
INVESTIGATION

Genome-Wide Association Studies with a Genomic
Relationship Matrix: A Case Study with Wheat
and Arabidopsis
Daniel Gianola,*,†,‡,§,**,††,1 Maria I. Fariello,††,‡‡ Hugo Naya,†† and Chris-Carolin Schön§,**
*Department of Animal Sciences, †Department of Dairy Science, and ‡Department of Biostatistics and Medical
Informatics, University of Wisconsin-Madison, Wisconsin 53706, §Technical University of Munich School of Life Sciences
Weihenstephan, Technical University of Munich, D-85354 Freising, Germany, **Institute for Advanced Study, Technical
University of Munich, D-85748 Garching, Germany, ††Bioinformatics Unit, Institut Pasteur de Montevideo, 11400,
Uruguay, and ‡‡Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la
República, 11300 Montevideo, Uruguay

ORCID ID: 0000-0001-8217-2348 (D.G.)

ABSTRACT Standard genome-wide association studies (GWAS) scan for relationships between each of p
molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic
similarities among individuals (G) is constructed, to account more properly for the covariance structure in the
linear regression model used. We show that the generalized least-squares estimator of the regression of
phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are)
used for building G, provided variance components are unaffected by exclusion of such marker(s) from G.
The result is arrived at by using a matrix expression such that one can find many inverses of genomic
relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but
carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors
with fixed regression coefficients, e.g., to account for population stratification, their removal from G does
matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual
variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines,
with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions.
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The advent of an enormous amount ofDNAmarkers has given impetus to
thousands of genome-wide association studies (GWAS) in humans, plants,
and livestock (Yu et al. 2006;Manolio et al. 2009; Brachi et al.2011;Gondro
et al. 2013; Lipka et al. 2015); Neimann-Sorensen and Robertson (1961)
represents one of the earliest searches for association between markers
(blood groups in their study) and quantitative traits in animal genetics.

The most prevalent statistical method used in GWAS has been
ordinary least-squares (OLS) linear regression of some phenotypic
measurement on the number of copies of a reference allele at a single
marker locus, i.e., single marker regression (SMR). This method was
subsequently enhanced by use of mixed linear model methodology,
originally developed in animal breeding by Henderson (1948), with
the purpose of accounting for correlated observations due to genetic
or genomic similarities among individuals. Ignoring such correla-
tions, as is done in OLS or in standard logistic regression, overstates
precision and creates bias in populations undergoing artificial se-
lection (Henderson 1975). These expectations from mixed model
theory were corroborated prior to the GWAS wave by Kennedy et al.
(1992) using a model where individuals were genotyped for a known
gene; the genetic resemblance among individuals in the sample was
accommodated using a random factor (additive effects) with levels
that were correlated according to the infinitesimal model. In the
SMR-GWAS context, Aulchenko et al. (2007) and Meyer and Tier
(2012) also used an additive infinitesimal random effect with
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covariance matrix proportional to a pedigree-based kinship matrix,A
(Henderson 1976). Given that molecular markers have become in-
creasingly available, it was then natural to consider replacing A by a
genome-based matrix G constructed using pairwise similarities in
state between individuals. Variants of this type of matrix—called
genomic relationship matrices—are used widely for SNP-based anal-
ysis in animal or plant breeding and human genetics (Nejati-Javaremi
et al. 1997; Yu et al. 2006; Van Raden 2008; Astle and Balding 2009;
Yang et al. 2010; Price et al. 2010; Legarra 2015). Along these lines,
Teyssèdre et al. (2012) used analysis and simulation to study Type I
error and power behavior of four models for GWAS; their conclusion
was that the performance of SMR-OLS degraded relative to general-
ized least-squares as heritability and variability of relationships
among individuals increased.

The preceding methods were also adopted and enhanced by human
geneticists. Price et al. (2010) pointed out that how best to construct G
in order to performGWAS in some optimalmanner, e.g., to account for
population stratification, was unclear. Consider the following question:
if marker j in a GWAS is tested as a fixed effect in a SMR mixed model
that includes G in the covariance structure, should the contribution of
such marker to genomic similarity be removed from G? It is well un-
derstood (e.g., Goddard 2009) that if a marker effect is treated as ran-
dom then it contributes to the covariance structure, but it is not a
location parameter of the phenotypic distribution, since the mean vec-
tor of the latter does not depend on zero-mean random effects. Hence,
if a SMR model using G treats a marker as fixed and tests for its effect,
the test would not appear to be net, as themarker is also contributing to
variance, i.e., it is implicitly included in themodel as a random effect. In
other words, the marker is viewed as having a fixed and a random effect
simultaneously. The contradiction is clear: if a marker effect is a fixed
parameter, it cannot have a frequentist variance. Consider a GWAS
scan involving pmarkers; if the marker to be tested were to be removed
when building up G, p distinct genomic relationship or phenotypic
covariance matrices (of size n · n each) would need to be constructed
and inverted (depending on the algorithm). The analysis would be
impractical if the number of variants tested is large, as is the case with
sequence data. It is fairly obvious that if p is very large, the impact of
removing a marker should be nil. However, the question posed above
deserves an unambiguous answer.

A similar issue arises in many treatments of genome-derived
population structure presented in the literature. In principle, sub-
structure must be accounted for in a GWAS somehow so that the
analysis informs about association in a conceptually homogeneous
population (Yu et al. 2006; Zhu and Yu 2009). Yang et al. (2010,
2011) accounted for population structure by extracting principal
components (PC) fromG, and regressions on a subset of these were
regarded as fixed in a mixed model, but with G used without any
modification; Stahl et al. (2012) presents an application. Janss et al.
(2012) argued that such an approach would be ill-posed because it
produces double counting: the eigenvectors of G used as covariates
in the fixed part of the model are also an implicit part of G. Should
G then be left intact? On one hand, the view could be taken that
if an eigenvector is used as a covariate with a fixed regression
coefficient, its contribution toG should be discounted. On the other
hand, removal of the eigenvector could degrade the measure of
similarity among individuals. Janss et al. (2012) pointed out that
the eigen-decomposition of G would provide a solution to the
problem (attenuation via eigenvalues) when the aim is to infer
marker effects and genomic heritability. However, such attenuation
shrinks all regressions on eigenvectors to 0 (to distinct degrees),
and shrinkage on regressions on markers with medium or large

effect sizes, or on eigenvectors used to account for population strat-
ification, should not be exerted. Under such reasoning, the contri-
bution to G of a marker or of eigenvector(s) associated with fixed
regressions, should be discounted if one seeks net effect size esti-
mates and corresponding tests of hypotheses. Another view (Astle
and Balding 2009; Rincent et al. 2014) is that G conveys informa-
tion on both population structure and relatedness, so it may “not be
useful to consider admixture information as fixed effects covari-
ates.” The preceding discussion reflects a lack of consensus in the
GWAS field.

In this paper, we address the construction of G in a GWAS
context. First, we describe how a single marker GWAS with, say,
p conveniently constructed G matrices, can be carried out using a
mixed linear model in which the marker effect tested is treated as
fixed and the remaining p2 1 markers are used to introduce similar-
ities in state, i.e., p 2 1 markers are viewed as having zero-mean
random effects. A similar approach is discussed for the situation where
eigenvectors are chosen as regressors (with fixed regression coeffi-
cients), with the purpose of accounting for population stratification,
with the remaining eigenvectors used to induce similarities among
individuals. In particular, we show algebraically that the generalized
least-squares estimator of the regression on a marker is invariant with
respect to whether or not the marker (or set of markers) treated as fixed
is used when building G. It is also shown that removal of eigenvectors
does matter. The manuscript is organized as follows. Basic concepts of
GWAS conducted with kinship matrices in the model are reviewed
in the sections under Standard Approaches Used in GWAS. Next, in
Impact of Removing Markers from the G-Matrix, it is shown how
inverses of the p needed genomic relationship (or of phenotypic co-
variance) matrices can be found in a convenient manner, and use the
results to prove the invariance indicated above; removal of eigenvec-
tors is also discussed in this section. To illustrate main, as well as
related, concepts, data on wheat inbred lines and on A. thaliana were
used, as described in Case Studies with Wheat and Arabidopsis Data.
Technical details are shown in Appendices to the paper and toy ex-
amples are in Supplemental Material, File S1.

STANDARD APPROACHES USED IN GWAS

Ordinary least-squares SMR
Let the n · pmarker matrix be X = {xij}; its jth column xj (j = 1,2,. . .,p)
contains marker genotype codes, i denotes individual, and n is sample
size. Marker (SNP) genotypes can be coded as 0,1,2 for aa, Aa, AA
individuals, respectively, where A is a reference allele; such coding
captures additive genetic effects in the main. Markers and phenotypes
are typically centered (e.g., deviated from the mean), and most GWAS
studies use the SMR model

yi ¼ xijbj þ ei; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p; (1)

where yi is the phenotype of individual i; xij is the centered number of
copies of the reference allele at locus j carried by i; bj is the fixed linear
regression of yi on number of alleles at locus j; and ei � NIIDð0;s2

e Þ is
a residual with variance s2

e ; an intercept and additional nuisance
effects (e.g., smoking, age, and region) can be included in the model
but these are not needed for the purposes of this discussion. NIID
denotes that the SMR model assumes that residuals are normal, in-
dependent (an incorrect assumption if individuals are molecularly or
genetically similar, or aggregated in families or spatially), and identi-
cally distributed. Notably, the SMR model postulates that the only
effect affecting the mean of the distribution of y, given marker
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genotypes, is that of the SNP in question, hopefully flagging some
genomic region in an unambiguous manner (the assumption is un-
likely to hold for a complex trait).

The OLS estimator of the regression of y on the number of copies of
allele A is

bSMR
j ¼ x9jy

x9jxj
; (2)

where x9jxj ¼ Xn
i¼1

x2ij and x9jy ¼ Xn
i¼1

xijyi. Its variance is

VarðbSMR
j Þ ¼ ðx9jxjÞ21s2

e : With s2
e estimated in some manner as

ŝ2
e , the p2 value for assessing significance of the regression is based

on the statistic

tSMR
j ¼ bSMR

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x9jxj

�21
ŝ

q
2
e

¼ bSMR
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2ij

ŝ2
e

vuuuut
: (3)

The OLS-based test is anticonservative: the standard error is un-
derstated if important location and dispersion effects are ignored
(Henderson 1984; Kennedy et al. 1992; Teyssèdre et al. 2012). Hence,
p values must be taken with caution when a complex trait is con-
fronted because of model specification error. Further, family effects
or genomic similarities among individuals affect the variance–
covariance structure of the observations, and OLS SMR ignores this
issue. Because of the assumption of independence of residuals, the
SMR approach sees more statistical information in the data set than
there actually is.

Generalized least-squares (GLS) SMR using a matrix of
realized genomic relationships
Write the raw marker genotypes as X ¼ ½x1; x2; . . . ; xp�; with xj as
before. A genomic similarity or relationship matrix G of order n · n
can be formed as

G ¼ XX9 ¼
Xp
j¼1

xjx9j; (4)

Observe that G is the sum of p matrices of order n· n; each repre-
senting the contribution of a given marker to relatedness. Assume,
without loss of generality, that G is positive definite, and that it has
rank n. If p, n,G does not possess a unique inverse as its rank would
be p at most. If p is large, the contribution of marker j to diagonal and
off-diagonal elements of G is negligible relative to that made by the
other p2 1 markers.

An improvement over OLS-SMR uses realized relationships in the
regressionmodel, to account for correlations between individuals.With
markers, one can observe variable degrees of similarity between full-sibs,
that differ from, say, the expected additive relationship of 1=2, depend-
ing on the actual alleles inherited (Hill and Weir 2011). This feature of
G renders the GWAS model more effective because similarities among
individuals are represented in a more informed manner. Here, the re-
gression model (1) is augmented with a random genomic effect gi as
follows:

yi ¼ xijbj þ gi þ ei; (5)

where gi � Nð0;s2
gÞ is the part of the additive genetic effect of indi-

vidual i (assumed to vary at random in the population) that is cap-

tured by all p markers; s2
g is a genomic variance component. If ei

and gi are independent, the narrow sense genomic heritability is

h2g ¼
s2
g

s2
g þ s2

e
; where s2

y ¼ s2
g þ s2

e is the phenotypic variance

(Yang et al. 2010; de los Campos et al. 2015). In vector form, put
g � Nð0;Gs2

gÞ.
Let V ¼ Gs2

g þ Is2
e . Under (5) the GLS estimator of bj is

bG
j ¼ x9jV21y

x9jV21xj
; (6)

with

Var
�
bG
j

�
¼
h
x9jV

21xj
i21 ¼ s2

e

h
x9j
�
VG�21

xj
i21

; (7)

where G means that genomic relationships enter into the phenotypic

variance–covariance structure and VG ¼ G
h2g

12 h2g
þ I. No obvious

computational advantage results from using the mixed model equa-
tions for the purpose of obtaining either the GLS estimator of bj or
BLUPðgÞ; where g ¼ fgig is the vector of marked additive genetic
values after accounting for the regression of yi on xj; BLUPmeans best
linear unbiased predictor (knowledge of h2g is needed). A standard

(Searle 1974) representation of genomic BLUP gives

BLUPðgÞ ¼ s2
gGV

21
�
y2 xjb

G
j

�
¼ h2g

12 h2g
G
�
VG�21

�
y2 xjb

G
j

�
:

(8)

Whether or not G has a unique inverse is immaterial because VG is
invertible: BLUPðgÞ is unique irrespective of rank deficiency inG, and
the GLS estimator bG

j is unique as well.

IMPACT OF REMOVING MARKERS FROM THE G-MATRIX

General considerations
As pointed out earlier, if a regression on a marker is treated as a fixed
effect, it would seem sensible to remove its contribution toG. Other-
wise, there would be a contradiction: a fixed effect affects the mean
of a distribution but does not contribute to covariance structure.
Conversely, a zero-mean random effect contributes to dispersion
(variance and covariance) but not to location (e.g., Henderson 1984;
Gianola 2013)

Conceivably, a marker effect could be modeled as the sum of a
fixed and of a random component; the fixed part would index the
mean of the distribution, and the random part would contribute to
the likelihoodonly through covariance structure. This view, however,
contradicts quantitative genetic theory, where quantitative trait locus
(QTL) effects are fixed and genotypes are random (e.g., Falconer and
Mackay 1996; Lynch and Walsh 1998; Gianola et al. 2009; Gianola
2013; de los Campos et al. 2015). In classical quantitative genetics,
QTL effects do not have variance but these loci generate variance in
allelic content among individuals. On the other hand, Bayesian re-
gression models pose a variance on effects that reflects uncertainty,
a priori. Actually, the Bayesian treatment of a fixed effect (e.g., a flat
prior) implies an infinite prior variance provided the flat prior is
unbounded. Here, we examine the question of whether or not a
marker effect declared as fixed can also be allowed to have a random
effect, as implied when including the marker in question in the
building of G.
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GWAS using the GLS representation
If the effect of marker j is fixed in the GWAS, and the marker is removed
when constructing G, p distinct genomic relationship matrices need to be
built to carry out the GLS GWAS, accordingly, with p V or VG matrices
formed and inverted. This procedure is computationally taxing if p is large.
A short-cut is described below, with the result used subsequently to show
that the GWAS can actually be carried out usingV without modification.

LetG½2j� be an n· n genomic relationship matrix constructed with-
out using marker j; built with the remaining p2 1 markers. The SMR-
GLS model is

yi ¼ xijbj þ gi;2j þ ei; (9)

where gi;2j is the marked additive genomic value of i using the p2 1
markers other than j in G½2j�: In an obvious vector notation, the
model becomes

y ¼ xjbj þ g½2j� þ e ¼ xjbj þ e½2j�; (10)

where e½2j� ¼ g½2j� þ e. Under independence of g½2j� and e

Var
�
e½2j�

�
¼ G½2j�s2

g þ Is2
e ¼ V½2j�; j ¼ 1; 2; . . . ; p; (11)

and s2
g is the marked additive genetic variance. For simplicity, assume

that exclusion of marker j from G does not change s2
g and s2

e appre-
ciably; this is reasonable if p is large, the marker minor allele is rare
and the substitution effect is small. Minor perturbations in values of
variance components have little impact on GLS estimates of fixed
effects because the latter depends on variance ratios only, at least in
single trait models (Henderson 1984). The GLS estimator is now

b̂j ¼
x9jV21

½2j�y

x9jV21
½2j�xj

; (12)

with variance

Var
�
b̂j

�
¼
�
x9jV

21
½2j�xj

�21
: (13)

This representation requires inverting each of the n · n V21
½2j� matrices

for implementing the procedure, which is unfeasible for dense marker
platforms (e.g., hundreds of thousands or millions of markers), even if
n is moderate. However, use of (47) in Appendix A produces

V21
½2j� ¼

�
V2xjx9js

2
g

�21¼ V21 þ s2
gV

21xjx9jV21

12s2
gx9jV

21xj
;    j ¼ 1; 2; . . . ; p:

(14)

Putting tj ¼ V21xj

V21
½2j� ¼ V21 þ s2

g tjt9j

12s2
gx9jtj

;     j ¼ 1; 2; . . . ; p: (15)

Thus, the problem of computing p inverses is replaced by one in-
volving a single inversion plus a series of matrix multiplications. Toy
examples are in File S1.

Does itmake a differencewhether ornotmarker j is used or excluded
when buildingG? Consider two GLS estimators: one with and the other
without marker j included in G. Let these estimators be b̂j;in and b̂j;out,
respectively; the corresponding inverses of the phenotypic variance-
covariance matrices are V21 and V21

½2j�. Assume that variance compo-
nents are not affected appreciably by exclusion of the marker from G.
The difference between the two GLS estimators is

Dbj
¼ b̂j;in 2 b̂j;out ¼

x9jV21y

x9jV21xj
2

x9jV21
½2j�y

x9jV21
½2j�xj

: (16)

We show in Appendix B that Dbj
¼ 0; i.e., exclusion of marker j when

forming G does not affect the generalized least-squares estimator.
This result holds provided that G is built consistently with the way

in which xj has been coded, i.e., the xj in G ¼
Xp
j¼1

xjx9j must be the

same as the xj used as covariate. The surprising result thatDbj
¼ 0 has

not been reported hereto.
EventhoughtheGLSestimatorcanbecomputedintheusual form,asubtle

point is that ðx9jV21xjÞ21 ¼ s21
j doesnot give the correct varianceunder the

assumption that the effect of marker j is treated as fixed. The variance is

Var
�
b̂j;out

�
¼ Var

 
x9jV21y

x9jV21xj

!
¼ 1

s2j
x9jV

21V½2j�V21xj: (17)

GWAS and BLUP using the mixed model representation
For model (10), an alternative way of computing b̂j is via the mixed

model equations, given the variance ratio lg ¼ s2
e

s2
g
. The linear system of

equations to be solved is"
x9jxj x9j
xj Iþ G21

½2j�lg

#�
b̂j
ĝ½2j�

�
¼
�
x9jy
y

�
;     j ¼ 1; 2; . . . ; p: (18)

Above b̂j is the GLS estimator, and ĝ½2j� is the BLUP of g½2j�; G
21
½2j�,

with order n· n, would need to be computed for each single marker
regression scan. Further, letting

Figure 1 Wheat: maximum likelihood (ML) estimates of genomic (Vg) and
residual (Ve) variance components and of genomic heritability (h2) correspond-
ing to 1279 models with markers removed, one at a time, when forming the
genomic relationship matrix (G). Top panel: variance components; horizontal
and vertical lines indicate ML estimates with all markers in G. Bottom panel:
genomic heritability; horizontal line indicates the estimate with all markers.
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"
x9jxj x9j
xj Iþ G21

½2j�lg

#21

¼
2
4 cbb

�
cbg½2j�

�9
cbg½2j� C

g½2j�g½2j�

3
5; (19)

the scalar cbbs2
e gives the variance of b̂j so the statistic for testingH0 :

bj ¼ 0 is

zj ¼
b̂j

se

ffiffiffiffiffiffiffi
cbb

p ;   j ¼ 1; 2; . . . :p: (20)

Observe that

G½2j� ¼ G2 xjx9j: (21)

Again using (47) in Appendix A produces

G21
½2j� ¼

�
G2xjx9j

�21 ¼ G21 þ G21xjx9jG21

12 x9jG21xj
; j ¼ 1; 2; . . . ; p;

(22)

and G needs to be inverted only once.
As shown earlier, the b̂j solution in (18) is the same whether or not

marker j is used when buildingG. It just remains to see whether or not the
sameholds for BLUPðĝ½2j�Þ. To examine this issue, consider the strong-arm
(i.e., without using the mixed model equations) representation of BLUP

ĝ ¼ s2
gGV

21zj; (23)

where zj ¼ y2 xjb̂j and

ĝ½2j� ¼ s2
gG½2j�V21

½2j�zj; (24)

where V21
½2j� is the phenotypic variance-covariance matrix stemming

from use ofG½2j� in lieu ofG. It is shown in Appendix C that ĝ½2j� ¼ ĝ
for any j:

It is concluded thatpointestimatesandpointpredictions fromGLSðbjÞ
and BLUPðgÞ; respectively, are invariant with respect to whether or not
the marker being tested as a fixed effect is included or removed when
constructing the type of genomic relationship matrix used here.

Generalizations

Several markers tested as fixed effects simultaneously: Expressions
(14), (15), and (22) generalize to the situationwheremmarkers; instead
of a single one, are removed from X when forming G, and their effects are
tested jointly for association. Let X½m  out� be a matrix of order n ·m whose
columns pertain to themarkers being tested asfixed effects in anm2marker
GWAS, that is, a multiple regression onmmarkers is used. Then

V½m  out� ¼ V2s2
gX½m  out�X9½m  out� (25)

and

Figure 2 Wheat: associations be-
tween change in absolute value
of genomic variance estimate due
to removal of a marker (D‐V), and
the R2 and marker variance assess-
ment (SMV) from single marker re-
gression. Right panels show fitted
values of a local regression (LOESS)
with span parameter = 0.25.
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G½m  out� ¼ G2X½m  out�X9½m  out�: (26)

If the inverses indicated below exist, application of (43) inAppendix A
gives

V21
½m  out� ¼ V21 þ s2

gV
21X½m  out�

h
I2s2

gX9½m  out�V21X½m  out�
i21

· X9½m  out�V21

(27)

and

G21
½m  out� ¼ G21 þ G21X½m  out�

h
I2X9½m  out�G21X½m  out�

i21

· X9½m  out�G21: (28)

For G½m  out� to be nonsingular, n# p2m must hold.
Assuming that variance components remainunaltered ifmmarkers are left

out in the build-up of G (reasonable for smallm), the GLS estimator is

b̂½m  out� ¼
�
X9½m  out�V21

½m  out�X½m  out�
�21�

X9½m  out�V21
½m  out�y

�
: (29)

After algebra

X9½m  out�V21
½m  out� ¼ X9½m  out�

n
V21 þ s2

gV
21X½m  out�

·
h
I2s2

gX9½m  out�V21X½m  out�
i21

X9½m  out�V21
o

¼
h
I2s2

gX9½m  out�V21X½m  out�
i21

X9½m  out�V21

(30)

Using the preceding in (29)

b̂½m  out� ¼
nh

I2s2
gX9½m  out�V21X½m  out�

i21
X9½m  out�V21X½m  out�

o21

·
h
I2s2

gX9½m  out�V21X½m  out�
i21

X9½m  out�V21y

¼
�
X9½m  out�V21X½m  out�

�21
X9½m  out�V21y:

(31)

Hence, one retrieves the GLS estimator of them regressions obtained
without any modification of the genomic or phenotypic variance-
covariance matrices. The variance of the estimator is

Var
�
b̂½m  out�

�
¼
�
X9½m  out�V21X½m  out�

�21

· X9½m  out�V21V½m  out�V21X½m  out�

·
�
X9½m  out�V21X½m  out�

�21

¼
�
X9½m  out�V21X½m  out�

�21
2 Is2

g ; (32)

where the identity matrix has order m:

Removing eigenvectors from G: The eigen-decomposition of G (sup-
pose it is positive-definite) produces

G ¼ ULU9; (33)

where U ¼ ½U1 U2 : : : Un � is the n · n matrix of orthogo-
nal eigenvectors of G and L ¼ flig is a diagonal matrix containing

the n eigenvalues; note that G ¼
Xn
i¼1

UiU9ili. Consider the model in

(5) and, as in Janss et al. (2012), use the equivalent matrix form
representation based on putting g ¼ Ua

Figure 3 Wheat: associations between decrease (D)
in genomic variance estimate due to removal of a
marker from the genomic relationship matrix (G), and
the R2 and marker variance assessment (SMV) from
single marker regression. Plot depicts the 482 cases
where marker removal reduced the genomic vari-
ance estimate relative to the estimate obtained
with all markers contributing to G. LOESS span
parameter = 0.40.
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y ¼ xjbþ Uaþ e; (34)

where a � Nð0;Ls2
gÞ and s2

g is the marked genetic variance. The
phenotypic variance-covariance matrix is

V ¼ ULU9s2
g þ Is2

e ¼
Xn
i¼1

UiU9ilis
2
g þ Is2

e ; (35)

so lis
2
g is the genetic variance accounted for by eigenvector i.

Population structure is oftenaccounted forby regressingphenotypes
on some eigenvectors or onPCofG. Suppose that the regressions on the
first two eigenvectors are treated as fixed to account for some structure;
the SMR model becomes

y ¼ 	xjbþ U1a1 þ U2a2


Fixed þ

n
U½212 2�a½212 2�

o
Random

þ e;

(36)

where U½2122�a½2122� ¼ g½2122� is the genetic signal marked by
the genomic relationship matrix after removing its first two
eigenvectors; U½2122�, of order n· ðn2 2Þ, is U with its first
two columns removed, and a½2122� is the corresponding vector
of n2 2 zero-mean random regression coefficients on U½2122�.
Above, f:gFixed and f:gRandom denote the fixed and random terms
in the model, respectively.

Let V½2122� be the resulting variance-covariance matrix of y, and
take the variance components as known, so that

Var
�
g½2122�

�
¼ G½212 2� ¼ G2 ½U1 U2 �

�
l1 0

0 l2

�"
U91
U92

#

¼
Xn
i¼3

UiU9i li; (37)

and

V½2122� ¼ Gs2
g þ Is2

e 2s2
g

X2
i¼1

UiU9ili

¼ V2s2
g

�
U1

ffiffiffiffiffi
l1

p
U2

ffiffiffiffiffi
l2

p �"U91 ffiffiffiffiffi
l1

p

U92
ffiffiffiffiffi
l2

p
#
: (38)

Here, U�
i ¼ Ui

ffiffiffiffi
li

p
; i ¼ 1; 2; is a PC vector: Application of (43) in

Appendix A to (38) produces

V21
½2122� ¼V21 þ s2

gV
21½U�

1 U�
2 �

·

(
I2s2

g

"
U�9
1

U�9
2

#
V21½U�

1 U�
2 �
)21"

U�9
1

U�9
2

#
V21

¼ V21 þ s2
gV

21½U�
1 U�

2 �

·

"
12s2

gU
�9
1 V

21U�
1 2s2

gU
�9
1 V

21U�
2

2s2
gU

�9
2 V

21U�
1 12s2

gU
�9
2 V

21U�
2

#21"
U�9
1

U�9
2

#
V21:

(39)

Once V21
½2122� is formed, (15) can be employed to obtain

V21
½21222j� ¼ V21

½2122�

"
Iþ s2

g

12s2
gx9jt9

#
j

xjt9
#
j

#
;   j ¼ 1; 2; . . . ; p;

(40)

where t9#j ¼ x9jV21
½2122�: Instead of inverting p phenotypic variance-

covariance matrices, one extracts eigenvectors from G and
inverts V½2122� only once. In this situation, model (36) can be
written as

y ¼ Wuþ g½2122� þ e; (41)

where Wn·3 ¼
�
xj U1 U2

�
and u9 ¼ ½b a1 a2 � The GLS

estimator of the three regression coefficients is

û ¼
�
W9V21

½21222j�W
�21

W9V21
½21222j�y: (42)

Using a wheat data set described later, we set s2
g ¼ s2

e ¼ 1 and cal-
culated GLS estimates of the regressions on each of the first five
markers, using V;V½21�;V½2122�;V½212223�, and V½21222324� where
the subscripts denote the eigenvectors removed. The estimates were

Figure 4 Multidimensional scaling of SNP genotype matrices in the
wheat and Arabidopsis data sets: first two dimensions.
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b̂j ¼ 2 0:2563;   0:6901;   0:0231;   2 0:3036;   0:2414;

b̂j½21� ¼ 2 0:2567;   0:6934;   0:0231;   2 0:3055;   0:2427;

b̂j½2122� ¼ 2 0:2572;   0:6933;   0:0229;   2 0:3061;   0:2424;

b̂j½212223� ¼ 2 0:2571;   0:6934;   0:0231;   2 0:3061;   0:2427;

b̂j½21222324� ¼ 2 0:2586;   0:6934;   0:0231;   2 0:3072;   0:2426:

Differences were minor, and corresponding BLUPs were very
similar as well. For example, using marker 3, the regression of
BLUP½3;21222324� on BLUP½3� had 0.009 as intercept and 0.9951 as
slope. Removing eigenvectors makes a difference, but it had a
negligible practical importance in this example.

CASE STUDIES WITH WHEAT AND ARABIDOPSIS DATA

Wheat
A publicly available wheat data set was employed to investigate several
issues associated with removing markers or eigenvectors from G; in-
cluding impact on maximum likelihood estimates of variance compo-
nents. The wheat data were downloaded from package BGLR (Pérez
and de los Campos 2014); these data have also been used by, e.g., Crossa
et al. (2010), Gianola et al. (2011) and Long et al. (2011). The data
originated from several international trials conducted at the Interna-
tional Maize and Wheat Improvement Center (CIMMYT), Mexico.
There are 599 wheat inbred lines, each genotyped with 1279 DArT
(Diversity Array Technology) markers and planted in four environ-
ments. The target trait was yield in environment 1. Here n ¼ 599 and
p ¼ 1279. The DArT markers are binary ð0; 1Þ denoting presence or

absence of an allele at a marker locus in a given line. In this data set
there is no information on chromosomal location of markers, but this
does not hamper illustration of concepts.

Arabidopsis
We also used the A. thaliana data set described by Atwell et al. (2010)
andWimmer et al. (2013), mainly for illustrating the impacts of eigen-
vector removal on inferences. Norborg et al. (2005) and Atwell et al.
(2010) pointed out that this sample of accessions suggests a complex
structure in the population, making the data interesting for our pur-
poses. The data, available in the R Synbreed package (Wimmer et al.
2012), represents 199 accessions genotyped with a custom Affymetrix
250K SNP chip, and measured for a number of phenotypes. As in
Wimmer et al. (2013), flowering time ðn ¼ 194Þ, plant diameter
ðn ¼ 180Þ, and FRIGIDA ðn ¼ 164Þ gene expression were chosen as
target phenotyes; marker genotypes are pre-edited in the package, and
215,947 SNP loci were used in the analysis.

GWAS: OLS vs. GLS analyses
We compared SMR-OLS vs. GLS in the wheat data at two specified
values of the variance ratio or, equivalently, of genomic heritability.
Marker genotypes were centered to have a mean of zero, marker by
marker, for all 1279 DArT polymorphisms; phenotypes were already
standardized to have a null mean and variance 1. For OLS, computation
was done using the lm function available in the R package (http://www.
r-project.org/). In GLS, the genomic relationship matrix used was as
follows: 1) with X being the matrix of centered markers, we formed
G ¼ XX9=ðp�dÞ ¼ fgijg; here, �d is the mean of the diagonal values of

Figure 5 Multidimensional scaling of SNP genotype
matrices in the wheat and Arabidopsis data sets. Top
panel: eigenvalue (relative to their sum) decay. Mid-
dle panel: STRESS metric in wheat. Bottom panel:
STRESS metric in Arabidopsis.
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XX9=p and gij measures similarity in state between individuals i and j.

2) We then formed V� ¼ G
h2g

12 h2g
þ I, and, for the purpose of examin-

ing sensitivity, set genomic heritability in the GLS analysis to
h2g ¼ ð0:10; 0:25Þ; representing an increase in the signal to noise ratio

when going from 0.10 to 0.25. GLS was implemented using the lm
function via transformation of the phenotypes and of the marker
incidence matrix, as shown in Appendix D.

The SMROLS and GLS analyses gave similar inferences in terms of
regression coefficients, R2 (percentage of corrected sums of squares of
grain yield explained by the model), and p2 values, but the GLS re-
sidual variances were smaller. While 29 markers were found significant
(Bonferroni corrected p values) for OLS, the GLS analyses at h2 ¼ 0:10
and 0.25 produced 32 significances (31 in common). As is typically the
case for quantitative traits such as grain yield, most single marker based
models explained a small fraction of the variation: the largest R2 ob-
served were 7.27%, 7.28%, and 7.29% for OLS, GLS(0.10), and GLS
(0.25), respectively. Here, R2 was the standard measure used in OLS
and GLS (using Appendix D, one can calculate the GLS statistics
employing OLS computations); alternative measures are discussed by
Sun et al. (2010).

The GWAS literature does not emphasize enough that the explan-
atory power of a model and estimates of effect sizes change markedly
when additional markers are included in the specification, i.e., failure to
account for other variants is one of the most obvious explanations of
missing heritability (Maher 2008) in SMR. Adding up R2 from SMR
gives a distorted picture of the variability explained, because LD is
ignored (e.g., Gianola et al. 2013). To illustrate how effect size in GWAS
was affected by model specification, we fitted jointly by least-squares
multiple marker regression (MMR) all 29 markers found significant in
OLS SMR. The R2 of this model was 28.3%. In this MMR, however,

only twomarkers were significant ata ¼ 0:05=29 ¼ 1:72· 1023 (Bon-
ferroni correction); these p values are of course incorrect in a sequential
approach such as the one followed here. Effect size estimates were
different, including sign changes (some markers with a negative SMR

Figure 6 Wheat: maximum likelihood estimates of
genomic (Vg) and residual (Ve) variance components
and of genomic heritability (h2) corresponding to
599 models with principal components (PC) re-
moved, one at a time, when forming the genomic
relationship matrix (G). Top panel: variance compo-
nents. Bottom panel: genomic heritability. Horizon-
tal and vertical lines indicate estimates found with all
PC in G.

Figure 7 Wheat: relationship between genomic antiheritability (1–h2)
after removing each one of the PC of G and R2 from the ordinary least‐
squares (OLS) regression of yield on each of the PC.

Volume 6 October 2016 | Genomic Relationship Matrix | 3249



estimate became positive inMMR, and vice versa) TheMMR estimates
were larger in size and more variable (SE not shown) due to the co-
linearity caused by strong LD between some markers. In theory, SMR
may have a larger bias (relative to causal loci in a multifactorial model)
thanMMR, but the latter produces estimates withmore variability. The
mean-squared error of estimation cannot be evaluated in the absence of
knowledge of model parameters; the true marker effect depends on the
effects of the QTL affecting the trait, and on the unknown LD relation-
ships betweenmarkers andQTL, these being of amultivariate nature in
the case of complex traits (de los Campos et al. 2015)

Effect of removing a single marker from G on
genomic heritability
Since our analytical developments assume thatmarker removal doesnot
affect the partition of variance, we measured the extent to which this
assumption held using the wheat data set. The likelihood was formed
under y � Nð0;Gs2

g þ Is2
e Þ. Here, we tookG ¼ XX9=ð�dpÞ, where �d is

the mean of the diagonal elements ofXX9 (markers were centered) and
estimated the two variance components by maximum likelihood using
an eigen-decomposition algorithm ofGs2

g þ Is2
e (e.g., Janss et al. 2012)

that renders computation fast. Estimates obtained with all markers
included inGwere ~s2

g ¼ 0:60560:102and ~s2
e ¼ 0:53960:04; genomic

heritability was 0.529. Convergence was assessed and confirmed by
beginning the iteration from different sets of starting values. Further,
we constructed 1279 genomic relationship matrices by excluding one
marker at a time, i.e., G½2j�, j ¼ 1; 2; . . . ; 1279; convergence was as-
sumed for each case, starting the iteration using a value of 0.5 for each
of the two variance components. The estimates obtained are shown in

Figure 1; larger estimates of genomic variance were associated with
smaller estimates of residual variance. Departure of parameter esti-
mates from the values obtained when all markers entered into G was
very mild for all markers. Out of the 1279 sets of estimates of genomic
and residual variance, 797 were smaller than ~s2

g due to marker
exclusion.

We assessed genetic variability as oftendone inGWASvia SMR, and
related the corresponding metrics to what would be suggested by a
variance component analysis. In a SMR, the contribution of marker j to
variability is calculated as SMV ¼ 2qð12 qÞ~b2

where ~b is typically an
OLS estimate and q is allelic frequency; SMV stands for single marker
variance. This formula is very crude because it assumes that the trait is
mono-factorial, or that loci are in linkage equilibrium, so the total
genetic variance would be the sum of variances contributed by each
of the loci (e.g., Gianola et al. 2009, 2013). For inbred lines such as in the
wheat data, the metric is qð12 qÞ~b2

: We evaluated if changes in esti-
mates of s2

g due to removing marker j from the G matrix correlated
with qjð12 qjÞ~b2

OLS;j, and with standard R2
j values from SMR. Since

marker removal sometimes increased, sometimes decreased, the vari-
ance estimates relative to ~s2

g ¼ 0:605;we computed the absolute values
of ~s2

g 2 ~s2
g½2j�; j ¼ 1; 2; . . . :; 1279: Figure 2 displays relationships be-

tween SMVj, R2
j and DðVÞ ¼




~s2
g 2 ~s2

g½2j�



. SMV and R2 had a clear

association; this was expected because R2 is proportional to ~b
2
in simple

linear regression. Since the relationship betweenD-V and SMV, or R2,
was less transparent, we extracted a pattern using local regression
(LOESS) with a span parameter of 0.25, meaning that a local neigh-
borhood had 320 members (Cleveland 1979). There was a tendency
for D-V to increase when SMV (or R2Þ increased. This is reasonable

Figure 8 Arabidopsis: maximum likelihood esti-
mates of genomic (Vg) and residual (Ve) variance
components and of genomic heritability (h2) corre-
sponding to models with PC removed, one at a time,
when forming the genomic relationship matrix (G).
Red: flowering time. Green: FRIGIDA expression.
Blue: plant diameter. Horizontal and lines indicate
estimates found with all PC in G.
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because the more variance a marker captures, the larger the decrease
from ~s2

g should be when such marker is removed from G. Since we
were unable to monitor convergence for the 1279 sets of estimates, it
may be that removing a marker increased ~s2

g½2j� relative to ~s2
g ; this

phenomenon could be due to convergence to a local maximum and
our estimation procedure did not constrain each ~s2

g½2j� to be, at most,
~s2
g : Thus, we turned attention to the subset of estimates where marker

removal reduced the marked additive genetic variance relative to ~s2
g .

This analysis is displayed in Figure 3 and the picture was clear: re-
moving markers from G assessed via SMR as making a larger contri-
bution to the variance of the trait did reduce estimates of genomic
variance. The impact was very small but detectable.

It is concluded from the preceding that, if the contribution of a
marker to G is removed, it is safe (especially with dense chips) to use
variance components estimated from an all-markers analysis, unless
there are some huge effect variants that would probably be detected
anyhow. Since we showed analytically that the GLS estimator is in-
variant with respect to removing markers fromG, it is unnecessary to
re-estimate variance parameters, or to modify G at any pass of a SMR
GWAS.

Effect of removing principal components from G on
genomic heritability

Multi-dimensional scaling of wheat and Arabidopsis: Many GWAS
use a SMR model with one or a few regressions on PC of XX9 as fixed
effects, to account for population structure. If such an analysis is based
on a mixed model with Gs2

g as genomic covariance structure, the
implication is that the PC fitted (with a fixed regression) is not removed
fromG, which is contradictory. To guide the specification of the GWAS
model, we searched for genomic structure in the wheat andArabidopsis
genotype matrices using multi-dimensional scaling (MDS).

MDS was developed by Kruskal (1964 a, b) to obtain spatial repre-
sentations of objects in a perceptual K2 dimensional topology. A de-
scription is in Borg and Groenen (2005), and an application to
quantitative genomics is in Zhu and Yu (2009). MDS inputs can
be squared Euclidean distances between objects, in our case the
p2 dimensional genotypes of the 599 wheat lines or the 199 Arabi-
dopsis accessions. There were 179,101 and 19,701 Euclidean distances
between rows of X (or of G) in the wheat and Arabidopsis data sets,
respectively. In MDS, distances are rotated into a matrix whose
eigen-decomposition yields the K-dimensional coordinates, while pre-
serving distances in some best fit sense. There are two types of MDS:
classical and nonmetric. In classical MDS, differences and ratios be-
tween distances are preserved. In nonmetric scaling, only the order of
the distances is relevant. The best fitting K is found at the eigenvalue in
which an elbow of an eigenvalue decay plot is observed, or can be
derived from a metric called STRESS. Here, squared differences be-
tween observed and fitted distances are summed over the two dimen-
sions, and expressed relative to the sum of all observed squared
distances. If STRESS (the square root of the preceding quantity) is
smaller than 5–10%, the corresponding dimension is deemed to give a
satisfactory fit (Kruskal, 1964b).

We fed the wheat and Arabidopsis distances to the R functions
cmdscale and ISOmds, fitted models with K ¼ 1; 2; . . . ; 198 (Arabi-
dopsis) and K ¼ 1; 2; . . . ; 30 (wheat) dimensions, and calculated
STRESS for each model. Spatial representations obtained for models
with two dimensions are in Figure 4: the perception of structure is
much clearer in wheat than in Arabidopsis. In wheat, the first coordi-
nate separates lines into two well delineated groups; the second
coordinate stretches the lines within groups along the y-axis. A two-
dimensional representation seemed insufficient in theArabidopsis data.
Figure 5 (top panel) presents a scree plot of eigenvalues expressed as a
fraction of the sum of all MDS eigenvalues: the first five eigenvalues

Figure 9 Arabidopsis: OLS and generalized least‐
squares statistical support for association with
70 principal components of G fitted jointly, –log
(p‐values, base 10), for flowering time, FRIGIDA ex-
pression, and plant diameter. Horizontal and vertical
lines are at 3.15, corresponding to a Bonferroni cor-
rection for 70 comparisons with single test signifi-
cance at 5%.

Volume 6 October 2016 | Genomic Relationship Matrix | 3251



represented 31.8% and 14.5% of the variation in wheat andArabidopsis,
respectively; save for the first two, there were no clearly dominant
values in Arabidopsis. The middle and bottom panels show STRESS
(nonmetric MDS) for models of different dimensionality. In the wheat
data set, a satisfactory fit (STRESS = 5–10%; Kruskal 1964b) was
obtained withK ¼ 52 10 dimensions, but at least 70 dimensions were
needed to fit theArabidopsis distances reasonably well. The implication
is that population structure in wheat may not be accounted properly
with a single PC. In the Arabidopsis collection, the topology was less
sharp, suggesting an aggregation similar to the family structure typically
encountered in animal breeding or in humans (see Supplementary
Figure 4 in Atwell et al. 2010). If the latter is the case, use of a kinship
matrix in the GWAS may suffice, without the need of fitting principal
components as fixed effects. In wheat, on the other hand, a kinship
matrix would account for similarity among lines, but not for differences
in mean among the few strata suggested by Figure 4 and Figure 5.

PC and variance components: We examined the effect of removing PC
fromG onmaximum likelihood estimates of the twovariance components.
In wheat, after extracting the 599 PC of G, maximum likelihood estimates
of s2

e and s2
g were obtained by removing one PC at each time when

building the genomic relationship matrix. The impact on the estimates
was noticeable (Figure 6): removing “dominant” PC from G produced
much lower estimates of genomic variance and of genomic heritability
than when all PCs entered into G (recall that genomic variance and her-
itability of yield were 0.605 and 0.529, respectively), and larger estimates of
residual variance. The relationship between 12 h2g (genomic antiheritabil-
ity) and the R2 from the OLS regression of grain yield on each of the PC is

shown in Figure 7: removal of PCwith the largestR2 resulted in the largest
antiheritability estimates. PC with the strongest association with the trait
also had the largest impact on h2 estimates when removed from G (not
shown) In short, if a PC is treated as fixed but not removed from G, the
residual variance will be understated, because the fact that such PC also
contributes to genomic variance would not be accounted for properly.
Genomic heritability should be re-estimated if PCs are removed from G.

In Arabidopsis, estimates of variance components and of genomic
heritability were s2

g ¼ 0:64, s2
e ¼ 0:06;and h2g ¼ 0:92 (flowering

time); s2
g ¼ 0:45, s2

e ¼ 0:50;and h2g ¼ 0:47 (FRIGIDA), and
s2
g ¼ 0:42, s2

e ¼ 0:45; and h2g ¼ 0:49 (plant diameter). Close to
50% (FRIGIDA and diameter) and near 100% (flowering time) of
the variance among accessions was accounted for by the 215,947
markers used for building the genomic relationship matrices. However,
SEof the estimateswere very large, reflecting the small number of accessions
in the sample. Nevertheless, the heritability estimate of flowering time
suggests a large degree of genetic control of the trait. Figure 8 displays effects
on the dispersion parameters of removing PC from the genomic relation-
ship matrix. In general, removing any of the first 10–30 PC had the largest
impact on the decrease of genomic variance and heritability, and the con-
comitant increase in residual variance, particularly forflowering time. There
were exceptions, however; for instance, removing PC 4 had a similar effect
on the decrease of genomic variance than removing PC 100 or PC 110. A
larger sample size would probably produce a more discernible pattern.

PC in the regression model: We evaluated the extent to which
associations detected by OLS or GLS were affected by accounting for
structure, and by whether or not the PC used as regressor was kept as a

Figure 10 Arabidopsis: effect sizes and statistical support for association
between flowering time and 5000 markers (chromosome 2) for models with-
out or with one, five, 10, or 50 PC as fixed covariates. Models use a genomic
relationship matrix with all its PC and corresponding maximum likelihood
estimates of variance components. Scatter was smoothed using LOESS.

Figure 11 Arabidopsis: effect sizes and statistical support [–log
(p‐value, 10)] for association between flowering time and 5000 markers
(chromosome 2) for models without or with one, five, 10, or 50 PC
tested as fixed covariates. Models use a genomic relationship matrix
with or without the PC tested included, and corresponding maximum
likelihood estimates of variance components.
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part of, or excluded from, the genomic relationshipmatrixG. With that
objective, we compared estimates from various analyses of the wheat
data: 1) OLS onmarkers with and without the first PC as a covariate; 2)
GLS (usingmaximum likelihood estimates of variance components) on
markers with or without the first PC as covariate; 3) GLS as in (2) but
with or without the first PC removed from the G matrix. As expected,
R2 increased, while some regressions near 0 became more negative and
some more positive when the PC was included in the model; this
happened both in OLS and GLS. Several regressions on markers be-
came more significant because the residual variance decreased relative
to the one produced by the model without the PC as regressor. In-
cluding or excluding the first PC when forming the relationship matrix
G had a negligible impact on inference, as the metrics used in the
comparison aligned on a 45� degree line (results not shown).

In Arabidopsis, we fitted a multiple-regression on the first 70 PC;
this was done by OLS and by GLS (maximum likelihood estimates of
variance components, all PC in G). The support for statistical signifi-
cance is shown in Figure 9. For flowering time, nine (eight) of the
70 regressions were declared significant by GLS (OLS). For FRIGIDA,
only one regression was deemed significant by GLS, and none for OLS.
For plant diameter, the twomethods agreed. The analyses illustrate that
the effects of population structure are trait-dependent. For flowering
time, the trait with the largest relative amount of genetic variance,
several PC seem needed for an appropriate GWAS; ignoring this com-
plex structure could provide a false idea of association expected within
a homogeneous group of accessions.

We extracted the first 5000markers fromArabidopsis chromosome 2,
and usedflowering time (the trait with 90%heritability) as a target trait for
evaluating alternative GWASmodel specifications. Genomic relationship
matrices were constructed with all 215,947 markers, and the regression
model included the single marker tested, and either zero, one, five, 10, or
50 PC as fixed covariates. Figure 10 gives a plot of allelic substitution
effects, and of 2log10ðp2 valueÞ: the x-axis labels effect size estimates
(top panel) and statistical support values (bottom panel) for the model
without PC in the regression structure. Clearly, accounting for structure
had a marked effect on estimates of marker effects, and on statistical
support: as the number of PC in the regression increased, effect sizes
decreased in absolute value and support for association vanished. While
a large number of markers would be declared as associated when pop-
ulation structure is ignored, only a few of these would remain significant
after the first PC is fitted; none would be significant if five or more PC are
fitted. When the first PC was removed from G, heritability of flowering
time dropped from 0.92 to 0.43.When five, 10 or 50 PCwere removed, h2

decreased further to 0.07, 3:9 · 1026 and 1:9 · 1029: It is interesting to
note that, while the nonmetric MDS suggested that about 50 dimensions
were needed to account for genomic dissimilarity among accessions, only
a few dimensions capture the association with trait variance.

Finally, effect sizeestimatesandstatistical supportwerecomparedfor
the model in which G was left intact when one, five, 10, or 50 PC were
fitted in the regression structure, vs. the corresponding models with G
and variance components appropriately modified. As shown in Figure
11 (top panel), effect size estimates aligned well for the two classes of
model, but their absolute values were somewhat smaller when the
contribution to G of the PC tested was taken into consideration. The
bottom panel of Figure 11 shows that the statistical support for asso-
ciation essentially vanished when more than two dimensions of the
population structure were accounted for via PC.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

CONCLUSIONS
Our study addressed some standing issues in standard GWAS meth-
odology for complex traits, as practiced in animal, human, and plant
genetics. We examined the question of how removal of one or more
markers from the genomic relationship matrix affects the generalized
least-squares estimator (maximum likelihood under normality, and
known genomic heritability) of allelic substitution effects in a SMR.
Itwas shown analytically that, if variance components are kept constant,
the GLS estimator and the GBLUP predictor of marker additive genetic
values are invariant with respect to whether or not the marker(s) tested
for association is(are) includedwhen constructingG.We also examined
the impact of removing PC from G, and found that it does matter, and
importantly so. Further, and unsurprisingly, estimates of genomic and
residual variances were found to be sensitive with respect to the struc-
ture of G. Concepts were illustrated using publicly available wheat and
Arabidopsis data sets.

Inconclusion, inahomogeneouspopulation, inferences fromaGWAS
using GLS where the genomic relationshipmatrix is constructed using all
markers does not present clear pitfalls other than the inability of a SMR
model to represent the statistical genetic architecture of a complex trait
properly.On theother hand, if oneormorePCare used asfixed regressors
to account for population stratification, the genomic relationship matrix
perhaps should be modified, and variance components re-estimated
accordingly. In the absence of knowledge of the state of nature, it is
impossible to answer unambiguously the question of which approach
is best. It has been argued and shown that statistical significance and
predictive ability are not synonymous (Lo et al. 2015), so perhaps cross-
validation could be used for comparingmodels. An unfortunate duality
is that predictive performance does not necessarily provide a guide for
explanation (Shmueli 2010).
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APPENDIX A: SHERMAN-MORRISON-WOODBURY FORMULA

Assuming that the inverse matrices involved below exist (e.g., Seber and Lee 2003)

ðAþ UBVÞ21 ¼ A21 2A21UB
�
Bþ BVA21UB

�21
BVA21: (43)

For the special case B ¼ I; U ¼ 6u; and V ¼ v9

�
Aþ uv9

�21 ¼ A21 2A21u
�
1þ v9A21u

�21
v9A21; (44)

�
A2uv9

�21 ¼ A21 þ A21u
�
12v9A21u

�21
v9A21: (45)

Since 12 v9A21u is scalar

�
Aþ uv9

�21 ¼ A21 2
A21uv9A21

1þ v9A21u
(46)

�
A2uv9

�21 ¼ A21 þ A21uv9A21

12 v9A21u
: (47)

APPENDIX B: DIFFERENCE BETWEEN GLS ESTIMATORS

The difference between the two GLS estimators in (16) is

Dbj
¼ b̂j;in 2 b̂j;out ¼

x9jV21y

x9jV21xj
2

x9jV21
½2j�y

x9jV21
½2j�xj

: (48)

Recalling that V21
½2j� ¼ V21 þ s2

gtjt9j
12s2

gx9jtj
; where t9j ¼ x9jV21; and putting sj ¼ x9jV21xj, one can write

Dbj
¼ x9jV21y

sj
2

x9j

 
V21 þ s2

g tjt9j

12s2
gx9jtj

!
y

x9j

 
V21 þ s2

gtjt9j

12s2
gx9jtj

!
xj

¼ x9jV21y

sj
2

x9jV21y þ s2
g sjx9jV

21y

12s2
g sj

sj þ
s2
g s
2
j

12s2
g sj

: (49)

Hence

Dbj
¼ x9jV

21y
1
sj
2

1þ s2
g sj

12s2
g sj

sj þ
s2
g s
2
j

12s2
g sj

¼ x9jV
21y

1
sj
2

1
12s2

g sj�
12s2

g sj
�
sj þ s2

g s
2
j

12s2
g sj

0
BBBBB@

1
CCCCCA ¼ x9jV

21y

�
1
sj
2

1
sj

�
¼ 0:

1
CCCCCA

0
BBBBB@

The result holds provided that G ¼ XX9; each column of X could be centered or uncentered.

APPENDIX C: DIFFERENCE BETWEEN BLUP PREDICTORS

Consider BLUP after the contribution of marker j is removed fromG, that is ĝ½2j� ¼ s2
gG½2j�V21

½2j�zj:One can write, after use is made of (15) and
(21)

ĝ½2j� ¼ s2
g

�
G2 xjx9j

� 
V21 þ s2

gV
21xjx9jV21

12s2
gx9jV

21xj

!
zj ¼ s2

gGV
21zj þ s2

g

"
s2
gGV

21xjx9jV21

12s2
gx9jV

21xj
2s2

gxjx9j

 
V21 þ s2

gV
21xjx9jV21

12s2
gx9jV

21xj

!#
zj

¼ s2
gGV

21
�
y2 xjb̂j

�
¼ ĝ: (50)

Observe that x9jV21zj ¼ x9jV21ðy2 xjb̂jÞ ¼ 0 because b̂j ¼
x9jV21y

x9jV21xj
: Thus, ĝ½2j� ¼ ĝ; and the BLUP of g is invariant with respect to removing

marker j when constructing G:
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APPENDIX D: COMPUTATION OF GLS WITH OLS

Let x be an n· 1 vector containing the genotype codes for any given marker and, for simplicity, consider a model without an intercept, that is
yi ¼ xijbj þ ej and ej � Nð0;s2

g þ s2
e Þ . The GLS estimator of the marker substitution effect is

b̂ ¼ x9ðV�s2
e Þ21y

x9ðV�s2
eÞ21x

¼ x9V�21y

x9V�21x
; (51)

and

Varðb̂jXÞ ¼ s2
e

x9V�21x
; (52)

with V� ¼ G
h2g

12 h2g
þ I. Because V� is positive-definite, V� ¼ C9C (Cholesky decomposition) and V�21 ¼ ðCÞ21C921: Using this

property, the data can be transformed into z ¼ C921y; producing

z ¼ C921xbþ C921e ¼ kbþ d; (53)

where k ¼ C921x and d ¼ C921e: Note that d � ð0; Is2
e Þ: Using this transformation, the GLS estimator can be computed as an OLS estimator

applied to the transformed data z:

b̂ ¼ k9z
k9k

¼
�
x9C21C921x

�21
x9C21C921y ¼

�
x9V�2 1x

�21
x9V�21y; (54)

with

Varðb̂Þ ¼
�
k9k
�21

s2
e ¼

�
k9V�2 1k

�21
s2
e :

The GLS-derived estimator of the variance is

~s2
e ¼

ðy2xb̂Þ9V�21ðy2xb̂Þ9
n2 1

¼ ðz2kb̂Þ9ðz2 kb̂Þ
n2 1

; (55)

which is unbiased for s2
e :Our approach differed slightly because, in addition to k;we also fitted an intercept. Test statistics were as in OLS under

normality, but employing the transformed phenotypes and incidence vector outlined above; significance was assessed using a Bonferroni
correction with a ¼ 0:05=1279 producing a 2log10ðp valueÞ ¼ 4:408.
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