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Abstract

Raman Chemometric Urinalysis (RametrixTM) was used to discern differences in Raman

spectra from (i) 362 urine specimens from patients receiving peritoneal dialysis (PD) therapy

for end-stage kidney disease (ESKD), (ii) 395 spent dialysate specimens from those PD

therapies, and (iii) 235 urine specimens from healthy human volunteers. RametrixTM analy-

sis includes spectral processing (e.g., truncation, baselining, and vector normalization); prin-

cipal component analysis (PCA); statistical analyses (ANOVA and pairwise comparisons);

discriminant analysis of principal components (DAPC); and testing DAPC models using a

leave-one-out build/test validation procedure. Results showed distinct and statistically sig-

nificant differences between the three types of specimens mentioned above. Further, when

introducing “unknown” specimens, RametrixTM was able to identify the type of specimen (as

PD patient urine or spent dialysate) with better than 98% accuracy, sensitivity, and specific-

ity. RametrixTM was able to identify “unknown” urine specimens as from PD patients or

healthy human volunteers with better than 96% accuracy (with better than 97% sensitivity

and 94% specificity). This demonstrates that an entire Raman spectrum of a urine or spent

dialysate specimen can be used to determine its identity or the presence of ESKD by the

donor.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227281 January 10, 2020 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Senger RS, Sullivan M, Gouldin A,

Lundgren S, Merrifield K, Steen C, et al. (2020)

Spectral characteristics of urine from patients with

end-stage kidney disease analyzed using Raman

Chemometric Urinalysis (Rametrix). PLoS ONE 15

(1): e0227281. https://doi.org/10.1371/journal.

pone.0227281

Editor: Benedetta Bussolati, Center for Molecular

Biotechnology, ITALY

Received: October 3, 2019

Accepted: December 16, 2019

Published: January 10, 2020

Copyright: © 2020 Senger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The RametrixTM

LITE Toolbox is available through GitHub under an

MIT licensing agreement (https://github.com/

SengerLab/RametrixLITEToolbox). The

RametrixTM PRO Toolbox is also available through

GitHub under similar licensing agreement (https://

github.com/SengerLab/RametrixPROToolbox).

Raman scans of urine from ESKD patients are

available with these tools. Data used for statistical

analyses are also available through GitHub (https://

github.com/SengerLab/Raman-Scans/tree/ESKD).

http://orcid.org/0000-0002-2450-6693
http://orcid.org/0000-0001-7538-318X
http://orcid.org/0000-0001-8792-8044
http://orcid.org/0000-0003-1365-4831
https://doi.org/10.1371/journal.pone.0227281
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227281&domain=pdf&date_stamp=2020-01-10
https://doi.org/10.1371/journal.pone.0227281
https://doi.org/10.1371/journal.pone.0227281
http://creativecommons.org/licenses/by/4.0/
https://github.com/SengerLab/RametrixLITEToolbox
https://github.com/SengerLab/RametrixLITEToolbox
https://github.com/SengerLab/RametrixPROToolbox
https://github.com/SengerLab/RametrixPROToolbox
https://github.com/SengerLab/Raman-Scans/tree/ESKD
https://github.com/SengerLab/Raman-Scans/tree/ESKD


Introduction

The chemical composition, physical characteristics, and types/amounts of suspended materials

in urine change when kidney (and systemic) disease is present [1–4]. In this study, Raman

Chemometric Urinalysis (RametrixTM) [5–8] was used to determine if differences in molecular

spectra could be detected in the following specimen types: (i) urine from healthy human vol-

unteers, (ii) urine from patients undergoing peritoneal dialysis (PD) therapy for end-stage kid-

ney disease (ESKD) and (iii) spent dialysate from these patients receiving PD therapy.

RametrixTM relies on Raman spectroscopy and a biological region of the spectrum (400–1,800

cm-1) that is composed of spectral signatures of the thousands of molecules known to the urine

metabolome [9,10]. Furthermore, RametrixTM uses off-the-shelf Raman spectrometers, which

are becoming more affordable, low-profile, and conducive to clinical laboratory use [11].

In the past, sophisticated analyses, including mass spectrometry, liquid/gas chromatogra-

phy, and kinetic nephelometry have been used to detect analytes (i.e., “biomarkers”) in urine

associated with metabolism or disease [3,12–15]. In addition, urine contains byproducts of

therapeutics that help clinicians monitor and adjust therapies [16,17] and can indicate envi-

ronmental and occupational toxin exposure [18].

Urine biomarker studies to detect chronic kidney disease have been conducted almost

exclusively in research settings. For example, Zürbig and co-workers [19] used capillary elec-

trophoresis, coupled online to electrospray ionization time-of-flight mass spectrometry

(CE-MS), to identify polypeptide patterns in human urine. However, proteomic spectral pat-

terns in urine, as biomarkers for kidney disease, have not been accepted widely as diagnostic

tools, and proteomic patterns identified in that study could not be translated to specific mole-

cules with physiological and pathophysiological significance. This significantly dampened

enthusiasm for proteomic spectral pattern recognition as a tool to diagnose and study genito-

urinary tract disease.

For these and other reasons, biomarker and “-omics” technologies are used rarely (or are

not readily available) by caregivers in patient care settings. This is due to expense, the daunting

requirement for advanced technology (such as mass spectrometry), expertise required for

interpretation of results, and a lack of assay validation with large datasets of normal and abnor-

mal specimens. In fact, the complexity of both acute and chronic kidney diseases, and other

genitourinary tract pathologies, makes large dataset sampling and validation both unlikely and

cost-prohibitive [20–23]. RametrixTM, on the other hand, provides robust spectral information

about the urine metabolome, using instrumentation that is inexpensive. To achieve useful

results, minimal technician training is required, and RametrixTM software automates analysis.

This has enabled studies, such as this and others [5–8,24–27], using very large datasets, to dis-

cover spectral differences between normal and abnormal (e.g., diseased, stressed, decayed,

chemically treated, etc.) samples.

Previously, we reported the Rametrix™ analysis of 235 urine specimens obtained from con-

sented, healthy, human volunteers [8]. This work identified common Raman spectral charac-

teristics seen in urine specimens obtained from healthy persons of both sexes and between 18–

70 years of age. We focused on determining the variation (or lack thereof) in spectral signa-

tures from several subsets of individuals over 30 days, comparing data from single time-point

(first voided sample in the morning) collections. As part of this work, we noted significant

effects of sex and age of the donor but negligible effects of menstruation on Raman spectral

characteristics.

Here, we describe the results of Rametrix™ analysis of 362 urine specimens collected from

patients with ESKD, who had residual renal function and were undergoing PD treatments. We

also describe RametrixTM analysis of 395 specimens of spent dialysate from those patients
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undergoing PD treatments. These were then compared with the 235 urine specimens from

healthy human volunteers [8] using RametrixTM. All collections and data analysis were

devoted to testing the hypothesis that “Rametrix™ analysis of urine specimens can discern sig-

nificant molecular composition differences between (i) PD patient urine and spent dialysate

and (ii) PD patient urine and urine from healthy individuals.” The study to discern the molec-

ular differences between PD patient urine and spent dialysate was designed to demonstrate the

capabilities of RametrixTM analysis and provide a basis for future studies that look at patient-

specific molecules that are removed by PD or the kidneys. The study to discern PD patient

urine from urine of healthy individuals was designed to identify new patients who should

receive PD therapy and to be able to monitor the progress of those patients receiving PD

therapy.

Materials and methods

Informed consent

Informed written consent for the collection of urine specimens from healthy human volun-

teers was obtained under research protocol VT15-703, approved and administered by the Vir-

ginia Tech Institutional Review Board. Informed written consent for the collection of urine

and dialysate specimens from patients undergoing dialysis therapies was obtained under

research protocol RPP/177151.2, approved and administered by Frenova (Fresenius Renal

Research; 920 Winter Street, Waltham, MA 02451). In accordance with these protocols, speci-

mens were de-identified and assigned a code at the time of collection.

Description of study population and sampling

Three groups of specimens were compared in this study: (i) urine from patients undergoing

PD therapy for ESKD, (ii) the spent dialysate from those PD therapies, and (iii) urine from

healthy human volunteers. A full analysis of the healthy human volunteer urine dataset has

been published [8]. Briefly, 235 urine specimens were collected from 48 (39 females, 9 males)

healthy human volunteers with no history or evidence of renal disease. Volunteers were also

free of infectious or degenerative disease at the time of sample collection. The age range of the

healthy volunteer population was 18–70 years; 87.5% of volunteers were of ages 19–22 years,

and the median age was 21 years.

For patients undergoing PD therapies, 362 urine specimens were collected from 96 patients,

and 395 spent dialysate specimens from 115 patients comprised the dataset. Patients had

advanced ESKD and were undergoing PD treatment. Patients ranged in age from 24–90 years

old. The mean age was 60 years, and the median age was 63.5 years. Multiple collections (4–8

separate collections) were available from multiple patients, allowing repetitive measurements

and correlations over a protracted course of PD therapy (18 months).

Specimen collection and storage

Specimens were collected at the time of routine PD adequacy evaluation (generally every 1–3

months) over a period ranging from 18–24 months. For routine adequacy testing, patients col-

lected all urine produced in a 24-hour period and also collected all spent dialysate from multi-

ple cycles of treatment that occurred over 24 hours. These urine samples and spent dialysate

collections were brought to the dialysis center, where aliquots of urine and spent dialysate

were transferred into sterile specimen cups and then immediately frozen to -15˚C. Both urine

and spent dialysate specimens were stored at this temperature until analyzed. Urine specimens

from healthy human volunteers were stored immediately at -35˚C until analyzed.
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We previously determined the suitability of collection and storage conditions in a separate

study of urine stability [7] and adhered to the guidelines set forth in that study. Unused por-

tions of urine and spent dialysate specimens were stored at -35˚C for the duration of the study

and re-analyzed, as needed.

Analytical standards

Surine™ Urine Negative Control (Dyna-Tek Industries, Lenexa, KS) was used as a control stan-

dard for urinalysis. Unused dialysate (obtained from Valley Nephrology Associates; Roanoke,

VA) was also used as a reference control in this study.

Raman methodology and measurements

Previously published experimental methods were used [6, 7]. Briefly, an Agiltron PeakSeeker™
dispersive Raman spectrometer (Woburn, MA) was used, and all specimens were Raman

scanned as bulk liquid samples in 1.5 mL glass vials at 25˚C using 785 nm (30 mW) laser exci-

tation for 30 s with spectral resolution of 8 cm-1. A minimum of 10 scans were collected per

specimen and averaged.

Computational methodology

Previously published computational methods were also used [7,8]. Spectral processing and

analyses were performed with the RametrixTM LITE [5], RametrixTM PRO [6], and Statistics

and Machine Learning Toolboxes were used with MATLAB r2018A (The MathWorks, Inc.;

Natick, MA). Raman spectra were truncated to 400–1,800 cm-1, baseline corrected using the

Goldindec algorithm [28], and vector normalized. Principal component analysis (PCA) and

discriminant analysis of principal components (DAPC) models were constructed using the

RametrixTM LITE Toolbox, and DAPC models were tested by leave-one-out analysis with the

RametrixTM PRO Toolbox. 1-Way ANOVA and pairwise comparisons using Tukey’s honestly

significant difference (HSD) procedure were performed in MATLAB.

Public availability

The RametrixTM LITE Toolbox is available through GitHub under an MIT licensing agree-

ment (https://github.com/SengerLab/RametrixLITEToolbox). The RametrixTM PRO

Toolbox is also available through GitHub under similar licensing agreement (https://github.

com/SengerLab/RametrixPROToolbox). Raman scans of urine from ESKD patients are avail-

able with these tools. Data used for statistical analyses are also available through GitHub

(https://github.com/SengerLab/Raman-Scans/tree/ESKD).

Results

Relevant questions

Raman spectroscopy and RametrixTM analysis was used to answer the following questions:

1. Are PD patient urine and spent dialysate different?

2. Are PD patient urine and urine from healthy volunteers different?

3. Can RametrixTM identify “unknown” specimens correctly?
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Raman spectroscopy of PD patient urine and spent dialysate

Raman spectra from 362 urine specimens and 395 spent dialysate specimens from PD patients

were averaged (per specimen), baseline corrected using the Goldindec algorithm [27], and vec-

tor normalized. These were plotted together in Fig 1A (PD patient urine) and Fig 1B (spent

dialysate). Raman spectra of the 235 urine specimens from healthy human volunteers were

processed similarly and published elsewhere [8]. Apparent in Fig 1, there are observable differ-

ences between Raman spectra of PD patient urine and spent dialysate. In particular, there are

clear differences in the urea (1,002 cm-1) [10,29] content of these specimens. While all speci-

mens seemed to show a basic spectral signature of urine or spent dialysate, there were consid-

erable differences between the individual spectra within these specimen types. These were

explored further by PCA and statistical tests to provide quantitative metrics.

Principal component analysis

The PD patient urine specimens were compared against the spent dialysate specimens using

PCA in the RametrixTM LITE Toolbox. The first two principal components are plotted in Fig

2A. Here, significant separation is observed between the two specimen types (i.e., PD urine

and spent dialysate). PCA was applied with two controls: (i) SurineTM as a urinalysis standard

and (ii) unused dialysate. SurineTM clustered with the urine specimens, and the unused dialy-

sate clustered with the spent dialysate, showing some similarity between these specimen types.

The RametrixTM LITE Toolbox also identifies Raman shifts that lead to the separation of

Fig 1. Raman spectra of PD patient urine and spent dialysate. (A) Averaged, baselined, and vector normalized Raman spectra from 362 urine specimens obtained

from patients receiving PD therapy for ESKD. (B) Averaged, baselined, and vector normalized Raman spectra from 395 spent PD dialysate specimens.

https://doi.org/10.1371/journal.pone.0227281.g001
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clusters in PCA [5]. These can be traced back to individual molecules by scanning individual

standards, metabolomic knowledge [9], and spectral libraries [10]. For the PD patient urine

and spent dialysate dataset, these Raman shift contributions are shown in Fig 2B. Contribu-

tions from the top four principal components are shown, and together, these represent over

92% of the dataset variance. Again, the Raman shift at 1,002 cm-1 was the most dominant, pres-

ent in all principal components, and is representative of urea in urine and dialysate specimens.

Other notable Raman shifts in Fig 2B include creatinine (680 cm-1) [30,31] and glucose (1,071

cm-1; 1,117 cm-1; others) [8,32]. Research is ongoing to validate more Raman shifts in this and

similar plots using Raman scans of standards and metabolomic analysis. We note, however,

the chemometric approach of RametrixTM (described in the following sections) allow mean-

ingful results to be obtained without the assignment of analytes to individual Raman bands.

The PD patient urine specimens were also compared against the urine specimens from

healthy human volunteers by PCA. These results are shown in Fig 3A and show the separation

of clusters between the two specimen types, suggesting significant spectral differences and

molecular compositions. This time, the SurineTM urinalysis control clustered with urine speci-

mens from healthy volunteers, rather than those from PD patients. The spectral differences

(i.e., signal intensities at each Raman shift) that lead to the observed separation between urine

specimens from PD patients and healthy volunteers in PCA are given in Fig 3B. The top four

principal components represent more than 94% of the dataset variance in this case. Here, urea
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(1,002 cm-1) is dominant in the first principal component (PC 1). Again, creatinine and glu-

cose are apparent in Fig 3B, and additional Raman shift contributions are present relative to

the comparison of PD patient urine and spent dialysate (Fig 2B).

Statistical analyses

The entire dataset (consisting of Raman scans of healthy human volunteer urine, PD patients

urine, and spent dialysate) was analyzed by 1-way ANOVA to determine if the type of speci-

men was statistically significant. To do this, the spectra were each quantified to a single numer-

ical value through calculation of the total principal component distance (TPD). This

calculation has been explained and demonstrated previously [7,8]. Briefly, TPD represents

how closely the Raman spectrum of a specimen resembles that of SurineTM. To calculate this,

the distance formula is applied between the top four principal components of a specimen and

those of SurineTM. This procedure reduces a data-rich Raman spectrum down to a single

numerical value, which allows statistical tests to be applied. In particular, a 1-way ANOVA test

of TPD values for all specimen types (i.e., healthy human urine, PD patient urine, or spent dial-

ysate) returned a p-value less than 0.001, which confirmed that the type of specimen was statis-

tically significant. Results of pairwise comparison tests with Tukey’s HSD procedure are

shown in Table 1. Statistical significance (p< 0.001) was obtained when comparing (i) PD

patient urine with spent dialysate, (ii) PD patient urine with healthy human volunteer urine,
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Fig 3. PCA of PD patient urine and urine from healthy individuals. (A) PCA results for Raman spectra of 362 urine specimens obtained from patients receiving PD
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https://doi.org/10.1371/journal.pone.0227281.g003
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and (iii) PD patient spent dialysate with healthy human volunteer urine. Results confirm these

types of specimens are all different from one another. Other pairwise comparisons did not

return statistical significance likely because only single controls (SurineTM and unused dialy-

sate) were included in the dataset.

Discriminant analysis of principal components models

The RametrixTM LITE Toolbox was used to generate DAPC models for datasets consisting of

Raman scans of: (i) PD patient urine and spent dialysate and (ii) PD patient urine and urine

from healthy human volunteers. SurineTM was included as a control in both models, and

unused dialysate was used as an additional control for the model containing PD patient spent

dialysate. The RametrixTM PRO Toolbox was then used to evaluate the predictive capabilities

of these models using a leave-one-out build/test validation routine. DAPC model clustering is

shown in Fig 4 for both models when 50 principal components were used in model construc-

tion. Good separation of clusters (with some overlap) was observed in both cases. SurineTM

was separated from all clusters in both models, and the unused dialysate standard clustered

with the PD patient spent dialysate specimens.

The prediction capabilities (from “leave-one-out” build/test routines) of the DAPC models

are shown in Tables 2 and 3. The DAPC models were built with different numbers of principal

components to ensure enough dataset variance was included in the models and to test for

model overfitting. DAPC models were evaluated in terms of prediction accuracy (the percent-

age of data points predicted correctly), sensitivity (the true positive percentage), and specificity

(the true negative percentage). Results in Table 2 convey RametrixTM can determine the iden-

tity of an “unknown” specimen from a PD patient as being either urine or spent dialysate with

very high confidence. Greater than 98% accuracy, sensitivity, and specificity were obtained for

a DAPC model consisting of 10 principal components. For all DAPC models tested, the accu-

racy, sensitivity, and specificity values exceeded 97%. This high level of confidence in identify-

ing the type of sample (i.e., urine or spent dialysate) is unsurprising given the clear differences

in Raman spectra shown in Fig 1. For determining whether a urine specimen originated from

a PD patient or healthy human volunteer, RametrixTM prediction results are given in Table 3.

Better than 96% prediction accuracy (with better than 97% sensitivity and 94% specificity) was

obtained for the DAPC model constructed with 11 principal components. Using 50 principal

components led to increased accuracy and sensitivity with decreased specificity, which is char-

acteristic of model over-fitting.

Table 1. Pairwise comparisons using Tukey’s HSD procedure.

Specimen 1 Specimen 2 p-Value

Spent PD Dialysate PD Patient Urine < 0.001

Spent PD Dialysate Unused Dialysate 0.906

Spent PD Dialysate Healthy Urine < 0.001

Spent PD Dialysate SurineTM 0.0517

PD Patient Urine Unused Dialysate 1.00

PD Patient Urine Healthy Urine < 0.001

PD Patient Urine SurineTM 0.346

Unused Dialysate Healthy Urine 0.905

Unused Dialysate SurineTM 0.689

Healthy Urine SurineTM 0.874

https://doi.org/10.1371/journal.pone.0227281.t001
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Discussion

RametrixTM has demonstrated the ability to discern effectively among (i) urine from PD

patients (ESKD), (ii) spent dialysate from their PD therapies, and (iii) urine from healthy

human volunteers. Cluster separations (according to specimen type) were readily apparent in

PCA and DAPC model plots, and the conversion of spectral data to TPD values for statistical

analyses also confirmed these differences were statistically significant. We have begun the pro-

cess of identifying molecules responsible for these differences, and we hypothesize this may

result in a new set of biomarkers for ESKD and earlier stages of chronic kidney disease.
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therapy for ESKD and 235 urine specimens from healthy individuals.

https://doi.org/10.1371/journal.pone.0227281.g004

Table 2. RametrixTM PRO results showing the ability to predict whether an unknown specimen from a PD patient is urine or spent dialysate.

Percent Variability Explained by Principal Components Number of Principal Components used in DAPC Model Accuracy� Sensitivity� Specificity�

90% 4 97.8% 98.6% 97.0%

95% 5 97.2% 98.1% 96.5%

99% 10 98.7% 98.9% 98.5%

99.9% 50 98.2% 98.9% 97.5%

�Predictions were from a leave-one-out training/testing routine.

https://doi.org/10.1371/journal.pone.0227281.t002
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However, we were able to show that the entire Raman spectrum of a specimen can be used

(i.e., chemometrics) to determine its type (i.e., urine or dialysate) or the state of the donor (i.e.,

healthy human or PD patient). The leave-one-out build/test validations of Tables 2 and 3 are

particularly important because they describe how well RametrixTM can perform with

“unknown” specimens. Of course, the long-term vision with RametrixTM is not to be able to

discern whether an unknown specimen is urine or dialysate but to be able to screen for the

presence of incipient disease and patient-specific PD responses. For example, RametrixTM

could be used to determine whether PD therapies are patient-specific and if there are varia-

tions among successive treatments. If so, how do these affect long-term patient outcomes?

Comparing urine from PD patients to that of healthy human volunteers is a first crucial step in

this process. The PD patients used in this study have ESKD; thus, the differences between

urine from these patients and healthy human volunteers should be significant and easily

detectable by RametrixTM, as was confirmed by this study. The next steps in RametrixTM devel-

opment are to be able to detect earlier stages (i.e., G1-4) and track patient progress over longer

periods of time.
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