stars in the shaded areas represent the different SAT conditions. The width of the shaded 
areas represents S.E.M.
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could not reproduce the U-shaped curves for the skewness of the RT distributions as a function of SAT level 
and exhibited the opposite pattern showing an inverted-U shape as a function of SAT. Overall, the HDDM fits 
could not replicate any of the three U-shaped functions observed in the data.

DMAT fits.  The results above show that the HDDM fits deviate substantially from the observed patterns in the 
data. It is especially startling that the HDDM fits failed to capture the U-shaped curve for the difference between 
error and correct RT given the central role this quantity has had in the development of the diffusion model10. 
However, a closer look at the way the diffusion model is implemented in HDDM reveals that the failure of the 
HDDM fits in this particular case may stem from what could seem as a minor technical detail regarding how 
the parameter sz (which controls the variability of the starting point of the accumulation) varies between condi-
tions. Specifically, when originally introducing the parameter sz , Ratcliff and Rouder15 fixed its absolute value 
across conditions. On the other hand, HDDM fixes its relative size (as a ratio to the height of the boundary a ) to 
be constant across conditions22. This difference is critical because it affects the relative amount of starting point 
variability between different SAT conditions. Note that fixing the relative starting point ( sza  ) ensures that the 
starting point is never beyond the boundaries. On the other hand, fixing the absolute value of sz implies that the 
boundary a can never go below 2sz , which may appear to be an undesirable constrained. Presumably due to this 
reason, two of the most widely used software packages—HDDM22 and fast-dm23—only allow for the ratio sza  to 
be fixed across conditions.

To investigate whether the diffusion model could fit the pattern of U-shaped curves when the absolute value 
of the parameter sz is kept constant across conditions, we used the Diffusion Model Analysis Toolbox (DMAT24) 
because it keeps the absolute value of sz constant across conditions. We fit our data using DMAT’s default param-
eters (except for slightly altering the allowable ranges for two parameters; see “Methods”). This fit produced very 

Figure 5.   DMAT model fits. We fit the diffusion model to the data using the software package DMAT by 
allowing only the boundary parameter to vary with SAT levels and the drift parameter to vary with contrast. The 
fits were very similar to the ones with HDDM (Fig. 4). We observed good fits for the d′-RT curves except for the 
“extremely fast” condition (upper left panel), monotonically increasing functions for the RT difference between 
error and correct trials (upper right panel), monotonically increasing SD(RT)

mean(RT)
 curves (lower left panel), and 

inverted-U RT skewness curves (lower right panel). Again, none of the empirically observed U-shaped curves 
were reproduced even qualitatively. All notation is identical to Fig. 4.
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similar results to the HDDM fit and failed to reproduce any of the three U-shaped curves, including the one for 
the RT difference between error and correct trials (Fig. 5).

The reason for this poor fit appears to be the fact that, by default, DMAT forces the parameter sz to be smaller 
than one half of the parameter a (boundary height) in all conditions (this is to prevent the accumulation pro-
cess from starting beyond either boundary on a particular trial). This constraint creates tension between the 
“extremely fast” condition where a very low value of the boundary a is needed for a good fit, and the rest of 
the conditions where a relatively high value of the parameter sz is needed for a good fit. Because sz needs to be 
lower than a

2
 in the “extremely fast” condition, DMAT is forced to trade off the values for a and sz thus making 

sz not large enough for the conditions with a stronger focus on accuracy and making a not small enough for the 
“extremely fast” condition. Therefore, to remove the need to trade off the values of sz and a , we generated custom 
DMAT fits by changing DMAT’s default settings such that sz was no longer required to be smaller than a

2
 . (We 

note that, depending on the assumed reasons for the variability of the starting point, allowing sz to be larger 
than a can be considered nonsensical as that allows the accumulation process to start beyond the boundaries). 
These custom DMAT model fits still failed to fit well the RT difference between error and correct trials though 
a qualitatively U-shaped curve emerged (Supplementary Fig. 8). Similar results were obtained if the boundary a 
and the starting point sz were allowed to vary across SAT conditions but sz was still required to be smaller than 
a
2
 (Supplementary Fig. 9).

Finally, we investigated whether the failures of the diffusion model to fit the data stemmed exclusively from 
the “extremely fast” condition. We used DMAT to fit all data but excluded the data from the “extremely fast” 
condition. The results (Supplementary Fig. 10) were very similar to the ones obtained in the previous fits (if the 
“extremely fast” condition is to be ignored). Specifically, the model still could not account for the RT difference 
between error and correct trials in the “fast condition” or the U-shaped curve for the ratio between the standard 
deviation and mean of the RT distribution, but could now account well for the RT skewness (which is also true 
in Figs. 4 and 5 when the “extremely fast” condition is ignored).

In sum, none of the fits were able to reproduce the U-shaped curves observed for the RT difference between 
error and correct trials, the SD/mean ratio, or RT skewness. Allowing the starting point to either exceed the 
boundaries or vary with SAT level led to qualitative U-shaped functions that were, however, still unable to cap-
ture the data well. Thus, the diffusion model with the selective influence assumption (where SAT should only 
modulate the decision boundary and difficulty should only modulate the drift rate) failed to account for the 
observed patterns in the data.

Possible curves produced by the diffusion model.  It can be argued that at least some of the deviations 
that we observed between the model fits and the data are not inherent to the diffusion model but are simply due 
to imperfections in the available software for fitting the diffusion model. Further, the fits in Figs. 4 and 5 are aver-
ages across many subjects each of which is fitted with a different combination of parameters, which may obscure 
the true predicted shape of the different curves by a single set of parameters.

To address this potential issue, we examined what possible curves the diffusion model can generate using 
simulations. In two sets of simulations, we generated diffusion model predictions by fixing the relative or absolute 
size of sz across conditions. We simulated the diffusion model’s predictions for different sets of parameters in 
order to explore the range of possible patterns that the model can generate. For all simulations, the boundary a 
was varied from 0 to 0.2 in steps of 0.01 in order to precisely map out the shapes of the different curves. Further, 
we fixed the drift rate v to 0.15, the starting point of the accumulation z to halfway between the two boundaries, 
the non-decision time Ter to 0.27, and the non-decision time variability st to 0.1. All of these values were chosen 
to roughly match the average performance observed in the data; however, changing any of these values in control 
simulations produced equivalent results (additional simulations with different parameter values are shown in 
Supplementary Fig. 11 and reveal the same qualitative results). Critically, we examined how the curves change 
for different values of drift rate variability η (set to 0 or 0.2) and starting point variability sz . In the first set of 
simulations, we fixed sza  to 0 or 0.4; in the second set of simulations we fixed sz to 0 or 0.1. The two values for 
each of these last three parameters were chosen to be very different from each other in order to obtain a picture 
of the range of data patterns that the diffusion model can generate.

In the first set of simulations (with sza  constant across conditions), the diffusion model produced d’-RT curves 
that consistently had inverted-U shapes (as measured by the sign of the quadratic coefficient in a quadratic fit; 
Fig. 6, upper left panel), which were mostly driven by low values of the boundary a . More critically, the diffusion 
model could not generate U-shaped curves for the RT difference between error and correct trials (Fig. 6, upper 
right panel). In fact, the diffusion model only produced monotonically increasing or monotonically decreas-
ing curves of RT difference as a function of SAT. In other words, for any combination of parameters, changing 
the boundary could only affect the size of the RT difference between error and correct trials but not change its 
sign. Thus, when sza  is kept constant across conditions, the diffusion model cannot fit any data where two condi-
tions that only vary in SAT produce RT differences of different signs. Further, the diffusion model could not 
produce the U-shaped curves for SD(RT)

mean(RT) and RT skewness as a function of SAT (Fig. 6, lower panels). Instead, 

the model produced S-shaped curves for SD(RT)
mean(RT) and inverted-U shapes for skewness. Therefore, the failure of 

HDDM to fit the three U-shaped curves when sza  is kept constant across conditions appear to be fundamental to 
the structure of the diffusion model and is not simply the product of the specific implementation of the model 
in the HDDM package.

We then considered the second set of simulations (with sz constant across conditions). We found virtually the 
same results for the d’-RT, SD(RT)

mean(RT) , and RT skewness curves. Specifically, just as with the first set of simulations, 
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we obtained inverted-U-shaped curves for all d’-RT functions (Fig. 7, upper left panel), S-shaped SD(RT)
mean(RT) curves 

(Fig. 7, lower left panel), and strongly inverted-U-shaped curves for RT skewness (Fig. 7, lower right panel). How-
ever, the two sets of simulations differed in the predicted shapes of the curves for the RT difference between error 
and correct trials. Just as in the first set of simulations, setting either the drift rate variability ( η ) or starting point 
variability ( sz ) to zero produced monotonically increasing or decreasing functions (Fig. 7, upper right panel). 
Critically, however, if both parameters were positive (and they were both within reasonable ranges so that one 
of them did not dominate the other), then a U-shaped function emerged. This finding shows that for U-shaped 
curves to emerge for the RT difference between error and correct trials, it is necessary that sz rather than sza  is 
kept constant across conditions, which, however, means that the starting point will exceed the boundaries when 
the boundary parameter takes very small values. The simulations also show that, as currently constructed, the 
diffusion model appears to never result in U-shaped curves for SD(RT)

mean(RT) or RT skewness.

Fitting each condition with the diffusion model independently.  Finally, we used our data to test 
the “selective influence” assumption that different SAT settings should only affect the boundary a , whereas dif-
ferent difficulty levels should only affect the drift rate v21. We fit each condition of the experiment (that is, each 
combination of contrast and SAT level) independently of all others and examined how the different model 
parameters changed. Each condition was thus fit with six free parameters: drift rate, boundary, non-decision 
time, drift rate variability, non-decision time variability, and starting point variability (as before, the starting 
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Figure 6.   Diffusion model simulations with the relative starting point ( sz
a

 ) fixed across conditions. We simulated 
the predictions of the diffusion model by keeping sz

a
 constant across conditions. The boundary a varied from 0 to 

0.2 in steps of 0.01, the drift rate v was set to 0.15, the starting point of the accumulation z was fixed to halfway 
between the two boundaries, the non-decision time Ter was fixed to 0.27, and the non-decision time variability 
st was fixed to 0.1. The simulations produced inverted-U d′-RT curves (upper left panel) even though the 
empirical curves were linear. For each set of parameters 

(

η, sz
a

)

 , the points with higher RT correspond to higher 
values of the boundary a . The simulations also produced either monotonically increasing or monotonically 
decreasing curves for the RT difference between error and correct trials (upper right panel), S-shaped SD(RT)

mean(RT)
 

curves (lower left panel), and inverted-U shapes for the skewness of the RT distributions (lower right panel). In 
all of these cases, the qualitative shapes differed from what was observed in the empirical data (Fig. 3).
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point was set to always be halfway between the two boundaries). These very flexible fits allowed the diffusion 
model to do a better job at capturing the qualitative effects in the data but the fits remained imperfect even when 
all parameters could vary across all conditions (Supplementary Fig. 12).

We next tested the selective influence assumption of the model. Because the “extremely fast” SAT condition 
resulted in chance (or near chance) performance, we only analyzed the last four SAT conditions (“fast,” “medium,” 
“slow,” and “extremely slow”), as well as all the five contrast levels. For each of the six free diffusion model param-
eters, we performed a repeated measures ANOVA with factors contrast and SAT (we performed seven sets of 
tests because we examined sz and sza  separately). We considered the main effects of contrast and SAT, as well as 
their interaction. To obtain the fits, we used both HDDM and DMAT. Below we report the HDDM results; the 
DMAT results were similar (Supplementary Fig. 13).

Contrary to the “selective influence” assumption, we observed a significant effect of both contrast and 
SAT on every single one of the six parameters (Fig. 8). Specifically, we found significant effects of contrast on 
the drift rate (F(4,56) = 303.25, p = 3.1 × 10–37), boundary (F(4,56) = 7.56, p = 6.1 × 10–5), non-decision time 
(F(4,56) = 12.75, p = 1.9 × 10–7), drift rate variability (F(4,56) = 63.7, p = 3.5 × 10–20), non-decision time vari-
ability (F(4,56) = 18.25, p = 1.2 × 10–9), absolute starting point variability (F(4,56) = 36.28, p = 6 × 10–15), and 
relative starting point variability (F(4,56) = 41.93, p = 3.2 × 10–16). Similarly, we found significant effects of SAT 
on the drift rate (F(3,42) = 54.71, p = 1.5 × 10–14), boundary (F(3,42) = 63.78, p = 1.1 × 10–15), non-decision time 
(F(3,42) = 40.76, p = 1.7 × 10–12), drift rate variability (F(3,42) = 19.16, p = 5.5 × 10–8), non-decision time vari-
ability (F(3,42) = 7.46, p = 0.0004), and relative starting point variability (F(3,42) = 15.06, p = 8.4 × 10–7) though 
there was no significant effect on absolute starting point variability (F(3,42) = 2.13, p = 0.11). Finally, and again 
contrary to the diffusion model predictions, there was a significant interaction between contrast and SAT for all 
six parameters (drift rate: F(14,52.9) = 4.27, p = 2 × 10–13, boundary: F(14,54.8) = 4.27, p = 0.0006, non-decision 
time: F(14,42.6) = 4.65, p = 2.3 × 10–5, drift rate variability: F(14,42.9) = 2.44, p = 0.001, non-decision time vari-
ability: F(14,45) = 1.72, p = 0.01, absolute starting point variability: F(14,42) = 2.87, p = 0.0002, and relative starting 
point variability: F(14,37.9) = 1.87, p = 2.6 × 10–8).
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Figure 7.   Diffusion model simulations with absolute starting point ( sz ) fixed across conditions. We fit 
the diffusion model to the data with sz constant across conditions. All other details were the same as in 
the simulations from Fig. 6. The simulations produced virtually equivalent results as when fixing sz

a
 across 

conditions, except that U-shaped curves emerged when the parameters η and sz both had relatively large positive 
values.
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Finally, we compared the effects sizes of our contrast and SAT manipulations on different parameters. We 
calculated the change from the “fast” to the “extremely slow” SAT conditions, as well as for the change from 
contrast 1 to contrast 5. Note that an absolute value of Cohen’s d larger than 0.8 is considered a “large” effect 
size. Surprisingly, the SAT manipulation had a slightly larger effect on the drift rate (Cohen’s d = 2.89) than on 
the boundary (Cohen’s d = 2.45). It also had large effects on many other parameters (non-decision time: Cohen’s 
d = 1.85; drift rate variability: Cohen’s d = 1.49; non-decision time variability: Cohen’s d = − 0.7; absolute starting 
point variability: Cohen’s d = 0.48; relative starting point variability: Cohen’s d = − 1.24). On the other hand, the 
contrast manipulation had the largest effect size on the drift rate parameter (Cohen’s d = 5.29) but the effects 
on the rest of the parameters were also quite large (boundary: Cohen’s d = 0.74; non-decision time: Cohen’s 
d = − 1.26; drift rate variability: Cohen’s d = − 3.19; non-decision time variability: Cohen’s d = − 2.24; absolute 
starting point variability: Cohen’s d = 2.27; relative starting point variability: Cohen’s d = 2.37). Therefore, both 
the SAT and contrast manipulations had large effects on all parameters. In the case of SAT, the largest effect was 
in fact on drift rate rather than the boundary. These results strongly question the “selective influence” assump-
tion of the diffusion model.

Discussion
How people trade off speed for accuracy has been the subject of intense research for over 50 years2,25,26. However, 
despite substantial progress, it remains unclear what the signatures of SAT are beyond the mere change in mean 
RT and accuracy. Here we describe three fundamental effects of SAT. Specifically, we find that SAT produces 
U-shaped curves for the difference between error and correct trials, the ratio of SD to mean of the RT distribu-
tion, and the skewness of the RT distribution. These U-shaped curves could be observed in individual subjects 
and were present across different levels of contrast. Our results thus establish a challenging set of benchmark tests 
for models of RT. Importantly, the diffusion model with a selective influence assumption could not reproduce 
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Figure 8.   Dependence of each diffusion model parameter on contrast and SAT. We fit each combination of 
contrast and SAT level (except for the “extremely fast” SAT condition) with the diffusion model independently 
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and SAT. We found that contrary to the diffusion model predictions, all parameters changed with both contrast 
and SAT levels. All notation is identical to Fig. 3.
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any of these effects. Moreover, allowing all parameters to change across conditions demonstrated the presence 
of large and systematic changes in all diffusion model parameters with both SAT and difficulty.

RT difference between error and correct trials.  The difference in RT between error and correct trials 
has been a driving force in the development of the diffusion model9,10,15. In fact, two of the seven diffusion model 
parameters have been specifically introduced in order for the model to be able to reproduce observed differences 
between error and correct RTs10. Nevertheless, to our knowledge, the observed U-shaped curve for the RT dif-
ference between error and correct trials has not been explicitly described before. Indeed, the great majority of 
previous research, including our own work, only compared two levels of SAT27–29 but such studies are not in a 
position to describe the whole curve. At the same time, many other studies did generate a large number of SAT 
levels, and, in some cases, there were even more such conditions that the current study25. However, these studies 
did not examine the difference in RT between error and correct trials (and, in many cases, they did not include 
a sufficient number of subjects to perform group-level statistics).

This is not to say that the U-shaped curve for the RT difference between error and correct trials is completely 
novel; in fact, it could have already been deduced by the prior literature. Indeed, it is well known that in the 
absence of speed stress, error RTs are longer than correct RTs, whereas in the presence of strong speed stress, 
error RTs become shorter than correct RTs14. On the other hand, not many studies have examined what happens 
under extreme speed stress where performance falls to chance but the results here are easy to anticipate: if per-
formance is at chance, then there is no perceptual signal for the observer to work with, and therefore correct and 
error trials must occur randomly. It logically follows that there is no difference in how correct and error trials are 
generated and thus such extreme speed stress would produce the same mean RT for both trial types (and this is 
indeed what we observed). Putting these three effects together, we see that the difference in RT between error and 
correct trials must start at zero for extreme speed stress, then become negative for strong but not extreme speed 
stress, and finally become positive when speed stress is completely eliminated. In other words, the U-shaped 
curve observed in the present study is already implied by the previous literature.

What gives rise to the U-shaped curve for the difference between error and correct RTs? As described above, 
extreme speed stress (that results in chance-level performance) necessarily leads to no RT difference between 
error and correct RTs. We speculate that as the speed stress is relaxed slightly, there is trial-to-trial variability in 
the internal response deadline set by subjects. In this regime of strong speed stress, trials that happen to have a 
stricter internal deadline are more likely to be fast but also likely to be incorrect as less information was processed. 
This difference leads to error trials being faster than correct trials. As speed stress is completely lifted, the RT 
difference between error and correct trials is driven by a different phenomenon—stochastic variability in trial 
difficulty. Such variability in difficulty makes some trials more difficult and thus leads to higher RTs and lower 
accuracy. In this regime of no speed stress, error trials thus become slower than correct trials.

Note that the mechanisms that govern RT differences between error and correct trials in the diffusion model 
agree with the above explanation in the case of no speed stress but not for the above explanation for the case of 
strong speed stress. Indeed, in the case of no speed stress, the diffusion model generates a difference between 
error and correct RTs based on the parameter η (drift rate variability), which essentially introduces stochastic 
differences in trial-by-trial difficulty. However, the intuition above about stochasticity of the internal deadline for 
response in the presence of strong speed stress would correspond to variability in the location of the boundary 
parameter a , whereas the diffusion model eschews variability in this parameter and instead introduces it in the 
starting point of the accumulation. It is an open question whether a version of the diffusion model with variability 
in the boundary rather than the starting point would be better able to fit the effects of strong speed stress on RTs.

RT distribution SD/mean ratio.  As mean RT is increases, the standard deviation of the RT distribution 
also increases. It is therefore natural to examine the relationship between the rates of increase for these two quan-
tities. In an influential paper, Wagenmakers and Brown19 examined the relationship between SD and mean of RT 
distributions constructed in several different ways and found very high correlations (often r > 0.9). The authors 
consequently argued that such high correlations appear to reveal what amounts to a psychophysical law of linear 
SD-mean relationship. The conclusion is perhaps surprising given that at least half of the individual datasets 
examined appeared to have the same systematic deviation from linearity where the SD for intermediate values 
of mean RT was higher than the linear fit would suggest. In addition, Wagenmakers and Brown never examined 
how the SD-mean relationship is specifically influenced by SAT. Instead, for all analyses, they correlated the RT 
mean and SD for all conditions taken together. This type of analysis, however, can mask non-linearities produced 
by a given manipulation. Indeed, when we performed the same type of analysis on the data from our experiment 
(by creating 25 conditions obtained by combining the five SAT levels with the five contrast levels), we observed 
very high correlations between RT mean and SD; the correlation coefficient r exceeded 0.85 for half of the 
subjects and exceeded 0.7 for 17 of the 20 subjects. Therefore, very high correlations in analyses that combine 
all conditions of an experiment can be obtained even in the presence of manipulations that produce non-linear 
effects (such as the SAT manipulation in the current experiment).

Our results demonstrate that SAT manipulations lead to nonlinear effects in the relationship between mean 
and SD of the RT distributions. This nonlinearity is best described by plotting the shape of the SD/mean ratio as a 
function of either SAT level (Fig. 3C) or mean RT (Supplementary Fig. 5). These plots show a robustly U-shaped 
relationship that has not been described before.

What gives rise to the U-shaped curve of the SD/mean ratio as a function of SAT level? At the moment, we 
can only speculate. One way to describe the observed phenomenon is that the variability of the RT distribution is 
smallest, relative to its mean, for intermediate levels of speed stress. This formulation of the phenomenon suggests 
that the cause may be driven by an increased consistency in response strategy and execution with intermediate 
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but not extreme speed stress. However, at the moment, this explanation is little more than restating the observed 
effect; the actual mechanisms of the proposed increase in response consistency remain to be elucidated.

Skewness of RT distributions.  Fitting the exact shape of the RT distributions has long been the stated 
goal of the diffusion model, as well as other models from the sequential sampling framework8. In fact, the diffu-
sion model is thought to fit precisely the shape of individual RT distributions10. Moreover, it has been claimed 
that the diffusion model can fit well true RT distributions but not fake ones20.

However, this line of research has rarely quantified higher moments such as the skewness or kurtosis (but see, 
for example30), especially as a function of SAT level. Instead, what is typically considered are the fits to specific 
characteristics of the distribution like different percentiles or the leading edge of the distribution31. Our results 
demonstrate that the third moment of the RT distribution—its skewness—produces a characteristic U-shaped 
curve as a function of SAT. Higher moments are very sensitive to outliers but our analyses showed that the shape 
of the curve is virtually unchanged when different RT cutoffs are used (Supplementary Fig. 7).

What is the reason for the U-shaped curve of RT skewness as a function of SAT level? It is again difficult to 
speculate at this point. One possibility is that the U-shaped curve of RT skewness is caused by similar processes 
as the ones that give rise to the U-shaped curve for the SD/mean ratio of the RT distribution. However, the 
minimum for the SD/mean curve was consistently reached for the “fast” SAT condition, whereas the minimum 
for the skewness curve was consistently reached for the “medium” SAT condition. Therefore, it is unlikely that 
the exact same process gives rise to the U-shaped curves for both the SD/mean ratio and skewness. It is thus 
likely that multiple mechanisms related to the effects of SAT on the RT distribution remain to be discovered.

The inability of the diffusion model to account for the shape of the observed curves.  Both our 
fitting and simulation results demonstrated that the current diffusion model with the selective influence assump-
tion cannot explain the observed U-shaped curves for the RT difference between error and correct trials, the 
SD/mean ratio, and skewness of the RT distribution. These deviations between data and model are substantial 
since they are qualitative and not just quantitative. In fact, it can be argued that, collectively, the presence of 
so many severe deviations between the data and the diffusion model suggests that the model does not capture 
the dynamics of evidence evaluation in our task. It remains an open question whether other models from the 
sequential sampling framework can explain the observed patterns of results though additional analyses with the 
linear ballistic accumulator (LBA) model produced even worse fits and also could not account for any of the 
three U-shaped curves (Supplementary Figs. 14, 15).

One important question is to what extent our results are specific to the task that we used. Our task featured a 
perceptual judgment following a very brief stimulus presentation (of only 33 ms). It could be that the diffusion 
model does not apply well to such short presentations and only works well when the stimuli are presented for an 
extended period. For example, short stimulus presentations may violate the diffusion model’s assumptions that 
evidence arrives for the duration of decision making and that different samples are not autocorrelated. Never-
theless, current theories do not make a distinction between the diffusion model’s ability to explain the processes 
underlying evidence evaluation in short vs. long stimulus presentations10,31. In fact, some of the most influential 
papers in the field have used very short stimulus presentations that are as brief as 12 ms32. Further, prominent 
researchers have explicitly argued that very short stimulus presentations induce a short-term representation 
that provides a constant drift rate to drive the decision process, and that the diffusion model is an appropriate 
model for such cases31. Therefore, our experimental design fits with many other studies on the diffusion model. 
Nevertheless, it remains possible that the diffusion model should only be applied to specific paradigms and that 
short stimulus presentations are not amongst them. However, we note that such a conclusion would necessitate 
a re-examination of a substantial portion of the existing literature.

A natural question is whether an extension of the diffusion model can accommodate some of the observed 
effects. One possibility is that adding variability in the response boundary could allow the model to explain some 
of the observed U-shaped curves. (The boundary is currently the only “major” parameter of the diffusion model 
that is not hypothesized to vary between trials). To check for this possibility, we performed several simulations 
of the model with added variability to the boundary parameter but failed to obtain U-shaped curves for SD/
mean or the skewness of the RT distributions. More systematic efforts are needed in this direction but at the 
moment it appears that the addition of one more variability parameter would be insufficient to explain the results 
obtained in the present paper.

One specific way in which the diffusion model fails to account for the data is in the skewness of the RT distri-
bution in the “extremely fast” condition. In that condition, performance is virtually at chance, which is naturally 
accommodated by the diffusion model by setting the boundary extremely low. In this regime, boundary-crossing 
occurs almost instantaneously and thus the shape of the RT distribution is determined almost exclusively by the 
variability of the non-decision time. Since non-decision time is modeled as having a uniform distribution16, one 
naturally obtains skewness values of zero (or close to zero) when simulating such a condition with the diffusion 
model (see Figs. 6, 7). However, our data show that this condition produced substantial RT skewness (Fig. 3D). 
To accommodate this effect, the diffusion model should be modified to include non-decision time with variability 
which is itself a right-skewed function. In fact, previous work has suggested that non-decision times are likely to 
have a substantial amount of right skew33. Further, this research demonstrated that estimating the true shape of 
the distribution of non-decision times changes substantially the diffusion model’s fits and, in some cases, alters 
the conclusions that could be drawn from these fits. Nevertheless, it remains to be tested whether substituting the 
uniform distribution of non-decision time with a right-skewed one will allow the model to reproduce any of the 
curves in our study. In fact, informal simulations with non-decision time drawn from a Gamma distribution sug-
gested that changing the variability of the non-decision time can change the shape of the SD/mean and skewness 
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curves but never produces the U-shaped functions observed in the empirical data. Thus, it appears at the moment 
that no straightforward extension of the diffusion model can accommodate our results regarding the shape of the 
d′-RT, the ratio of the SD to mean of the RT distribution, or the skewness of the RT distribution. Nevertheless, we 
acknowledge that there are many possible diffusion model extensions including models with extra parameters 
for fast guesses34, collapsing boundaries35–37, within-trial variability that changes across conditions38, separate 
time-based accumulators39, etc. It is possible that a model with one or more of these extensions would be able 
to fit one or more of the qualitative patterns described here but we have not investigated such extensions here.

The nature of the “extremely fast” SAT condition.  Two of the U-shaped functions (the difference 
between error and correct RT, Fig. 3B, and the skewness of the RT distribution, Fig. 3D) owe their U shape 
exclusively to the “extremely fast” condition. It is reasonable therefore to wonder whether this condition may be 
an outlier that should be excluded. Indeed, the condition could be seen as a pure detection task and thus differ-
ent from the remaining SAT conditions. Our results contradict such a conclusion because performance in the 
“extremely fast” condition was above chance and the condition appears to lie on the same continuum as the rest 
of the conditions (Supplementary Fig. 3). Moreover, excluding this condition would not change the conclusions 
for the SD(RT)

mean(RT) ratio (Fig. 3C) and will lead to a conclusion that the RT difference between error and correct 
should be monotonically increasing, which contradicts both logical considerations (see “Discussion” above on 
why U-shaped functions for the RT difference between error and correct trials occur) and the diffusion model 
itself (see Figs. 6, 7). Due to these reasons, we believe that the “extremely fast” condition provides meaningful 
results that can reasonably be considered to be within the purview of the diffusion model. Nevertheless, we have 
run all diffusion model analyses after excluding the data from the “extremely fast” condition and found that no 
conclusion changes except for the inability of the diffusion model to explain the RT skewness results (Supple-
mentary Fig. 10). That said, it remains possible that extreme speed stress results in a pattern of subject behavior 
that is qualitatively different from conditions with less severe speed stress, and that extreme speed pressures 
should be considered outside of the scope of the diffusion model.

Selective influence in the diffusion model.  The diffusion model is thought to capture meaningful 
latent variables that cannot be recovered without model fitting10. The two most prominent such latent variables 
are drift rate, which is conceptualized as corresponding to stimulus sensitivity, and boundary separation, which 
is conceptualized as corresponding to the SAT setting. Therefore, it has been hypothesized that SAT manipula-
tions should only affect the boundary parameter, whereas difficulty manipulations should only affect the drift 
rate parameter. The existence of such one-to-one mapping between task manipulations and diffusion model 
parameters has been referred to as “selective influence”21.

The selective influence hypothesis has been examined in a number of previous studies with mixed results40,41. 
Typically, studies examined the effects of a particular manipulation on a subset of parameters only, and typically 
the manipulation consisted of two levels (e.g., fast vs. accurate SAT setting or easy vs. difficult condition) rather 
than the more detailed five levels used in the present study. Nevertheless, even with these caveats, previous stud-
ies found a number of deviations from the selective influence assumption such as speed emphasis leading to 
decreased non-decision times40–43, decreased drift rate variability44, and decreased drift rates42,44–48. Moreover, 
easier stimuli were found to decrease the non-decision time, increase the starting point of the accumulation, 
and increase the decision boundary41. The majority of these papers took the approach that was also adopted in 
the current paper: allow many parameters to vary across different conditions and then use statistical tests to 
compare the values of the best fitting parameters across conditions. Within the context of this approach, our 
results show what are perhaps the most severe deviations from the selective influence assumptions observed to 
date. We observed that both SAT and difficulty manipulations affected every single one of the six model param-
eters in the diffusion model (the seventh parameter—the starting point of the accumulation—was fixed across 
conditions and therefore the selective influence assumption was not tested for it). Further, the effects of these 
two manipulations on the “wrong” parameters were often quite large, and, in the case of the SAT manipulation, 
the effect on drift rate was slightly larger than on the boundary. On the other hand, it should be noted that our 
approach does not test for the necessity of different parameter changes, which requires comparing models that 
allow different combinations of parameters to change across conditions.

Our results raise the question about the reasons for the observed violations of the selective influence hypoth-
esis. Some of the effects observed in our study have been described before (e.g., speed emphasis decreasing 
non-decision times40–43, drift rate variability44, and drift rates42,44–48) and in many cases psychological mecha-
nisms have been proposed to explain such findings. It is indeed possible that some of these effects reflect true 
psychological effects (e.g., people may be able to decrease their sensory or motor processing times under speed 
pressure). However, in the absence of an independent way of measuring different psychological constructs, such 
proposals remain speculative. We uncover substantial modulations of all diffusion model parameters with both 
contrast and SAT manipulations, and therefore it would be especially challenging to interpret these modulations 
as the result of meaningful psychological effects (though some of the modulations may very well be meaningful). 
Instead, our findings raise doubts about whether the psychological constructs that the diffusion model seeks to 
uncover map well onto individual diffusion model parameters.

U‑shaped curves as new benchmark tests for models of RT.  Evaluating individual models of deci-
sion making is difficult49. Many techniques are available for the comparison of two or more models50 but it is 
less clear how individual models can be evaluated in isolation. Recently, Oberauer et al.51 collected a number of 
benchmarks for models of short-term and working memory to help guide model development in that domain. 
Unfortunately, it is unclear what findings related to RT can be used as similar benchmarks in the field of decision 
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making. Several papers have made brief lists of possible benchmarks, often in the context of what the diffusion 
model can already explain8. However, benchmark results differ in their difficulty—some benchmarks are rather 
easy to meet, while others are very challenging.

It seems uncontroversial to say that U-shaped (or inverted-U-shaped) functions are generally more difficult 
to reproduce than monotonic ones. Therefore, we suggest that the three U-shaped curves found here can serve 
as especially challenging benchmarks for current and future models of decision-making RTs. Nevertheless, we 
caution that these benchmarks should ideally be replicated using different stimuli and tasks as some of them 
may be specific to perceptual decision making and not to, for example, memory. (However, for reasons explained 
above, we believe that the U-shaped curves for the RT difference between error and correct trials can already be 
adopted as a robust benchmark.)

Conclusion
Using detailed manipulations of SAT and task difficulty in a sample of 20 subjects with 5000 trials/subject, we 
uncovered three fundamental effects wherein SAT manipulations resulted in U-shaped curves for (i) the RT 
difference between error and correct trials, (ii) the SD/mean ratio of the RT distributions, and (iii) the skewness 
of the RT distributions. These findings can serve as challenging benchmarks for testing models of RT. Critically, 
the diffusion model with a selective influence assumption could not account for any these benchmarks. Overall, 
our findings have several important implications about the diffusion model. First, even though the model was 
specifically designed to fit the RT difference between error and correct trials, it could not fit the RT difference 
between error and correct trials in the current study unless unorthodox assumptions were made (and, even 
then, the fit is qualitatively but not quantitatively correct). Second, the claimed psychophysical law proposed by 
Wagenmakers and Brown19 of linearity between SD and mean of RT, which has been argued to provide strong 
support for the diffusion model, breaks down with SAT manipulations. This fact eliminates one of the most 
impressive successes of the diffusion model. Third, our results show that the selective influence assumption of the 
diffusion model does not simply fail for some model parameters under some manipulations, as previous research 
has suggested. Instead, when sufficient amount of data is collected, the two most fundamental manipulations 
(SAT and difficulty) each impact every single one of the diffusion model parameters. This finding casts doubt 
on the fidelity with which the diffusion model is able to reveal meaningful latent variables. Overall, our study 
shows that the limitations of the diffusion model extend farther than previously appreciated and that the model 
simply does not provide an appropriate explanation of RT under SAT manipulations.

Methods
Subjects.  Thirty healthy subjects with normal or corrected to normal vision were recruited and completed 
one session of testing. Ten subjects were not invited for the rest of the experiment and excluded from further 
analyses since either they had difficulties in generating five distinct levels of speed stress. None of the analyses 
reported in the paper were used as exclusion criteria and were never performed on data from the first ses-
sion alone. The remaining twenty subjects completed all five sessions of the experiment (13 females, age range: 
18–28). All subjects signed informed consent and were compensated for their participation. The protocol was 
approved by the Georgia Institute of Technology Institutional Review Board. All methods were carried out in 
accordance with relevant guidelines and regulations.

Task.  Subjects performed an orientation discrimination task where they indicated whether a Gabor patch 
(radius = 4°) embedded in random pixel noise was tilted counterclockwise (“left”) or clockwise (“right”) from 
vertical. The orientation of the Gabor patch was ± 45° away from the vertical and was randomly determined on 
each trial. Immediately, after providing their response, subjects were given detailed feedback that indicated (i) 
whether their response was correct or wrong, (ii) the exact response time on the trial, (iii) the points gained or 
lost on the trial, and (iv) the total accumulated points until that point of the experiment (Fig. 2).

Each trial started with subjects fixating on a small white dot at the center of the screen for 1000 ms and was 
followed by a presentation of the Gabor patch for 33 ms. There was no deadline on the response but large RTs 
were penalized in all conditions except for the “extremely slow” condition. Feedback remained on the screen 
until the subject pressed a button on the keyboard to advance to the next trial.

The experiment included five different speed-accuracy tradeoff conditions—“extremely fast,” “fast,” “medium,” 
“slow,” and “extremely slow.” Each condition featured a different penalty on response time (RT) starting from no 
penalty at all in the “extremely slow” condition and increasing the size of the penalty for the other four conditions. 
Based on the accuracy and RT on each trial, subjects gained points based on the following formula:

where Acc is the accuracy on the current trial (1 for correct responses, 0 for wrong responses), penaltycond and 
adjustmentcond are the penalty magnitude on RT and adjustment for the particular condition. The parameter 
penaltycond was set to 4, 2, 1, 0.5, and 0, respectively for the five conditions with decreasing speed stress. To 
ensure that the five conditions resulted in relatively similar earnings for the subjects, we added the parameter 
adjustmentcond which added or subtracted a fixed number of points on each trial such that conditions with greater 
speed stress received the largest positive adjustments. Specifically, the value of adjustmentcond  was set to + 1, + 0.3, 
0, − 0.2, and − 0.5, respectively for the five conditions with decreasing speed stress. Finally, we wanted to prevent 
a strategy where a subject simple held the keyboard button pressed even before the stimulus appeared. Therefore, 
a response time of less than 34 ms (roughly corresponding to the duration of the stimulus presentation itself) 
was penalized by subtracting 3 points; such trials were accompanied with a feedback screen that read “Looks like 

Points gained = Acc − penaltycond × RT + adjustmentcond ,
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you held the button before the stimulus appeared” coupled with information about the 3 points lost and the total 
number of points so far. At the end of the experiment, every point was rewarded with 1 cent of bonus payment.

Procedure.  Subjects came for five different sessions each consisting of 1000 experimental trials. Before 
the start of the first session, subjects were given detailed instructions about the different conditions and their 
associated formulas for gaining points. It was specifically emphasized that the best strategy in the “extremely 
fast” condition was to respond as quickly as possible irrespective of accuracy. This instruction was given explic-
itly because the majority of subjects appeared unwilling to guess randomly for all trials of a given condition  
without being explicitly told that such a strategy was allowed. Before the start of sessions 2–5, subjects were 
briefly reminded of these instructions. Each session started with a short training which included one 25-trial 
block of each of the five conditions.

In each session, subjects completed 4 runs, each consisting of 5 blocks of 50 trials each. Each block consisted 
of a single condition, and each run included blocks from all five different conditions in a randomized order. At 
the beginning of each block, subjects were given the name of the condition for that block (“extremely fast,” “fast,” 
“medium,” “slow,” or “extremely slow”). In each block, we pseudo-randomly interleaved trials with five different 
Gabor patch contrasts such that each contrast was presented exactly 10 times. The contrasts were the same for 
each subject and were chosen based on pilot testing to produce a range of performance levels. The exact contrasts 
used were 4.98%, 6.39%, 8.21%, 10.54%, and 13.53% (the contrasts were chosen to be equally spaced in log space: 
they are equal to e−3 , e−2.75 , e−2.5 , e−2.25 , and e−2 , respectively).

Apparatus.  The experiment was designed in MATLAB environment using Psychtoolbox 352. The stimuli 
were presented on a 21.5-inch iMac monitor (1920 × 1080 pixel resolution, 60 Hz refresh rate) in a dark room. 
Subjects were seated 60 cm away from the screen and provided their responses using a computer keyboard.

Behavioral analyses.  We removed all trials with RTs shorter than 150 ms or longer than 1500 ms. This 
step resulted in removing an average of 2.3% of total trials (range 0.3–4.7% for each subject). Similar results 
were obtained if RT outliers were instead determined separately for each condition using Tukey’s interquartile 
criterion. We then computed, for each combination of SAT condition and Gabor patch contrast, the average 
difference between error and correct RTs ( RTerror − RTcorrect ), the median RT for each condition, the ratio of 
the standard deviation and the mean RT (  SD(RT)mean(RT) ), and the skewness of the RT distribution. The skewness was 

computed as Pearson’s moment coefficient of skewness, which is equal to E[(X−µ)3]
σ 3  where µ and σ are the mean 

and standard deviation of the distribution, respectively. In addition, we computed the signal detection theory 
parameter d′ that quantifies stimulus sensitivity in signal-to-noise units53. Specifically, d′ was computed by treat-
ing correctly judged clockwise orientations as hits and applying the formula:

where �−1 is the inverse of the cumulative standard normal distribution that transforms HR and FAR into 
z-scores.

We quantified the quadratic trends of different curves produced by the five different SAT conditions by fitting 
a quadratic model y = ax2 + bx + c . The model was fit separately to each contrast of each subject. Group-level 
t-tests were then performed on the quadratic coefficients obtained for each subject. Statistical tests were based 
on two-sided one-sample t-tests, paired t-tests, and repeated measures ANOVAs.

Diffusion model analyses.  We fit the diffusion model10 to the data using both the hierarchical drift diffu-
sion model (HDDM) python package22 and the diffusion model analysis toolbox (DMAT) in MATLAB24. For 
both packages, all fits were done on the data for each subject (the hierarchical option of HDDM was not used). 
We performed two different sets of model fitting. In the first model fitting, we let the drift rate parameter vary for 
different contrasts and the boundary parameter vary for different SAT condition (and fixing all other parameters 
across contrasts and conditions). In the second model fitting, we let all diffusion model parameters other than 
the starting point (which was always fixed halfway between the two boundaries) vary with both Gabor patch 
contrast and SAT condition.

The first set of model fittings—which we refer to as the “constrained” fits—were designed to test whether the 
diffusion model can account for the patterns of the data using the selective influence assumption that stimulus 
difficulty should only affect the drift rate and that the SAT setting should only affect the boundary10. For these 
fits, we fit a different drift rate parameter for each of the five Gabor patch contrasts, and a different boundary 
parameter for each of the five SAT conditions. We fixed all other parameters to be the same across contrasts and 
SAT conditions. The non-decision time and three variability parameters were estimated as part of the model 
fitting, whereas the starting point was not treated as a free parameter but was fixed to half the value of the bound-
ary. This parameterization resulted in 14 free parameters (5 drift rates, 5 boundary parameters, and 4 additional 
parameters that were the same across contrasts and conditions). To evaluate whether these “constrained” fits 
could account for the patterns observed in the data, once parameter fits were obtained, we generated simulated 
data based on the recovered parameters. For each subject, we simulated 1000 data points for each combination 
of contrast and SAT condition (for a total of 25,000 simulated data points per subject). We then analyzed these 
simulated data in the same way as the analyses of the original subject data.

It should be noted here that HDDM and DMAT treat the parameters for the starting point of the accumulation 
( z ) and the starting point variability ( sz ) differently from each other. HDDM defines both of these parameters 

d′ = �−1(hit rate)−�−1
(

false alarm rate
)

,
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as a proportion of the value of the boundary parameter a . Therefore, when using HDDM, it is only possible to 
fix the ratios za and sza  across conditions but not the actual values of z and sz as was originally proposed by Ratcliff 
and Rouder15 when introducing the parameter sz . The issue of how parameters are fixed between conditions 
was moot for the starting point of the accumulation (parameter z ) since it was fixed to half-way between the 
two boundaries but was critical for the variability of the starting point (parameter sz ) as discussed in the Results 
section. On the other hand, DMAT fixes the raw values of the parameters z and sz across conditions. However, 
one problem that arises is that the parameter sz is constrained so that z + sz < a . This is done to ensure that the 
accumulation always starts between the two boundaries and, indeed, it is arguably nonsensical to assume that 
the starting point of the accumulation can be beyond either one of the boundaries. However, the “extremely 
fast” condition in our experiment is naturally fit by a very small value of the boundary a . Because the parameter 
sz is constrained to be the same in all conditions (including the “extremely fast” condition), this led to sz always 
taking very small values thus minimizing the size of the starting point variability in all conditions. Since this 
resulted in bad model fits, in one set of simulations, we removed the constraint that z + sz < a . We note that 
while this decision allowed for better model fits (specifically for the difference between error and correct RTs), 
it creates conceptual difficulties for the diffusion model regarding the plausibility of the accumulation starting 
beyond the two boundaries.

The second set of model fits allowed all diffusion model parameters to vary freely between conditions, and 
therefore we refer to them as “free” fits. We fit each combination of Gabor patch contrast and SAT setting inde-
pendently from all other data in the experiment using six free parameters (for drift rate, boundary, non-decision 
time, drift rate variability, non-decision time variability, and starting point variability; the starting point was 
again set halfway between the two boundaries and was not fit as a free parameter). Overall, across the 25 com-
binations of contrast x SAT setting, we estimated a total of 150 parameters for each subject. However, because 
performance in the “extremely fast” condition was at chance for many subjects, we only analyzed the parameter 
fits for the four SAT conditions where performance was above chance for all subjects. We employed repeated 
measures ANOVAs to test which diffusion model parameters varied as a function of contrast and SAT setting.

All fits were performed using the default features in both HDDM and DMAT. Specifically, the HDDM fits 
were performed using Bayesian inference, drawing 4000 samples from posterior using Markov Chain Monte 
Carlo (MCMC) technique and discarding the first 50 samples. To increase the robustness of the estimation, 5% 
of the data were considered as outliers and modeled using a uniform distribution not generated by a diffusion 
process22 but choosing different values here did not substantially change the results. DMAT has a slight discrep-
ancy between the parameter ranges allowed for the fitting procedure and the procedure for simulating data for 
a given set of parameters. Specifically, the allowable ranges are larger for two of the parameters during fitting, 
thus creating situations where DMAT cannot simulate data based on the recovered parameters. To avoid this 
issue, we altered the allowable ranges during the fitting to be the same as the allowable ranges for data simula-
tion. Specifically, we set the absolute value of the estimated drift rate to lower than 0.5 and its variability to be 
lower than 0.3. The parameters obtained with these restrictions were typically identical with the ones obtained 
using the default ranges.

Data availability
All raw data and analyses files are freely available at https​://osf.io/fw5dc​.
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